Next Article in Journal
Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family
Next Article in Special Issue
The Role of Non-Coding RNAs in the Regulation of the Proto-Oncogene MYC in Different Types of Cancer
Previous Article in Journal
The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models
Previous Article in Special Issue
Expression of Circulating MicroRNAs Linked to Bone Metabolism in Chronic Kidney Disease-Mineral and Bone Disorder
Article

The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD

1
SU, INSERM UMRS974, AIM, Center of Research in Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France
2
Centre de Référence des Maladies Neuromusculaires AOC, Service de Neuropédiatrie, CHU Bordeaux, 33000 Bordeaux, France
3
Centre de Référence des Maladies Neuromusculaires AOC, CHU Angers, 49933 Angers, France
4
Institute of Myology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
5
Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Service de Médecine Physique et de Réadaptation, CHRU de Lille, 59000 Lille, France
6
CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
7
INSERM, Marseille Medical Genetics, Aix Marseille University, 13005 Marseille, France
8
Département de Génétique Médicale, APHM, Hôpital d’Enfants de la Timone, 13005 Marseille, France
9
Laboratoire d’Optiques et Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
10
IRIS, Institut de Recherches Internationales Servier, 92150 Suresnes, France
11
AP-HP, Laboratoire de génétique et biologie moléculaires, Hôpital Cochin, Université Paris Descartes-Sorbonne Paris Cité, 75014 Paris, France
*
Author to whom correspondence should be addressed.
Academic Editor: Giuseppina Catanzaro
Biomedicines 2021, 9(2), 219; https://doi.org/10.3390/biomedicines9020219
Received: 20 January 2021 / Revised: 10 February 2021 / Accepted: 15 February 2021 / Published: 20 February 2021
(This article belongs to the Special Issue Non-coding RNAs in Health and Disease)
In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion. View Full-Text
Keywords: long noncoding RNA; lncRNA; ncRNA; Becker muscular dystrophy (BMD); Duchenne muscular dystrophy (DMD) long noncoding RNA; lncRNA; ncRNA; Becker muscular dystrophy (BMD); Duchenne muscular dystrophy (DMD)
Show Figures

Figure 1

MDPI and ACS Style

Gargaun, E.; Falcone, S.; Solé, G.; Durigneux, J.; Urtizberea, A.; Cuisset, J.M.; Benkhelifa-Ziyyat, S.; Julien, L.; Boland, A.; Sandron, F.; Meyer, V.; Deleuze, J.F.; Salgado, D.; Desvignes, J.-P.; Béroud, C.; Chessel, A.; Blesius, A.; Krahn, M.; Levy, N.; Leturcq, F.; Pietri-Rouxel, F. The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. Biomedicines 2021, 9, 219. https://doi.org/10.3390/biomedicines9020219

AMA Style

Gargaun E, Falcone S, Solé G, Durigneux J, Urtizberea A, Cuisset JM, Benkhelifa-Ziyyat S, Julien L, Boland A, Sandron F, Meyer V, Deleuze JF, Salgado D, Desvignes J-P, Béroud C, Chessel A, Blesius A, Krahn M, Levy N, Leturcq F, Pietri-Rouxel F. The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. Biomedicines. 2021; 9(2):219. https://doi.org/10.3390/biomedicines9020219

Chicago/Turabian Style

Gargaun, Elena, Sestina Falcone, Guilhem Solé, Julien Durigneux, Andoni Urtizberea, Jean M. Cuisset, Sofia Benkhelifa-Ziyyat, Laura Julien, Anne Boland, Florian Sandron, Vincent Meyer, Jean F. Deleuze, David Salgado, Jean-Pierre Desvignes, Christophe Béroud, Anatole Chessel, Alexia Blesius, Martin Krahn, Nicolas Levy, France Leturcq, and France Pietri-Rouxel. 2021. "The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD" Biomedicines 9, no. 2: 219. https://doi.org/10.3390/biomedicines9020219

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop