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Abstract: Long non-coding RNAs (lncRNAs) are versatile regulators of gene expression and play
crucial roles in diverse biological processes. Epithelial-mesenchymal transition (EMT) is a cellular
program that drives plasticity during embryogenesis, wound healing, and malignant progression.
Increasing evidence shows that lncRNAs orchestrate multiple cellular processes by modulating
EMT in diverse cell types. Dysregulated lncRNAs that can impact epithelial plasticity by affecting
different EMT markers and target genes have been identified. However, our understanding of the
landscape of lncRNAs important in EMT is far from complete. Here, we summarize recent findings
on the mechanisms and roles of lncRNAs in EMT and elaborate on how lncRNAs can modulate EMT
by interacting with RNA, DNA, or proteins in epigenetic, transcriptional, and post-transcriptional
regulation. This review also highlights significant EMT pathways that may be altered by diverse
lncRNAs, thereby suggesting their therapeutic potential.

Keywords: long non-coding RNA; epithelial-mesenchymal transition (EMT); cancer; signaling
pathways

1. Introduction

Long non-coding RNAs (lncRNAs) are a large class of regulatory transcripts longer than
200 nucleotides lacking evident protein coding potential [1,2]. LncRNAs execute a broad repertoire of
functions involving multiple biological processes such as imprinting genomic loci, shaping chromosome
conformation, and allosterically regulating enzymatic activity. During the latest decade, mounting
evidence has revealed expanding roles for lncRNAs in physiological and pathological processes,
including cancer cell biology [3–6]. Numerous studies have shown that lncRNA dysregulation
plays key roles in human diseases, including cancer, by modulating the epithelial-mesenchymal
transition (EMT). With this growing appreciation for lncRNAs as crucial EMT regulators, the need for
lncRNA-based treatments for various diseases is becoming apparent.

EMT is a cellular program wherein cells lose their epithelial features and acquire mesenchymal
characteristics, which enables them to migrate more effectively and invade the underlying
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mesenchyme [7]. However, the entirety accomplishment of the EMT process requires an intricate
genetic procedure [8]. EMT can be utilized by both normal and tumor epithelial cells to enable them to
separate from neighboring cells and migrate [8]. Transcriptional and epigenetic profiles have been
used to identify underlying gene-regulatory networks, transcription factors, and signaling pathways
that control diverse EMT states [9]. Accumulating evidence indicates that lncRNAs can be implicated
in phase transition and cellular compartmentalization. For instance, NEAT1 serves as an essential
architectural component of paraspeckle nuclear bodies [10]. Additionally, certain well-known lncRNAs
(such as HOTAIR, MALAT1, and MEG3) have been identified as master regulators of EMT-related
transcription factors, including members of the Snail, ZEB, and Twist families [11–15]. Understanding
lncRNA regulation of EMT, therefore, may improve diagnosis and therapeutics for a range of diseases.

Recent reviews have focused on the emerging roles of lncRNAs and EMT in cancers and
metastasis [16–19]. The main objective of this review is to provide an overview of the expanding
landscape of lncRNAs across all EMT types. We highlight the multifaceted functions of lncRNAs and
their underlying molecular mechanisms, with a special focus on cross-talk between signaling pathways.

