Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Measurement of Blood-As Level
2.3. Molecular Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CAT rs1001179 | |||
---|---|---|---|
Overall | Cases | Controls | |
CC | 97 (60%) | 48 (58%) | 49 (63%) |
nonCC | 64 (40%) | 35 (42%) | 29 (37%) |
ABCB1 rs2032582 | |||
---|---|---|---|
Overall | Cases | Controls | |
CC | 61 (38%) | 29 (35%) | 32 (41%) |
nonCC | 100 (62%) | 54 (65%) | 46 (59%) |
GPX1 rs1050450 | |||
---|---|---|---|
Overall | Cases | Controls | |
CC | 68 (42%) | 35 (42%) | 33 (42%) |
nonCC | 93 (58%) | 48 (58%) | 45 (58%) |
CRTC3 rs12915189 | |||
---|---|---|---|
Overall | Cases | Controls | |
CC | 90 (56%) | 47 (57%) | 43 (55%) |
nonCC | 71 (44%) | 36 (43%) | 35 (45%) |
References
- Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017, 9, 448–451. [Google Scholar] [CrossRef]
- Zawadzka, I.; Jeleń, A.; Pietrzak, J.; Żebrowska-Nawrocka, M.; Michalska, K.; Szmajda-Krygier, D.; Mirowski, M.; Łochowski, M.; Kozak, J.; Balcerczak, E. The impact of ABCB1 gene polymorphism and its expression on non-small-cell lung cancer development, progression and therapy-preliminary report. Sci. Rep. 2020, 10, 6188. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, T.M.-L.; Engholm, G.; Brink, A.-L.; Pukkala, E.; Stenbeck, M.; Tryggvadottir, L.; Weiderpass, E.; Storm, H. Tackling the tobacco epidemic in the Nordic countries and lower cancer incidence by 1/5 in a 30-year period-The effect of envisaged scenarios changing smoking prevalence. Eur. J. Cancer 2018, 103, 288–298. [Google Scholar] [CrossRef]
- Crowe, F.L.; Appleby, P.N.; Travis, R.C.; Key, T.J. Risk of hospitalization or death from ischemic heart disease among British vegetarians and nonvegetarians: Results from the EPIC-Oxford cohort study. Am. J. Clin. Nutr. 2013, 97, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yang, B.; Zheng, J.; Li, G.; Wahlqvist, M.L.; Li, D. Cardiovascular disease mortality and cancer incidence in vegetarians: A meta-analysis and systematic review. Ann. Nutr. Metab. 2012, 60, 233–240. [Google Scholar] [CrossRef]
- Lewandowska, A.M.; Rudzki, M.; Rudzki, S.; Lewandowski, T.; Laskowska, B. Environmental risk factors for cancer—Review paper. Ann. Agric. Environ. Med. 2019, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Hoffmann, K.; Weikert, C.; Nöthlings, U.; Schulze, M.B.; Boeing, H. Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br. J. Nutr. 2008, 100, 942–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiderpass, E. Lifestyle and cancer risk. J. Prev. Med. Public Health 2010, 43, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Mulware, S.J. Trace elements and carcinogenicity: A subject in review. 3 Biotech 2013, 3, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawi, A.M.; Chin, S.-F.; Azhar Shah, S.; Jamal, R. Tissue and Serum Trace Elements Concentration among Colorectal Patients: A Systematic Review of Case-Control Studies. Iran. J. Public Health 2019, 48, 632–643. [Google Scholar]
- Chung, J.-Y.; Yu, S.-D.; Hong, Y.-S. Environmental Source of Arsenic Exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef] [Green Version]
- IARC. Arsenic, Metals, Fibres, and Dusts; IARC: Lyon, France, 2012; ISBN 978-92-832-1320-8. [Google Scholar]
