Visual Acuity and Contrast Sensitivity in Preterm and Full-Term Children Using a Novel Digital Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
- Age between 6 months and 14 y.
- No relevant medical reports (including gestational age at birth ≥ 37 weeks (w) and birthweight ≥ 2500 gr).
- Low refractive error: myopia equal of less than 3.50 dioptres (D) for children younger than 30 months, 3.00 D between 31 and 48 months and 1.50 D over 48 months; hyperopia equal or less than 4.50 D for children younger than 30 months, 4.00 D between 31 and 48 months and 3.50 D over 48 months; astigmatism equal to or less than 2.00 D for children younger than 48 months and 1.50 D over 48 months [3].
- Labelled by a paediatric ophthalmologist as “normal visual development” after a complete visual examination.
- Refractive error higher than specified above, ocular surgery, strabismus or any other ophthalmologic disease.
- General diseases directly or potentially affecting visual performance (i.e., central nervous system disorders, intellectual disabilities, psychological problems, endocrine disorders).
- General poor health to perform the ophthalmologic examination and the digital test.
- Age between 6 months and 14 y.
- Gestational age < 37 w.
- VA enough to fixate on a small picture (3 mm) at 40 cm distance.
- General poor health to perform the ophthalmologic examination and the digital test.
2.3. Clinical Protocol
2.3.1. Ophthalmologic Examination
- Subjective evaluation of oculomotor control: fixation, smooth pursuit movements and saccadic performance.
- Distance VA without optical correction, using the appropriate method according to the child’s age:
- Monocular near VA without optical correction measured at 65 cm, with printed LEA card for near VA in cooperative children.
- Examination of ocular alignment and motility, using Hirschberg or cover tests.
- External ocular examination with slit lamp or lantern.
- Refraction under cycloplegia—measured by automated refraction or retinoscopy.
- Funduscopic examination.
2.3.2. DIVE Testing
2.4. Statistical Analyses
3. Results
3.1. Testability
3.2. Norm Group
3.3. Pre Group
3.4. Norm Curves
3.5. Multivariate Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobson, V. Behavioral tests of visual acuity in infants. Int. Ophthalmol. Clin. 1980, 20, 233–250. Available online: https://pubmed.ncbi.nlm.nih.gov/6995377/ (accessed on 6 November 2022). [CrossRef]
- Pueyo, V.; Pérez-Roche, T.; Prieto, E.; Castillo, O.; Gonzalez, I.; Alejandre, A.; Pan, X.; Fanlo-Zarazaga, A.; Pinilla, J.; Echevarria, J.I.; et al. Development of a system based on artificial intelligence to identify visual problems in children: Study protocol of the TrackAI project. BMJ Open 2020, 10, e033139. Available online: https://pubmed.ncbi.nlm.nih.gov/32071178/ (accessed on 31 August 2021). [PubMed]
- Donahue, S.P.; Baker, C.N. Procedures for the Evaluation of the Visual System by Pediatricians. Pediatrics 2016, 137, e20153597. Available online: https://pubmed.ncbi.nlm.nih.gov/26644488/ (accessed on 6 October 2022).
