The Effects of Orofacial Myofunctional Therapy on Children with OSAHS’s Craniomaxillofacial Growth: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
Primary Outcomes
2.3. Information Sources and Search Strategy
2.4. Study Selection
2.5. Data Collection Process and Data Items
3. Results
3.1. Study Selection and Characteristics
3.2. Types of Interventions
3.3. Study Quality Assessment
3.4. Intervention Effect
3.5. Bias Risk Assessment
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.-G.; Xu, J.-J.; Chen, Y.-C.; Hu, J.; Wu, Y.; Xue, Y. Aberrant cerebral blood flow in tinnitus patients with migraine: A perfusion functional MRI study. J. Headache Pain 2021, 22, 61. [Google Scholar] [CrossRef]
- Paglia, L. Respiratory sleep disorders in children and role of the paediatric dentist. Eur. J. Paediatr. Dent. 2019, 20, 5. [Google Scholar] [CrossRef]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, H.; Singh, S.; Khawaja, I. Parasomnias: A Comprehensive Review. Cureus 2018, 10, e3807. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, D.; Restrepo, C.; Diaz-Serrano, K.; Winocur, E.; Lobbezoo, F. Prevalence of sleep bruxism in children: A systematic review of the literature. J. Oral Rehabil. 2013, 40, 631–642. [Google Scholar] [CrossRef]
- Waters, K.A.; Suresh, S.; Nixon, G.M. Sleep disorders in children. Med. J. Aust. 2013, 199, S31–S35. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.R.; Pozo-Alonso, M.; Daniels, R.; Camacho, M. Pediatric Considerations for Dental Sleep Medicine. Sleep Med. Clin. 2018, 13, 531–548. [Google Scholar] [CrossRef]
- Gomes, M.F.; Giannasi, L.C.; Fillietaz-Bacigalupo, E.; de Mancilha, G.P.; de Carvalho Silva, G.R.; Soviero, L.D.; da Silva, G.Y.S.; de Nazario, L.M.; Dutra, M.T.D.S.; Silvestre, P.R.; et al. Evaluation of the masticatory biomechanical function in Down syndrome and its Influence on sleep disorders, body adiposity and salivary parameters. J. Oral Rehabil. 2020, 47, 1007–1022. [Google Scholar] [CrossRef]
- Balraj, K.; Shetty, V.; Hegde, A. Association of sleep disturbances and craniofacial characteristics in children with class ii malocclusion: An evaluative study. Indian J. Dent. Res. 2021, 32, 280–287. [Google Scholar] [CrossRef]
- Borrmann, P.F.; O’Connor-Reina, C.; Ignacio, J.M.; Rodriguez Ruiz, E.; Rodriguez Alcala, L.; Dzembrovsky, F.; Baptista, P.; Garcia Iriarte, M.T.; Casado Alba, C.; Plaza, G. Muscular Assessment in Patients with Severe Obstructive Sleep Apnea Syndrome: Protocol for a Case-Control Study. JMIR Res. Protoc. 2021, 10, e30500. [Google Scholar] [CrossRef]
- de Felício, C.M.; da Silva Dias, F.V.; Folha, G.A.; de Almeida, L.A.; de Souza, J.F.; Anselmo-Lima, W.T.; Trawitzki, L.V.V.; Valera, F.C.P. Orofacial motor functions in pediatric obstructive sleep apnea and implications for myofunctional therapy. Int. J. Pediatr. Otorhinolaryngol. 2016, 90, 5–11. [Google Scholar] [CrossRef]
- Govardhan, C.; Murdock, J.; Norouz-Knutsen, L.; Valcu-Pinkerton, S.; Zaghi, S. Lingual and Maxillary Labial Frenuloplasty with Myofunctional Therapy as a Treatment for Mouth Breathing and Snoring. Case Rep. Otolaryngol. 2019, 2019, e3408053. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Oh, E.G.; Choi, M.; Choi, S.J.; Joo, E.Y.; Lee, H.; Kim, H.Y. Development and evaluation of myofunctional therapy support program (MTSP) based on self-efficacy theory for patients with obstructive sleep apnea. Sleep Breath 2020, 24, 1051–1058. [Google Scholar] [CrossRef]
- Koca, C.F.; Erdem, T.; Bayındır, T. The effect of adenoid hypertrophy on maxillofacial development: An objective photographic analysis. J. Otolaryngol. Head Neck Surg. 2016, 45, 48. [Google Scholar] [CrossRef] [Green Version]