- Baker, B.A.; Cassano, V.A.; Murray, C.; Exposure, A.T.F. on A. Arsenic Exposure, Assessment, Toxicity, Diagnosis, and Management: Guidance for Occupational and Environmental Physicians. J. Occup. Environ. Med. 2018, 60, e634. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Chatterjee, N.; Choi, J. Genetic, epigenetic, and developmental toxicity of Chironomus riparius raised in metal-contaminated field sediments: A multi-generational study with arsenic as a second challenge. Sci. Total. Environ. 2019, 672, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Sage, A.P.; Minatel, B.C.; Ng, K.W.; Stewart, G.L.; Dummer, T.J.B.; Lam, W.L.; Martinez, V.D. Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget 2017, 8, 25736–25755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciniak, W.; Derkacz, R.; Muszyńska, M.; Baszuk, P.; Gronwald, J.; Huzarski, T.; Cybulski, C.; Jakubowska, A.; Falco, M.; Dębniak, T.; et al. Blood Arsenic Levels and the Risk of Familial Breast Cancer in Poland. Int. J. Cancer 2020, 146, 2721–2727. [Google Scholar] [CrossRef] [Green Version]
- Benderli Cihan, Y.; Sözen, S.; Oztürk Yıldırım, S. Trace elements and heavy metals in hair of stage III breast cancer patients. Biol. Trace Elem. Res. 2011, 144, 360–379. [Google Scholar] [CrossRef]
- Hsueh, Y.-M.; Su, C.-T.; Shiue, H.-S.; Chen, W.-J.; Pu, Y.-S.; Lin, Y.-C.; Tsai, C.-S.; Huang, C.-Y. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem. Toxicol. 2017, 107, 167–175. [Google Scholar] [CrossRef]
- Jablonska, E.; Socha, K.; Reszka, E.; Wieczorek, E.; Skokowski, J.; Kalinowski, L.; Fendler, W.; Seroczynska, B.; Wozniak, M.; Borawska, M.H.; et al. Cadmium, arsenic, selenium and iron- Implications for tumor progression in breast cancer. Environ. Toxicol. Pharmacol. 2017, 53, 151–157. [Google Scholar] [CrossRef]
- Kazi, T.G.; Wadhwa, S.K.; Afridi, H.I.; Talpur, F.N.; Tuzen, M.; Baig, J.A. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls. Environ. Sci. Pollut. Res. Int. 2015, 22, 7705–7715. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Seo, J.-W.; Hong, Y.-S.; Song, K.-H. Case-control study of chronic low-level exposure of inorganic arsenic species and non-melanoma skin cancer. J. Dermatol. 2017, 44, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Melak, D.; Ferreccio, C.; Kalman, D.; Parra, R.; Acevedo, J.; Pérez, L.; Cortés, S.; Smith, A.H.; Yuan, Y.; Liaw, J.; et al. Arsenic Methylation and Lung and Bladder Cancer in a Case-control Study in Northern Chile. Toxicol. Appl. Pharmacol. 2014, 274, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda-Belmontes, C.P.; Hernández-Ramírez, R.U.; Hernández-Alcaraz, C.; Cebrián, M.E.; López-Carrillo, L. Genetic polymorphisms of PPAR gamma, arsenic methylation capacity and breast cancer risk in Mexican women. Salud Publica Mex. 2016, 58, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, P.; Yousif, A.; Harki, E. Alterations of Some Heavy Metals and Trace Elements Levels in Breast Cancer. Med. Chem. 2017, 7, 458–760. [Google Scholar] [CrossRef]
- Wadhwa, S.K.; Kazi, T.G.; Chandio, A.A.; Afridi, H.I.; Kolachi, N.F.; Khan, S.; Kandhro, G.A.; Nasreen, S.; Shah, A.Q.; Baig, J.A. Comparative study of liver cancer patients in arsenic exposed and non-exposed areas of Pakistan. Biol. Trace Elem. Res. 2011, 144, 86–96. [Google Scholar] [CrossRef]
- Safarzad, M.; Besharat, S.; Salimi, S.; Azarhoush, R.; Behnampour, N.; Joshaghani, H.R. Association between selenium, cadmium, and arsenic levels and genetic polymorphisms in DNA repair genes (XRCC5, XRCC6) in gastric cancerous and non-cancerous tissue. J. Trace Elem. Med. Biol. 2019, 55, 89–95. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, C.; Li, H.; Zhang, C.; Wu, H.; Huang, F. Effect of the Interaction Between Cadmium Exposure and CLOCK Gene Polymorphisms on Thyroid Cancer: A Case-Control Study in China. Biol. Trace Elem. Res. 2020, 196, 86–95. [Google Scholar] [CrossRef]
- He, T.; Mo, A.; Zhang, K.; Liu, L. ABCB1/MDR1 gene polymorphism and colorectal cancer risk: A meta-analysis of case-control studies. Colorectal Dis. 2013, 15, 12–18. [Google Scholar] [CrossRef]