- Rigby, R.A.; Stasinopoulos, D.M.; Lane, P.W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C 2005, 54, 507–554. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9876.2005.00510.x (accessed on 30 September 2022). [CrossRef] [Green Version]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Chandna, A. Natural history of the development of visual acuity in infants. Eye 1991, 5, 20–26. [Google Scholar] [CrossRef]
- Esteban-Ibañez, E.; Pérez-Roche, T.; Prieto, E.; Castillo, O.; Fanlo-Zarazaga, A.; Alejandre, A.; Gutierrez, D.; Ortin, M.; Pueyo, V. Age norms for grating acuity and contrast sensitivity in children using eye tracking technology. Int. Ophthalmol. 2021, 42, 747–756. Available online: https://pubmed.ncbi.nlm.nih.gov/34622374/ (accessed on 30 October 2022). [CrossRef]
- Chriqui, E.; Kergoat, M.J.; Champoux, N.; Leclerc, B.S.; Kergoat, H. Visual acuity in institutionalized seniors with moderate to severe dementia. J. Am. Med. Dir. Assoc. 2013, 14, 275–279. Available online: https://pubmed.ncbi.nlm.nih.gov/23273852/ (accessed on 23 October 2022). [CrossRef]
- Jones, P.R.; Kalwarowsky, S.; Atkinson, J.; Braddick, O.J.; Nardini, M. Automated measurement of resolution acuity in infants using remote eye-tracking. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8102–8110. [Google Scholar] [CrossRef] [Green Version]
- Vrabič, N.; Juroš, B.; Tekavčič Pompe, M. Automated Visual Acuity Evaluation Based on Preferential Looking Technique and Controlled with Remote Eye Tracking. Ophthalmic Res. 2021, 64, 389–397. Available online: https://pubmed.ncbi.nlm.nih.gov/33080607/ (accessed on 11 October 2022). [CrossRef]
- Joo, H.J.; Yi, H.C.; Choi, D.G. Clinical usefulness of the teller acuity cards test in preliterate children and its correlation with optotype test: A retrospective study. PLoS ONE 2020, 15, e0235290. Available online: https://pubmed.ncbi.nlm.nih.gov/32598392/ (accessed on 14 September 2022). [CrossRef]
- Kushner, B.J.; Lucchese, N.J.; Morton, G.V. Grating visual acuity with Teller cards compared with Snellen visual acuity in literate patients. Arch. Ophthalmol. 1995, 113, 485–493. Available online: https://pubmed.ncbi.nlm.nih.gov/7710400/ (accessed on 12 October 2022). [CrossRef] [PubMed]
- Anstice, N.S.; Thompson, B. The measurement of visual acuity in children: An evidence-based update. Clin. Exp. Optom. 2014, 97, 3–11. Available online: https://pubmed.ncbi.nlm.nih.gov/23902575/ (accessed on 23 October 2022). [CrossRef] [PubMed]
- Leat, S.J.; Yadav, N.K.; Irving, E.L. Development of visual acuity and contrast sensitivity in children. J. Optom. 2009, 2, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Leone, J.F.; Mitchell, P.; Kifley, A.; Rose, K.A. Normative visual acuity in infants and preschool-aged children in Sydney. Acta Ophthalmol. 2014, 92, e521–e529. [Google Scholar] [CrossRef]
- Hargadon, D.D.; Wood, J.; Twelker, J.D.; Harvey, E.M.; Dobson, V. Recognition Acuity, Grating Acuity, Contrast Sensitivity, and Visual Fields in 6-Year-Old Children. Arch. Ophthalmol. 2016, 128, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoqbel, F.M.; Irving, E.L.; Leat, S.J. Visual Acuity and Contrast Sensitivity Development in Children. Optom. Vis. Sci. 2017, 94, 830–837. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28737606 (accessed on 3 November 2021). [CrossRef]
- Salomao, S.R.; Ventura, D.F. Large sample population age norms for visual acuities obtained with Vistech-Teller Acuity Cards. Investig. Ophthalmol. Vis. Sci. 1995, 36, 657–670. Available online: https://pubmed.ncbi.nlm.nih.gov/7890496/ (accessed on 30 October 2022).
- Mayer, D.L.; Beiser, A.S.; Warner, A.F.; Pratt, E.M.; Raye, K.N.; Lang, J.M. Monocular acuity norms for the Teller Acuity Cards between ages one month and four years. Investig. Ophthalmol. Vis. Sci. 1995, 36, 671–685. Available online: https://pubmed.ncbi.nlm.nih.gov/7890497/ (accessed on 12 October 2022).
- Milling, A.; O’Connor, A.; Newsham, D. The Importance of Contrast Sensitivity Testing in Children. 2014. Available online: https://livrepository.liverpool.ac.uk/2032880 (accessed on 16 October 2022).