- Peltomäki, T. The effect of mode of breathing on craniofacial growth—Revisited. Eur. J. Orthod. 2007, 29, 426–429. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Tada, S.; Nakanishi, Y.; Kawaminami, S.; Shin, T.; Tabata, R.; Yuasa, S.; Shimizu, N.; Kohno, M.; Tsuchiya, A.; et al. Association between Mouth Breathing and Atopic Dermatitis in Japanese Children 2-6 years Old: A Population-Based Cross-Sectional Study. PLoS ONE 2015, 10, e0125916. [Google Scholar] [CrossRef] [PubMed]
- Yuen, H.M.; Chan, K.C.; Chu, W.C.W.; Chan, J.W.Y.; Wing, Y.K.; Li, A.M.; Au, C.T. Craniofacial phenotyping by photogrammetry in Chinese prepubertal children with obstructive sleep apnea. Sleep 2022, 46, zsac289. [Google Scholar] [CrossRef]
- Motta, L.J.; Martins, M.D.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Biasotto-Gonzalez, D.A.; Bussadori, S.K. Craniocervical posture and bruxism in children. Physiother. Res. Int. 2011, 16, 57–61. [Google Scholar] [CrossRef]
- Garliner, D. Myofunctional therapy. Gen. Dent. 1976, 24, 30–40. [Google Scholar]
- Rueda, J.-R.; Mugueta-Aguinaga, I.; Vilaró, J.; Rueda-Etxebarria, M. Myofunctional therapy (oropharyngeal exercises) for obstructive sleep apnoea. Cochrane Database Syst. Rev. 2020, 11, CD013449. [Google Scholar] [CrossRef]
- Yang, X.; Lai, G.; Wang, J. Effect of orofacial myofunctional therapy along with preformed appliances on patients with mixed dentition and lip incompetence. BMC Oral Health 2022, 22, 586. [Google Scholar] [CrossRef]
- Villa, M.P.; Brasili, L.; Ferretti, A.; Vitelli, O.; Rabasco, J.; Mazzotta, A.R.; Pietropaoli, N.; Martella, S. Oropharyngeal exercises to reduce symptoms of OSA after AT. Sleep Breath 2015, 19, 281–289. [Google Scholar] [CrossRef]
- Camacho, M.; Certal, V.; Abdullatif, J.; Zaghi, S.; Ruoff, C.M.; Capasso, R.; Kushida, C.A. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Sleep 2015, 38, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Wishney, M.; Darendeliler, M.; Dalci, O. Myofunctional therapy and prefabricated functional appliances: An overview of the history and evidence. Aust. Dent. J. 2019, 64, 135–144. [Google Scholar] [CrossRef]
- Guilleminault, C.; Huang, Y.S.; Monteyrol, P.J.; Sato, R.; Quo, S.; Lin, C.H. Critical role of myofascial reeducation in pediatric sleep-disordered breathing. Sleep Med. 2013, 14, 518–525. [Google Scholar] [CrossRef]
- Galeotti, A.; Festa, P.; Pavone, M.; De Vincentiis, G.C. Effects of simultaneous palatal expansion and mandibular advancement in a child suffering from OSA. Acta Otorhinolaryngol. Ital. 2016, 36, 328–332. [Google Scholar] [CrossRef]
- Hamoda, M.M.; Almeida, F.R.; Pliska, B.T. Long-term side effects of sleep apnea treatment with oral appliances: Nature, magnitude and predictors of long-term changes. Sleep Med. 2019, 56, 184–191. [Google Scholar] [CrossRef]
- Villa, M.P.; Evangelisti, M.; Martella, S.; Barreto, M.; Del Pozzo, M. Can myofunctional therapy increase tongue tone and reduce symptoms in children with sleep-disordered breathing? Sleep Breath 2017, 21, 1025–1032. [Google Scholar] [CrossRef]
- Fagundes, N.C.F.; Flores-Mir, C. Pediatric obstructive sleep apnea-Dental professionals can play a crucial role. Pediatr. Pulmonol. 2022, 57, 1860–1868. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Neelapu, B.C.; Kharbanda, O.P.; Sardana, H.K.; Balachandran, R.; Sardana, V.; Kapoor, P.; Gupta, A.; Vasamsetti, S. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: A systematic review and meta-analysis of cephalometric studies. Sleep Med. Rev. 2017, 31, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, A.; Festa, P.; Viarani, V.; Pavone, M.; Sitzia, E.; Piga, S.; Cutrera, R.; De Vincentiis, G.C.; D’Antò, V. Correlation between cephalometric variables and obstructive sleep apnoea severity in children. Eur. J. Paediatr. Dent. 2019, 20, 43–47. [Google Scholar] [CrossRef] [PubMed]