- Martinelli, M.; Scapoli, L.; Cura, F.; Rodia, M.T.; Ugolini, G.; Montroni, I.; Solmi, R. Colorectal cancer susceptibility: Apparent gender-related modulation by ABCB1 gene polymorphisms. J. BioMed. Sci. 2014, 21, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritambhara, null; Tiwari, S.; Vijayaraghavalu, S.; Kumar, M. Genetic Polymorphisms of Xenobiotic Metabolizing Genes (GSTM1, GSTT1, GSTP1), Gene-Gene Interaction with Association to Lung Cancer Risk in North India; A Case Control Study. Asian Pac. J. Cancer Prev. 2019, 20, 2707–2714. [Google Scholar] [CrossRef]
- Rump, A.; Benet-Pages, A.; Schubert, S.; Kuhlmann, J.D.; Janavičius, R.; Macháčková, E.; Foretová, L.; Kleibl, Z.; Lhota, F.; Zemankova, P.; et al. Identification and Functional Testing of ERCC2 Mutations in a Multi-national Cohort of Patients with Familial Breast- and Ovarian Cancer. PLoS Genet. 2016, 12, e1006248. [Google Scholar] [CrossRef]
- Caldecott, K.W. XRCC1 protein; Form and function. DNA Repair (Amst.) 2019, 81, 102664. [Google Scholar] [CrossRef]
- Mok, M.C.Y.; Campalans, A.; Pillon, M.C.; Guarné, A.; Radicella, J.P.; Junop, M.S. Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Sci. Rep. 2019, 9, 3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.; Siegel, D. NQO1 in protection against oxidative stress. Curr. Opin. Toxicol. 2018, 7, 67–72. [Google Scholar] [CrossRef]
- Ozanne, J.; Prescott, A.R.; Clark, K. The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. BioChem. J. 2015, 465, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, M.; Lang, J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Schnabel, B. DNA Isolation by a Rapid Method from Human Blood Samples: Effects of MgCl2, EDTA, Storage Time, and Temperature on DNA Yield and Quality. BioChem. Genet. 1993, 31, 321–328. [Google Scholar] [CrossRef]
- Huang, M.C.; Douillet, C.; Su, M.; Zhou, K.; Wu, T.; Chen, W.; Galanko, J.A.; Drobná, Z.; Saunders, R.J.; Martin, E.; et al. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: Effect of sex and arsenic exposure. Arch. Toxicol. 2017, 91, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Gamble, M.V.; Liu, X.; Slavkovich, V.; Pilsner, J.R.; Ilievski, V.; Factor-Litvak, P.; Levy, D.; Alam, S.; Islam, M.; Parvez, F.; et al. Folic acid supplementation lowers blood arsenic. Am. J. Clin. Nutr. 2007, 86, 1202–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, A.; Chatterji, U. Arsenic abrogates the estrogen-signaling pathway in the sat uterus. Reprod. Biol. Endocrinol. 2010, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquino, N.B.; Sevigny, M.B.; Sabangan, J.; Louie, M.C. Role of cadmium and nickel in estrogen receptor signaling and breast cancer: Metalloestrogenes or not? J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2012, 30, 189–224. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ramos, R.; López-Carrillo, L.; Albores, A.; Hernández-Ramírez, R.U.; Cebrian, M.E. Sodium arsenite atlers cell cycle and MTHFR MT1/2, and c-Myc protein levels on MCF-7 cells. Toxicol. Appl. Pharmacol. 2009, 241, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet. 2016, 7, 105–114. [Google Scholar] [PubMed]
- Hansen, R.; Saebø, M.; Skjelbred, C.F.; Nexø, B.A.; Hagen, P.C.; Bock, G.; Bowitz Lothe, I.M.; Johnson, E.; Aase, S.; Hansteen, I.L.; et al. GPX Pro198Leu and OGG1 Ser326Cys polymorphisms and risk of development of colorectal adenomas and colorectal cancer. Cancer Lett. 2005, 229, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Jamhiri, I.; Saadat, I.; Omidvari, S. Genetic polymorphisms of superoxide dismutase-1A251G and catalase C-262T with the risk of colorectal cancer. Mol. Biol. Res. Commun. 2017, 6, 85–90. [Google Scholar]