- Benedek, K.; Tajti, J.; Janáky, M.; Vécsei, L.; Benedek, G. Spatial Contrast Sensitivity of Migraine Patients without Aura. Cephalalgia 2002, 22, 142–145. Available online: https://pubmed.ncbi.nlm.nih.gov/11972583/ (accessed on 16 October 2022). [CrossRef]
- Adams, R.J.; Courage, M.L. Using a single test to measure human contrast sensitivity from early childhood to maturity. Vision Res. 2002, 42, 1205–1210. Available online: https://pubmed.ncbi.nlm.nih.gov/11997058/ (accessed on 16 October 2022). [CrossRef] [Green Version]
- Dekker, T.M.; Farahbakhsh, M.; Atkinson, J.; Braddick, O.J.; Jones, P.R.; Jones, P.R. Development of the spatial contrast sensitivity function (CSF) during childhood: Analysis of previous findings and new psychophysical data. J. Vis. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Adams, R.J.; Courage, M.L. Contrast sensitivity in 24- and 36-month-olds as assessed with the contrast sensitivity card procedure. Optom. Vis. Sci. 1993, 70, 97–101. Available online: https://pubmed.ncbi.nlm.nih.gov/8446383/ (accessed on 16 October 2022). [CrossRef]
- Richman, J.; Spaeth, G.L.; Wirostko, B. Contrast sensitivity basics and a critique of currently available tests. J. Cataract. Refract. Surg. 2013, 39, 1100–1106. Available online: https://pubmed.ncbi.nlm.nih.gov/23706926/ (accessed on 23 October 2022). [CrossRef]
- Kollbaum, P.S.; Jansen, M.E.; Kollbaum, E.J.; Bullimore, M.A. Validation of an iPad test of letter contrast sensitivity. Optom. Vis. Sci. 2014, 91, 291–296. Available online: https://journals.lww.com/optvissci/Fulltext/2014/03000/Validation_of_an_iPad_Test_of_Letter_Contrast.8.aspx (accessed on 16 October 2022). [CrossRef] [PubMed]
- Pétursdóttir, D.; Holmström, G.; Larsson, E. Visual function is reduced in young adults formerly born prematurely: A population-based study. Br. J. Ophthalmol. 2020, 104, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Hellgren, K.M.; Tornqvist, K.; Jakobsson, P.G.; Lundgren, P.; Carlsson, B.; Källén, K.; Serenius, F.; Hellström, A.; Holmström, G. Ophthalmologic outcome of extremely preterm infants at 6.5 years of age: Extremely preterm infants in Sweden study (EXPRESS). JAMA Ophthalmol. 2016, 134, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, M.; Naud, A.; Schmitt, E.; Clerc-Urmès, I.; Hascoët, J.M. Visual Maturation at Term Equivalent Age in Very Premature Infants According to Factors Influencing Its Development. Front Physiol. 2018, 9, 1649. Available online: https://pubmed.ncbi.nlm.nih.gov/30515105/ (accessed on 19 October 2022). [CrossRef] [PubMed] [Green Version]
- Lindqvist, S.; Vik, T.; Indredavik, M.S.; Brubakk, A.M. Visual acuity, contrast sensitivity, peripheral vision and refraction in low birthweight teenagers. Acta Ophthalmol. Scand. 2007, 85, 157–164. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17305728 (accessed on 2 March 2022). [CrossRef]
- Hellgren, K.; Hellström, A.; Jacobson, L.; Flodmark, O.; Wadsby, M.; Martin, L. Visual and cerebral sequelae of very low birth weight in adolescents. Arch. Dis. Child Fetal Neonatal. Ed. 2007, 92, F259–F264. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17314116 (accessed on 2 March 2022). [CrossRef] [Green Version]