2. LncRNAs as Emerging EMT Regulators

A schematic of the general features, functions, and mechanisms of action of lncRNAs is provided
as a background (Figure 1). LncRNAs are a large and heterogeneous class of non-coding RNAs that
exert regulatory role by nucleotide base pairing or specific structures generated by RNA folding [1,2,6].
Firstly, lncRNAs play diverse regulatory functions by binding DNA, RNA, and protein molecules [20]
(Figure 1a). Their myriad roles in the regulation of gene expression can be classified into four archetypes,
including signaling, decoy, guide, and scaffold functions [21–23] (Figure 1b). As signaling molecules,
lncRNAs can serve as spatiotemporal indicators of gene regulation that reflect the biological effects of
transcription factors (TFs) or signaling pathways. As decoys, lncRNAs can sequester TFs and other
proteins away from chromatin or into nuclear subdomains. As guides, lncRNAs can recruit RNA
binding proteins to target genes, either in cis or in trans. As scaffolds, lncRNAs can recruit various
proteins to form complexes with specialized biological functions. Thirdly, lncRNAs play multiple
regulatory functions due to their complexity and flexibility [23] (Figure 1c). In the nucleus, lncRNAs
can bind epigenetic factors to change chromatin-organizational patterns. LncRNAs also activate or
repress transcription of target genes by interacting with DNA sequences or TFs. In the cytoplasm,
lncRNAs can act as competing endogenous RNAs (ceRNAs) to compete together with microRNAs
(miRNAs) and impair the gene expression of miRNA targets at the transcriptional level. Furthermore,
lncRNAs can directly interact with mRNAs to alter their stabilities. LncRNAs can also play vital
roles in determining mRNA and protein modifications, such as N6-methyladenosine (m6A), protein
phosphorylation and ubiquitination [24–29]. Together, multifunctions of lncRNAs include chromatin
regulation, transcriptional activation and repression, ceRNAs, mRNA regulation, and RNA or protein
modifications. With advances in the field of lncRNAs, a new appreciation for the various mechanisms
used to control multiple stages of EMT is emerging.
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Figure 1. LncRNA functions. (a) lncRNAs can bind DNA, RNA, and protein molecules to regulate gene
expression at multiple levels via base pairing or secondary structure formation. (b) LncRNAs have
four primary roles as signals, decoys, guides, and scaffolds. (c) Mechanism of action for lncRNAs in the
nucleus (i–ii) and cytoplasm (iii–viii). (i) LncRNAs can recruit epigenetic factors to change patterns of
chromatin organization, (ii) activate or repress the transcription of certain genes by interacting with
DNA sequences or TFs, (iii) act as ceRNAs by base pairing with miRNA and diminishing its inhibitory
effects, and manipulate mRNA function by base pairing to (iv) regulate alternative splicing (e.g.,
MALAT 1), (v) affect mRNA translation (e.g., TTN-AS1 and AC132217.4), and (vi) mRNA degradation
(e.g., CASC11). (vii–viii) lncRNAs can modify mRNA and proteins, playing regulatory roles in
methylation, phosphorylation, and ubiquitination.

Recent studies have revealed that lncRNA dysregulation is associated with EMT in a wide
spectrum of physiological and pathological processes. EMTs can be divided into three main biological
subtypes. Type-1 EMTs are related to implantation, embryo formation, and organ development and
are organized to generate diverse cell types with common mesenchymal phenotypes. Type-2 EMTs are
related to wound healing, tissue regeneration, and organ fibrosis. Type-3 EMTs occur in neoplastic cells
that have previously undergone genetic and epigenetic changes, especially in terms of genes that favor
clonal outgrowth and localized tumor development [7] (Figure 2). Importantly, type-3 EMTs can affect
oncogenes and tumor-suppressor genes, thus influencing invasive and therapy resistance property of
cancer cells, and thereby generating the life-threatening manifestations of cancer progression [7,30].
To date, lncRNAs have emerged to act as important modulators in a multitude of cellular events
ranging from embryogenesis to cell-fate determination. LncRNAs have been shown to modulate
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all types of EMTs by directly or indirectly interacting with EMT-related molecules. For example, in
human embryonic stem cells, the trans-spliced noncoding RNA RMST (tsRMST) downregulates and
suppresses Type-1 EMT and embryonic stem cell differentiation by reducing WNT5A expression [31].
Another example is Trincr1 (TRIM71 interacting long noncoding RNA 1), that can promote embryonic
stem cells self-renewal and suppress ERK target genes through inhibiting TRIM71 [32]. Recent studies
have indicated that lncRNAs can manipulate Type 2 EMT to regulate tissue regeneration and organ
fibrosis, such as lncRNA Neat1, MALAT1 and lnc-ATB [33–35]. For example, Neat1 can be widely
expressed in many tissues and play a key role in muscle cell formation, muscle regeneration and cancer
cell proliferation. Neat1 inhibits P21 expression by recruiting Ezh2 to increase the level of H3k27me3
binding at the P21 promoter, thus resulting in the promotion of myoblast proliferation [35]. Moreover,
MALAT1 and lnc-ATB can promote EMT during silica-induced pulmonary fibrosis by competitively
binding miR-503 and miR-200c, respectively [33,34]. Dysregulated lncRNAs have been found to target
diverse type 3 EMT-related genes and signaling pathways to increase epithelial plasticity. Specifically,
the lncRNA ROR controls multiple signaling pathways involved in breast, bladder, and nasopharyngeal
EMT [36–38].

Figure 2. LncRNAs modulate three Epithelial-mesenchymal transition (EMT) subtypes. EMTs involve
the functional transition of polarized epithelial cells into mobile and secretory mesenchymal cells. Cells
transition indicates progressive loss of epithelial markers and gain of mesenchymal markers. Epithelial
and mesenchymal cell markers and related lncRNAs are shown.