- O’Connor-Reina, C.; Ignacio Garcia, J.M.; Rodriguez Ruiz, E.; Morillo Dominguez, M.D.C.; Ignacio Barrios, V.; Baptista Jardin, P.; Casado Morente, J.C.; Garcia Iriarte, M.T.; Plaza, G. Myofunctional Therapy App for Severe Apnea-Hypopnea Sleep Obstructive Syndrome: Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth 2020, 8, e23123. [Google Scholar] [CrossRef] [PubMed]
- Poncin, W.; Correvon, N.; Tam, J.; Borel, J.-C.; Berger, M.; Liistro, G.; Mwenge, B.; Heinzer, R.; Contal, O. The effect of tongue elevation muscle training in patients with obstructive sleep apnea: A randomised controlled trial. J. Oral Rehabil. 2022, 49, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- De Felício, C.M.; Ferreira, C.L.P. Protocol of orofacial myofunctional evaluation with scores. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 367–375. [Google Scholar] [CrossRef]
- Incerti Parenti, S.; Fiordelli, A.; Bartolucci, M.L.; Martina, S.; D’Antò, V.; Alessandri-Bonetti, G. Diagnostic accuracy of screening questionnaires for obstructive sleep apnea in children: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101464. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Shan, H.Q.; Wang, Y.H.; Yu, L.M.; Li, X.Y.; Liu, Y.H. Orofacial myofunctional therapy improves facial morphology of children with obstructive sleep apnea after adenotonsillectomy. Shanghai J. Stomatol. 2021, 30, 389–393. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Hsu, S.-C.; Guilleminault, C.; Chuang, L.-C. Myofunctional Therapy: Role in Pediatric OSA. Sleep Med. Clin. 2019, 14, 135–142. [Google Scholar] [CrossRef]
- Chuang, L.-C.; Hwang, Y.-J.; Lian, Y.-C.; Hervy-Auboiron, M.; Pirelli, P.; Huang, Y.-S.; Guilleminault, C. Changes in craniofacial and airway morphology as well as quality of life after passive myofunctional therapy in children with obstructive sleep apnea: A comparative cohort study. Sleep Breath 2019, 23, 1359–1369. [Google Scholar] [CrossRef]
- Habumugisha, J.; Cheng, B.; Ma, S.-Y.; Zhao, M.-Y.; Bu, W.-Q.; Wang, G.-L.; Liu, Q.; Zou, R.; Wang, F. A non-randomized concurrent controlled trial of myofunctional treatment in the mixed dentition children with functional mouth breathing assessed by cephalometric radiographs and study models. BMC Pediatr. 2022, 22, 506. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-S.; Chuang, L.-C.; Hervy-Auboiron, M.; Paiva, T.; Lin, C.-H.; Guilleminault, C. Neutral supporting mandibular advancement device with tongue bead for passive myofunctional therapy: A long term follow-up study. Sleep Med. 2019, 60, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-J.; Huang, Y.-S.; Lian, Y.-C.; Lee, Y.-H.; Hervy-Auboiron, M.; Li, C.-H.; Lin, C.-H.; Chuang, L.-C. Craniofacial Morphologic Predictors for Passive Myofunctional Therapy of Pediatric Obstructive Sleep Apnea Using an Oral Appliance with a Tongue Bead. Children 2022, 9, 1073. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.-C.; Lian, Y.-C.; Hervy-Auboiron, M.; Guilleminault, C.; Huang, Y.-S. Passive myofunctional therapy applied on children with obstructive sleep apnea: A 6-month follow-up. J. Med. Assoc. 2017, 116, 536–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho Rosas Gomes, L.; Horta, K.O.C.; Gandini, L.G.; Gonçalves, M.; Gonçalves, J.R. Photographic assessment of cephalometric measurements. Angle Orthod. 2013, 83, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, M.; Fukuoka, T.; Mori, T.; Hiraoka, A.; Higa, C.; Kuroki, A.; Takeda, C.; Maruyama, M.; Yoshida, M.; Tsuga, K. Comparison of the Iowa Oral Performance Instrument and JMS tongue pressure measurement device. J. Dent. Sci. 2021, 16, 214–219. [Google Scholar] [CrossRef]