- Bosworth, R.G.; Dobkins, K.R. Effects of prematurity on the development of contrast sensitivity: Testing the visual experience hypothesis. Vision Res. 2013, 82, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Kozeis, N.; Mavromichali, M.; Soubasi-Griva, V.; Agakidou, E.; Zafiriou, D.; Drossou, V. Visual function in preterm infants without major retinopathy of prematurity or neurological complications. Am. J. Perinatol. 2012, 29, 747–754. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22773283 (accessed on 23 October 2022). [CrossRef] [PubMed]
- Mirabella, G.; Kjaer, P.K.; Norcia, A.M.; Good, W.V.; Madan, A. Visual development in very low birth weight infants. Pediatr. Res. 2006, 60, 435–439. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16940247 (accessed on 23 October 2022). [CrossRef] [PubMed]
- Jain, S.; Sim, P.Y.; Beckmann, J.; Ni, Y.; Uddin, N.; Unwin, B.; Marlow, N. Functional Ophthalmic Factors Associated with Extreme Prematurity in Young Adults. JAMA Netw. Open. 2022, 5, E2145702. Available online: https://pubmed.ncbi.nlm.nih.gov/35089350/ (accessed on 23 October 2022). [CrossRef]
- Darlow, B.A.; Clemett, R.S.; Horwood, L.J.; Mogridge, N. Prospective study of New Zealand infants with birth weight less than 1500 g and screened for retinopathy of prematurity: Visual outcome at age 7–8 years. Br. J. Ophthalmol. 1997, 81, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Sugiura, Y.; Okamoto, F.; Okamoto, Y.; Kato, A.; Hoshi, S.; Nagafuji, M.; Miyazono, Y.; Oshika, T. Comparison of 5-year safety and efficacy of laser photocoagulation and intravitreal bevacizumab injection in retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2849–2855. Available online: https://pubmed.ncbi.nlm.nih.gov/33744981/ (accessed on 23 October 2022). [CrossRef]
- Zhuang, Y.; Gu, L.; Chen, J.; Xu, Z.; Chan, L.Y.; Feng, L.; Ye, Q.; Zhang, S.; Yuan, J.; Li, J. The Integration of Eye Tracking Responses for the Measurement of Contrast Sensitivity: A Proof of Concept Study. 2021. Available online: https://www.frontiersin.org (accessed on 16 October 2022).
- Holmqvist, K.; Örbom, S.L.; Hooge, I.T.C.; Niehorster, D.C.; Alexander, R.G.; Andersson, R.; Benjamins, J.S.; Blignaut, P.; Brouwer, A.-M.; Chuang, L.L.; et al. Eye tracking: Empirical foundations for a minimal reporting guideline. Behav. Res. Methods 2022, 1–53. Available online: https://pubmed.ncbi.nlm.nih.gov/35384605/ (accessed on 30 October 2022).
- Mahlen, T.; Arnold, R.W. Pediatric Non-Refractive Vision Screening with EyeSwift, PDI Check and Blinq: Non-Refractive Vision Screening with Two Binocular Video Games and Birefringent Scanning. Clin. Ophthalmol. 2022, 16, 375–384. Available online: https://pubmed.ncbi.nlm.nih.gov/35177896/ (accessed on 1 December 2022). [CrossRef]
- Yehezkel, O.; Spierer, A.; Yam, R.; Oz, D.; Belkin, M.; Jaffe, T.W. An objective rapid system based on eye tracking for eye deviation measurement in children and adults. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1024. [Google Scholar]
- Zeitlin, J.; Saurel-Cubizolles, M.J.; De Mouzon, J.; Rivera, L.; Ancel, P.Y.; Blondel, B.; Kaminski, M. Fetal sex and preterm birth: Are males at greater risk? Hum. Reprod. 2002, 17, 2762–2768. Available online: https://pubmed.ncbi.nlm.nih.gov/12351559/ (accessed on 30 November 2022). [CrossRef]