We have summarized the roles of various lncRNA that have been confirmed by functional studies
in Table 1. A better understanding of lncRNA-dependent EMT regulation may reveal novel targets
with therapeutic or prognostic value for various human diseases.
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Table 1. Examples of lncRNAs that interact with various molecules in Epithelial-mesenchymal transition (EMT).

Category LncRNA Partners Expression EMT
Markers Pathways Function Mechanism Tumor Types Reference

lncRNA:
chromatin
regulators

MEG8 EZH2 ↑ SNAI1/2 TGF-β Promote EMT
Interacts with EZH2 and represses
miR-34a and miR-203, resulting in
up-regulated of SNAI1/2.

Lung and
pancreatic

cancer
[15]

MEG3 EZH2 ↑ ZEB family TGF-β Promote EMT
Interacts with JARID2 and EZH2 and
represses CDH1 and miRNA-200 family,
resulting in up-regulated of ZEB.

Lung cancer [39]

LINC00518 CDX2 ↑
ZEB1/2
Twist1 Wnt Inhibit EMT

Binds to the promoter region of CDX2
gene and promotes CDX2 methylation by
recruiting DNA methyltransferase
through activating the Wnt signaling
pathway.

Breast cancer [40]

MALAT1 Ezh2 ↑ E-cadherin Wnt/β-catenin
Promote EMT

and
metastasis.

Activated by c-Fos and interacts with
Ezh2, resulting in E-cadherin expression
was decreased.

RCC [13]

ANCR EZH2 ↓ E-cadherin Wnt/β-catenin
Inhibit EMT

and
metastasis.

Interacts with EZH2 to increase the
binding of CDK1 with EZH2 and to
promote the degradation of EZH2,
resulting in the up-regulated of
E-cadherin.

Breast cancer [41]

lncRNA
promoter:

TFs

MALAT1 STAT3 ↑ Snail TGF-β/STAT3 Promote EMT
STAT3 binds to the MALAT1 promoter
region and transcriptionally activate
MALAT1 expression.

HNSCC [14]

HCCL5 ZEB1 ↑
ZEB1

E-cadherin TGF-β1
Promote EMT

and
metastasis.

ZEB1 can bind to both the identified
super-enhancer and promoter of HCCL5.
HCCL5 was significantly and frequently
overexpressed.

HCC [42]

AC132217.4 KLF8 ↑ E-cadherin AKT Promote EMT
KLF8 binds to the upstream sequence of
AC132217.4, activating its expression at
the transcriptional level.

OSCC [43]

lncRNA:
TFs

ELIT-1 Smad3 ↑ Snail TGF-β Promote EMT

Binds to Smad3 and enhances Smad
-responsive promoter activities by
recruiting Smad3 to the promoters of its
target genes including Snail, other
TGF-β-target genes, and ELIT-1 itself.

lung
adenocarcinoma
gastric cancer

[44]
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Table 1. Cont.

Category LncRNA Partners Expression EMT
Markers Pathways Function Mechanism Tumor Types Reference

lncRNA:
TFs

EPR SMAD3 ↓ SNAI1 TGF-β Inhibit EMT
Interacts with SMAD3 and promotes
Cdkn1a gene expression, resulting in the
down-regulation of SNAI1.

Breast cancer [45]

tsRMST NANOG,
SUZ12 ↓

SNAI2
TWIST1 Wnt Inhibit EMT

Binds to NANOG and SUZ12 to repress
the expression of WNT5A, resulting in the
down-regulation of SNAI2 and TWIST1.

hESCs [31]

BX111 YB1 ↑

ZEB1
MMP2

E-cadherin
—

Promote EMT
and

metastasis.

Activates transcription of ZEB1 via
recruiting YB1 to its promoter region,
resulting in the up-regulation of ZEB1.

Pancreatic
cancer [46]

NEAT1 FOXN3 ↓ E-cadherin — Inhibit EMT

Interacts with FOXN3 and SIN3A and
represses the target genes including
GATA3 and TJP1, resulting in the
up-regulated of E-cadherin.

Breast cancer [26]

lncRNA:
Protein

MUF ANXA2 ↑ Snail Wnt Promote EMT
Binds to the protein ANXA2 and ANXA2
can alter the subcellular localization of
β-catenin to activate the Wnt cascade.