- Harvold, E.P.; Tomer, B.S.; Vargervik, K.; Chierici, G. Primate experiments on oral respiration. Am. J. Orthod. 1981, 79, 359–372. [Google Scholar] [CrossRef]
- Todd, C.A.; Bareiss, A.K.; McCoul, E.D.; Rodriguez, K.H. Adenotonsillectomy for Obstructive Sleep Apnea and Quality of Life: Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2017, 157, 767–773. [Google Scholar] [CrossRef]
- Diaféria, G.; Santos-Silva, R.; Truksinas, E.; Haddad, F.L.M.; Santos, R.; Bommarito, S.; Gregório, L.C.; Tufik, S.; Bittencourt, L. Myofunctional therapy improves adherence to continuous positive airway pressure treatment. Sleep Breath 2017, 21, 387–395. [Google Scholar] [CrossRef]
- Verma, R.K.; Johnson, J.J.R.; Goyal, M.; Banumathy, N.; Goswami, U.; Panda, N.K. Oropharyngeal exercises in the treatment of obstructive sleep apnoea: Our experience. Sleep Breath 2016, 20, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Amat, P.; Tran Lu, Y.É. The contribution of orofacial myofunctional reeducation to the treatment of obstructive sleep apnoea syndrome (OSA): A systematic review of the literature. Orthod. Fr. 2019, 90, 343–370. [Google Scholar] [CrossRef]
- Camacho, M.; Guilleminault, C.; Wei, J.M.; Song, S.A.; Noller, M.W.; Reckley, L.K.; Fernandez-Salvador, C.; Zaghi, S. Oropharyngeal and tongue exercises (myofunctional therapy) for snoring: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2018, 275, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Stål, P. Myopathy of the upper airway in snoring and obstructive sleep apnea. Laryngoscope Investig. Otolaryngol. 2022, 7, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.A.; Ray, B.J.; Fernandez-Salvador, C.; Gouveia, C.; Zaghi, S.; Camacho, M. Neuromuscular function of the soft palate and uvula in snoring and obstructive sleep apnea: A systematic review. Am. J. Otolaryngol. 2018, 39, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, K.C.; Drager, L.F.; Genta, P.R.; Marcondes, B.F.; Lorenzi-Filho, G. Effects of Oropharyngeal Exercises on Patients with Moderate Obstructive Sleep Apnea Syndrome. Am. J. Respir. Crit. Care Med. 2009, 179, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Koka, V.; De Vito, A.; Roisman, G.; Petitjean, M.; Filograna Pignatelli, G.R.; Padovani, D.; Randerath, W. Orofacial Myofunctional Therapy in Obstructive Sleep Apnea Syndrome: A Pathophysiological Perspective. Medicina 2021, 57, 323. [Google Scholar] [CrossRef]
- Hsu, B.; Emperumal, C.P.; Grbach, V.X.; Padilla, M.; Enciso, R. Effects of respiratory muscle therapy on obstructive sleep apnea: A systematic review and meta-analysis. J. Clin. Sleep Med. 2020, 16, 785–801. [Google Scholar] [CrossRef]
- Zhang, F.; Tian, Z.; Shu, Y.; Zou, B.; Yao, H.; Li, S.; Li, Q. Efficiency of oro-facial myofunctional therapy in treating obstructive sleep apnoea: A meta-analysis of observational studies. J. Oral Rehabil. 2022, 49, 734–745. [Google Scholar] [CrossRef]
- Lê-Dacheux, M.-K.; Aubertin, G.; Piquard-Mercier, C.; Wartelle, S.; Delaisi, B.; Iniguez, J.-L.; Tamalet, A.; Mohbat, I.; Rousseau, N.; Morisseau-Durand, M.-P.; et al. Obstructive Sleep Apnea in Children: A Team effort! Orthod. Fr. 2020, 91, 323–345. [Google Scholar] [CrossRef]
Electronic Database | Search Strategy |
---|---|
PubMed (searched up to 1 September 2022) | All Fields: respiratory muscle therapy OR oropharyngeal exercises OR speech therapy OR breathing exercises OR wind musical instruments OR orofacial myofunctional therapy OR Myofunctional therapy OR Muscle function therapy OR Oropharyngeal movements AND Craniofacial Language: English and Chinese |
The Web of Science (searched up to 1 September 2022) | Keywords: respiratory muscle therapy OR, oropharyngeal exercises OR speech therapy OR breathing exercises OR wind musical instruments OR orofacial myofunctional therapy OR Myofunctional therapy OR Muscle function therapy OR Oropharyngeal movements AND Craniofacial |