Mean | s. d | Range | |
---|---|---|---|
Age (y) | 6.20 | 2.87 | 0.5–13.99 |
Gestational age (w) | 39.46 | 1.00 | 38–44 |
Birth weight (gr) | 3330.58 | 412.15 | 2501–5000 |
RE Cycloplegic refraction sph (D) | +1.02 | 1.08 | −3.00–+4.25 |
RE Cycloplegic refraction cyl (D) | −0.13 | 0.72 | −2.00–+2.00 |
LE Cycloplegic refraction sph (D) | +1.06 | 1.07 | −2.00–+4.50 |
LE Cycloplegic refraction cyl (D) | −0.13 | 0.74 | −2.00–+2.00 |
<1 y | 1–2 y | 3–5 y | 6–11 y | >12 y | p | ||
---|---|---|---|---|---|---|---|
VA (cpd) | N = 33 | N = 135 | N = 526 | N = 706 | N = 63 | ||
Mean (s.d) | 8.80 (4.59) | 9.87 (5.10) | 13.94 (4.80) | 15.11 (4.33) | 16.54 (3.24) | <0.001 * | |
CS (u log) | N = 29 | N = 133 | N = 520 | N = 699 | N = 61 | ||
Mean (s.d) | 0.74 (0.59) | 0.99 (0.62) | 1.66 (0.53) | 1.82 (0.47) | 1.89 (0.50) | <0.001 * |
Mean | s. d | Range | |
---|---|---|---|
Age (y) | 5.01 | 3.27 | 0.50–13.79 |
Gestational age (w) | 31.52 | 3.50 | 23–36 |
Birth weight (gr) | 1741.87 | 749.73 | 480–4400 |
RE Cycloplegic refraction sph (D) | +1.38 | 2.29 | −12.00–+9.00 |
RE Cycloplegic refraction cyl (D) | +0.03 | 1.50 | −6.00–+5.00 |
LE Cycloplegic refraction sph (D) | +1.40 | 2.29 | −10.50–+9.00 |
LE Cycloplegic refraction cyl (D) | +0.02 | 1.55 | −6.00–+4.50 |
<1 y | 1–2 y | 3–5 y | 6–11 y | ≥12 | p | ||
---|---|---|---|---|---|---|---|
VA (cpd) | N = 42 | N = 101 | N = 188 | N = 151 | N = 23 | ||
Mean (s.d) | 8.07 (4.85) | 9.74 (4.86) | 12.00 (5.15) | 13.10 (5.19) | 13.54 (5.27) | <0.001 * | |
CS (u log) | N = 34 | N = 97 | N = 186 | N = 149 | N = 22 | ||
Mean (s.d) | 0.71 (0.51) | 0.99 (0.59) | 1.51 (0.71) | 1.79 (0.54) | 2.07 (0.46) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Roche, M.T.; Yam, J.C.; Liu, H.; Gutierrez, D.; Pham, C.; Balasanyan, V.; García, G.; Cedillo Ley, M.; de Fernando, S.; Ortín, M.; et al. Visual Acuity and Contrast Sensitivity in Preterm and Full-Term Children Using a Novel Digital Test. Children 2023, 10, 87. https://doi.org/10.3390/children10010087
Pérez Roche MT, Yam JC, Liu H, Gutierrez D, Pham C, Balasanyan V, García G, Cedillo Ley M, de Fernando S, Ortín M, et al. Visual Acuity and Contrast Sensitivity in Preterm and Full-Term Children Using a Novel Digital Test. Children. 2023; 10(1):87. https://doi.org/10.3390/children10010087
Chicago/Turabian StylePérez Roche, María Teresa, Jason C. Yam, Hu Liu, Diego Gutierrez, Chau Pham, Victoria Balasanyan, Gerardo García, Mauricio Cedillo Ley, Sandra de Fernando, Marta Ortín, and et al. 2023. "Visual Acuity and Contrast Sensitivity in Preterm and Full-Term Children Using a Novel Digital Test" Children 10, no. 1: 87. https://doi.org/10.3390/children10010087
APA StylePérez Roche, M. T., Yam, J. C., Liu, H., Gutierrez, D., Pham, C., Balasanyan, V., García, G., Cedillo Ley, M., de Fernando, S., Ortín, M., Pueyo, V., & on behalf of the TrackAI Research Consortium. (2023). Visual Acuity and Contrast Sensitivity in Preterm and Full-Term Children Using a Novel Digital Test. Children, 10(1), 87. https://doi.org/10.3390/children10010087