- Funke, S.; Hoffmeister, M.; Brenner, H.; Chang-Claude, J. Effect modification by smoking on the association between genetic polymorphisms in oxidative stress genes and colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2336–2338. [Google Scholar] [CrossRef] [Green Version]
- Labadie, J.; Goodman, M.; Thyagarajan, B.; Gross, M.; Sun, Y.; Fedirko, V.; Bostick, R.M. Associations of oxidative balance-related exposures with incident, sporadic colorectal adenoma according to antioxidant enzyme genotypes. Ann. Epidemiol. 2013, 23, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total, n = 161 | Participants | Age (Mean/Range) | Smoking Status | Stage of CRC | |||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | I | II | III | IV | Unknown | |||
Cases | 83 | 67.17 (35–90) | 23 | 60 | 15 | 32 | 28 | 4 | 4 |
Controls | 78 | 67.24 (36–88) | 22 | 56 | - | - | - | - | - |
As Blood Level (µg/L) | Cases/Controls |
---|---|
Q1: 0.27–0.67 | 40/20 |
Q2: 0.68–0.88 | 11/19 |
Q3: 0.92–1.44 | 21/19 |
Q4: 1.47–7.11 | 11/20 |
CAT rs1001179 | ||||
---|---|---|---|---|
As Blood Level (µg/L) | nonCC | CC | ||
Cases | Controls | Cases | Controls | |
Q1: 0.27–0.67 | 20 (57%) | 5 (17%) | 20 (42%) | 15 (31%) |
Q2: 0.68–0.88 | 4 (11%) | 7 (24%) | 7 (15%) | 12 (24%) |
Q3: 0.92–1.44 | 9 (26%) | 7 (24%) | 12 (25%) | 12 (24%) |
Q4: 1.47–7.11 | 2 (5.7%) | 10 (34%) | 9 (19%) | 10 (20%) |
ABCB1 rs2032582 | ||||
---|---|---|---|---|
As Blood Level (µg/L) | CC | nonCC | ||
Cases | Controls | Cases | Controls | |
Q1: 0.27–0.67 | 14 (48%) | 10 (31%) | 26 (48%) | 10 (22%) |
Q2: 0.68–0.88 | 4 (14%) | 7 (22%) | 7 (13%) | 12 (26%) |
Q3: 0.92–1.44 | 10 (34%) | 7 (22%) | 11 (20%) | 12(26%) |
Q4: 1.47–7.11 | 1 (3.4%) | 8 (25%) | 10 (19%) | 12(26%) |
GPX1 rs1050450 | ||||
---|---|---|---|---|
As Blood Level (µg/L) | CC | nonCC | ||
Cases | Controls | Cases | Controls | |
Q1: 0.27–0.67 | 18 (51%) | 4 (12%) | 22 (46%) | 16 (36%) |
Q2: 0.68–0.88 | 5 (14%) | 8 (24%) | 6 (12%) | 11 (24%) |
Q3: 0.92–1.44 | 6 (17%) | 8 (24%) | 15 (31%) | 11 (24%) |
Q4: 1.47–7.11 | 6 (17%) | 13 (39%) | 5 (10%) | 7 (16%) |
CRTC3 rs12915189 | ||||
---|---|---|---|---|
As Blood Level (µg/L) | GG | nonGG | ||
Cases | Controls | Cases | Controls | |
Q1: 0.27–0.67 | 19 (40%) | 15 (35%) | 21 (58%) | 5 (14%) |
Q2: 0.68–0.88 | 7 (15%) | 7 (16%) | 4 (11%) | 12 (34%) |
Q3: 0.92–1.44 | 14 (30%) | 11 (26%) | 7 (19%) | 8 (23%) |
Q4: 1.47–7.11 | 7 (15%) | 10 (23%) | 4 (11%) | 10(29%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baszuk, P.; Stadnik, P.; Marciniak, W.; Derkacz, R.; Jakubowska, A.; Cybulski, C.; Huzarski, T.; Gronwald, J.; Dębniak, T.; Białkowska, K.; et al. Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines 2021, 9, 1105. https://doi.org/10.3390/biomedicines9091105
Baszuk P, Stadnik P, Marciniak W, Derkacz R, Jakubowska A, Cybulski C, Huzarski T, Gronwald J, Dębniak T, Białkowska K, et al. Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines. 2021; 9(9):1105. https://doi.org/10.3390/biomedicines9091105
Chicago/Turabian StyleBaszuk, Piotr, Paulina Stadnik, Wojciech Marciniak, Róża Derkacz, Anna Jakubowska, Cezary Cybulski, Tomasz Huzarski, Jacek Gronwald, Tadeusz Dębniak, Katarzyna Białkowska, and et al. 2021. "Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women" Biomedicines 9, no. 9: 1105. https://doi.org/10.3390/biomedicines9091105
APA StyleBaszuk, P., Stadnik, P., Marciniak, W., Derkacz, R., Jakubowska, A., Cybulski, C., Huzarski, T., Gronwald, J., Dębniak, T., Białkowska, K., Pietrzak, S., Kładny, J., Scott, R. J., Lubiński, J., & Lener, M. R. (2021). Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines, 9(9), 1105. https://doi.org/10.3390/biomedicines9091105