Cochrane Library | orofacial myofunctional therapy OR Myofunctional therapy OR Oropharyngeal movements AND OSA AND Child |
China National Knowledge Infrastructure (CNKI) | Keywords: orofacial myofunctional therapy OR Oropharyngeal movements OR speech therapy AND child |
Study Citation (Year) | Type of Study Design | Sample Size and Age | Intervention | Assessments | Primary Findings | Journals |
---|---|---|---|---|---|---|
Shan, 2021 [37] | Self-controlled before and after study | 10 children aged 4–7 years, 7 boys and 3 girls. | The study group performed 4 sets of exercises daily and required parental participation and supervision for 6 months: (1) labial training; (2) breathing training; (3) tongue position training; and (4) swallowing training | Take photos before and after orofacial myofunctional therapy: twelve representative mark points | The shape of the front and side profiles has been greatly improved. the significant difference was found in the proportion of Sn-Ls/Sn-Stms, Sn-Stms/Sn-Me, as well as in the angle of Gs-Sn-Pos, nasolabial angle, mentolabial angle after OMT treatment. | Shanghai Journal of Stomatology |
Guilleminault, 2013 [25] | Retrospective analysis | 24 cases of children aged 3–6 years with OSAHS | Eleven cases in the study group were given OMT and followed up at 22–50 months after treatment; the control group had a blank intervention and was followed up at 20–34 months. | Sleep-related questionnaire, PSG, orofacial myofunctional evaluation with scores | Children with SDB have abnormal upper airway muscle contractions while they slumber. All participants were given a score of abnormal orofacial muscle tone while awake at the conclusion of the assessment by re-educators. | SLEEP MED |
Huang, 2019 [38] | Prospective study | Total 121 pediatric OSA. Fifty-four children were received MFT. | MFT group: MFT (total 20 min/d) for 0.5 years, For 0.5 years, the PMFT group received mouth applications with tongue beads while they slept. Control group: received no medical attention. | PSG, lateral cephalometric films evaluating bone structure development | MFT showed improvement in PNS-NPhp and PNS-AD2 measurements | Sleep Med Clin |
Chuang, 2019 [39] | Comparative cohort study | 57 children (44 males and 13 girls, mean age 7.86 ± 3.09 years old) | PMFT group (Oral appliance for 1 year) Control group: Blank control | PSG, Quality of life survey (the Chinese version of OSA-18). Cephalometric radiography | The upper airways’ dimensions (PNS-AD2, minRGA, OPha-Ophp) considerably grew. Mandibular and maxillary development (Ar-A) (Ar-Gn and Co-Gn). vertical development of facial height (S-Go and N-Me) | Sleep & breathing = Schlaf & Atmung |
Habumugisha, 2022 [40] | non-randomized concurrent controlled trial | 224 kids (aged 6 to 10); 114 boys and 110 girls. | MB-N group (mouth breathers with no medication, n = 70); NB group (nasal breathers with no treatment, n = 79); MB-M group (mouth breathers with myofunc-tional treatment, n = 75): With a therapy of 13.0 ± 1.1 months. | nasopharyngeal X-ray, rhinoscopy, and flexible nasopharyngoscopy | U1-NA, L1-NB angles and U1-NA, L1-NB linear measures declined in the MB-M group, while overjet, over-bite, and C-C linear lengths rose. | BMC PEDIATR |
Huang, 2019 [41] | a long term follow-up study | 110 children aged 4 to 16 years with PSG diagnosis of OSA | Group MFT: a total of 20 minutes per day for a year. Oral application using a tongue bead for a year in the PMFT cohort. | PSG and lateral cephalometrics evaluating bone structure development at baseline, 6 and 12 months. | The airway width at the level of the nasopharynx (min-RGA, PNS-AD2) was significantly enhanced by the oral device. Improvements in the PNS-NPhp and PNS-AD2 measurements are Particularly significant. With PMFT, compliance is much easier. | SLEEP MED |
Hwang, 2022 [42] | retrospective study | 50 boys and 13 girls, totaling 63 patients with OSAHS, were between the ages of 4 and 16 years. | For more than six months, each patient received nightly PMFT (OA) therapy. | Lateral Cephalometric Radiography | 28 patients reacted favorably to the therapy. In respondents, there were larger SNBa, smaller LGo an-gle, and shorter SN. A tongue-beaded OA can indicate a positive outcome for pediatric OSAHS with a smaller LGo Angle and smaller SN. | Children |
Villa, 2015 [22] | prospective and randomized study | 30 OSAHS children over 4 years old | group 1 (n = 14): oropharyngeal exercises + nasal washing control group (n = 13): nasal washing | Glatzel and Rosenthal tests, polysomnography and clinical evaluation | A decrease in oral breathing, satisfactory Glatzel and Rosenthal tests, and a noticeable enhancement in labial seal and lip tone. | Sleep & breathing = Schlaf & Atmung |
Villa, 2017 [28] | prospective, case–control study | 54 kids with SDB (mean age 7.1 ± 2.5 years, 29 boys) | MT group (n = 36): MT plus nasal washing no-MT group (n = 18): nasal washing | Myofunctional evaluation tests, the Iowa Oral Performance Instrument (IOPI), and nocturnal pulse oximetry | Boosted tongue strength, peak tongue pressure and persistence, restored normal tongue resting posture, and decreased oral breathing and lip hypotonia. | Sleep & breathing = Schlaf & Atmung |
Entry | Shan, 2021 [37] | Guilleminault, 2013 [25] | Huan, 2019 [38] | Chuang, 2019 [39] | Habumugisha, 2022 [40] | Huang, 2019 [41] | Hwang, 2022 [42] | Villa, 2015 [22] | Villa, 2017 [28] |
---|---|---|---|---|---|---|---|---|---|
Q1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Q8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
Q9 | Not applicable | Not applicable | 2 | 2 | 2 | 2 | Not applicable | 2 | 2 |
Q10 | Not applicable | Not applicable | 2 | 2 | 2 | 2 | Not applicable | 2 | 2 |
Q11 | Not applicable | Not applicable | 2 | 2 | 2 | 2 | Not applicable | 2 | 2 |
Q12 | Not applicable | Not applicable | 1 | 1 | 1 | 1 | Not applicable | 0 | 0 |
Total score | 14 | 14 | 21 | 21 | 23 | 21 | 14 | 20 | 20 |
Rank | Evaluation Category | Shan, 2021 [37] | Guilleminault, 2013 [25] | Huang, 2019 [38] | Chuang, 2019 [39] | Habumugisha, 2022 [40] | Huang, 2019 [41] | Hwang, 2022 [42] | Villa, 2015 [22] | Villa, 2017 [28] |
---|---|---|---|---|---|---|---|---|---|---|
Bias due to confounding | 1.1 | 4 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 2 |
1.2 | 9 | 0 | 9 | 1 | 2 | 1 | 9 | 1 | 1 | |
1.3 | 9 | 2 | 9 | 1 | 1 | 1 | 9 | 1 | 1 | |
1.4 | 0 | 2 | 2 | 9 | 9 | 9 | 3 | 9 | 9 | |
1.5 | 2 | 2 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | |
1.6 | 0 | 3 | 2 | 9 | 9 | 9 | 4 | 9 | 9 | |
1.7 | 3 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 3 | |
1.8 | 9 | 9 | 9 | 9 | 2 | 9 | 9 | 9 | 9 | |
Risk of bias judgement (direction) | 4(1) | 2(1) | 3(1) | 3(1) | 2(1) | 3(1) | 4(1) | 3(1) | 2(1) | |
Bias in selection of participants into the study | 2.1 | 4 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
2.2 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
2.3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
2.4 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | |
2.5 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
Risk of bias judgement (direction) | 3(4) | 3(1) | 2(1) | 2(1) | 2(1) | 2(1) | 3(1) | 2(1) | 2(1) | |
Bias in classification of interventions | 3.1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3.2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
3.3 | 2 | 1 | 4 | 3 | 3 | 3 | 4 | 3 | 3 | |
Risk of bias judgement (direction) | 2(2) | 2(2) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Bias due to deviations from intended interventions | 4.1 | 9 | 9 | 9 | 4 | 4 | 4 | 9 | 4 | 4 |
4.2 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
4.3 | 2 | 0 | 1 | 9 | 9 | 9 | 1 | 9 | 9 | |
4.4 | 1 | 1 | 1 | 9 | 9 | 9 | 2 | 9 | 9 | |
4.5 | 2 | 1 | 1 | 9 | 9 | 9 | 2 | 9 | 9 | |
4.6 | 9 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
Risk of bias judgement (direction) | 2(2) | 1 | 1 | 1 | 1 | 1 | 2(2) | 1 | 1 | |
Bias due to missing data | 5.1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5.2 | 3 | 4 | 1 | 4 | 1 | 1 | 1 | 4 | 4 | |
5.3 | 3 | 4 | 1 | 0 | 2 | 2 | 1 | 4 | 4 | |
5.4 | 9 | 9 | 2 | 9 | 0 | 2 | 2 | 9 | 9 | |
5.5 | 9 | 9 | 4 | 9 | 2 | 2 | 4 | 9 | 9 | |
Risk of bias judgement (direction) | 2(2) | 3(1) | 2(1) | 2(1) | 2(2) | 2(1) | 2(1) | 3(1) | 3(1) | |
Bias in measurement of outcomes | 6.1 | 3 | 2 | 3 | 4 | 4 | 4 | 3 | 4 | 4 |
6.2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
6.3 | 4 | 4 | 4 | 1 | 1 | 1 | 4 | 1 | 1 | |
6.4 | 4 | 4 | 4 | 1 | 3 | 3 | 4 | 3 | 3 | |
Risk of bias judgement (direction) | 2(4) | 2(2) | 2(1) | 3(2) | 2(2) | 2(1) | 2(2) | 2(2) | 2(2) | |
Bias in selection of the reported result | 7.1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
7.2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
7.3 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | |
Risk of bias judgement (direction) | 2(4) | 2(1) | 2(1) | 1 | 1 | 1 | 1 | 1 | 1 |
Study Citation (Year) | Intervention Program |
---|---|
Shan, 2021 [37] |
|
Guilleminault, 2013 [25] | Orthodontic treatment and myofunctional re-education are done concurrently. There was no mention of a training program. |
Huang, 2019 [38] | MFT (20 min/day total) for 0.5 years
|
Chuang, 2019 [39] | Study participants were required to install instruments and beads (passive MFT) with tongues at night. Parents recorded the night wear of children in the treatment group for one year in the sleep log. We will schedule three months of recall for each participant in order to confirm the status and installation status of the oral device and the side effects and discomfort when installing the device. Fix or adjust the oral device if necessary. |
Habumugisha, 2022 [40] |
|
Huang, 2019 [41] |
|
Hwang, 2022 [42] | Over the course of more than six months, all patients received OA therapy each night. For the tongue tip to roll, the tongue bead is mounted on the bottom end of the frame. To open the airway, the mandible of the wearer is positioned forward and downward, and the mouth is positioned forward. The OA was put on by the patients before bed, and they were told to roll the bead with their tongues while they slept. Every three months, each patient was given a reminder appointment to examine the fit and condition of their oral device and any side effects or discomfort they may have experienced while using it. |
Villa, 2015 [22] |
|
Villa, 2017 [28] | Same as Villa, 2015 [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, J.-R.; Xie, S.-Q.; Yang, X.; Chen, J.-L. The Effects of Orofacial Myofunctional Therapy on Children with OSAHS’s Craniomaxillofacial Growth: A Systematic Review. Children 2023, 10, 670. https://doi.org/10.3390/children10040670
Liu Y, Zhou J-R, Xie S-Q, Yang X, Chen J-L. The Effects of Orofacial Myofunctional Therapy on Children with OSAHS’s Craniomaxillofacial Growth: A Systematic Review. Children. 2023; 10(4):670. https://doi.org/10.3390/children10040670
Chicago/Turabian StyleLiu, Yue, Jian-Rong Zhou, Shi-Qi Xie, Xia Yang, and Jing-Lan Chen. 2023. "The Effects of Orofacial Myofunctional Therapy on Children with OSAHS’s Craniomaxillofacial Growth: A Systematic Review" Children 10, no. 4: 670. https://doi.org/10.3390/children10040670