HCC [47]

SNHG15 Slug ↑ Slug — Promote EMT

Interacts with protein Slug via its
C-terminal domain containing five zinc
finger motifs, and promote Slug
expression.

colon cancer [48]

TBILA S100A7 ↑
SNAI1
ZEB1, S100A7/JAB1 Promote EMT

Binds to the S100A7 protein and promotes
S100A7/JAB1 pathway activation,
resulting in the up-regulation of SNAI1
and ZEB1.

NSCLC [49]

RP11 hnRNPA2B1 ↑ Zeb1 — Promote EMT

Interacts with the protein hnRNPA2B1
and accelerates the mRNA degradation of
Siah1 and Fbxo45, and subsequently
prevented the proteasomal degradation of
Zeb1.

CRC [28]

GAEA MEX3C ↑
SNAI1

TWIST1, AKT Promote EMT

Binds to the MEX3C and catalyze
K27-linked polyUb of PTEN.
PTENK27-PolyUb removed phospho-groups
from serine/threonine residues in
substrates including TWIST1, SNAI1, and
YAP1.

Human and
mouse breast
epithelial cells

[29]
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Table 1. Cont.

Category LncRNA Partners Expression EMT
Markers Pathways Function Mechanism Tumor Types Reference

lncRNA:
TFs

LINC01638 c-Myc ↑ Twist1 MTDH-Twist1 Promote EMT

Interacts with protein c-Myc to prevent
SPOP-induced c-Myc ubiquitination and
degradation and then activate
MTDH-Twist1 signaling to maintain
mesenchymal traits with EMT and
CSC-like features.

TNBC [50]

CYTOR NCL
Sam68 ↑

Twist
E-cadherin NF-KB Promote EMT

NCL and Sam68 could recognize their
specific motifs and directly bind to Exon1
of CYTOR, then activating the NF-κB
pathway and promoting the expression of
Twist.

CRC [51]

NBR2 Notch1 ↓ E-cadherin Notch Inhibit EMT
Binds to the Notch1 protein and promotes
Notch1 expression, resulting in the
up-regulation of E-cadherin.

osteosarcoma [52]

NEF β-catenin ↓ E-cadherin Wnt
Inhibit EMT

and
metastasis.

Activated by FOXA2 and can interact with
β-catenin, leading to the suppression on
Wnt/β-catenin signaling and activation of
FOXA2 expression.

HCC [53]

SLCO4A1-AS1 β-catenin ↑ E-cadherin Wnt
Promote EMT

and
metastasis.

Activates Wnt signaling through
enhancing the stability of β-catenin by
attenuating the interaction of β-catenin
with GSKβ.

CRC [54]

LINC01133 SRSF6 ↓ E-cadherin TGF-β
Inhibit EMT

and
metastasis.

Binds to SRSF6 and blocking its critical
domain, resulting in inhibition of EMT. CRC [55]

CRCMSL HMGB2 ↓ OCT4 —
Inhibit EMT

and
metastasis.

Binds to protein HMGB2 and stabilizes
the localization in the cytoplasm,
attenuating the interaction between
HMGB2 and OCT4 and inhibiting EMT.

CRC [56]

lncRNA:
miRNA B3GALT5-AS1 miR-203 ↓ ZEB2, SNAI2 —

Promote EMT
and

metastasis.

Directly binds to the promoter of
miRNA-203 and represses miR-203
expression, resulting in the up-regulated
of ZEB2 and SNAI2.

Colon cancer [57]

UCA1 miR-1,
miR-203a ↑ Slug TGF-β Promote EMT

Promotes Slug expression at the post-
transcriptional level, by directly titrating
miR-1 and miR-203a.

Breast cancer [58]
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Table 1. Cont.

Category LncRNA Partners Expression EMT
Markers Pathways Function Mechanism Tumor Types Reference

CAR10 miR-30,
miR-203 ↑ SNAI1/2 —

Promote EMT
and

metastasis.

Induces EMT by directly binding with
miR-30 and miR-203 and then regulating
the expression of Snail1 and Slug.

LUAD [59]

FTX miR-374a ↑
Snail
ZEB1 Wnt/β-catenin Promote EMT

Competitively binding miR-374a, thus
resulting in the up-regulated of Snail
and ZEB1

HCC [60]

lnc-ATB miR-200s ↑ ZEB1/2 TGF-β Promote EMT
lnc-ATB upregulated ZEB1 and ZEB2 by
competitively binding the miR-200 family
and then induced EMT and invasion.

HCC [27]

AK000053 miR-508 ↑ ZEB1 TGF-β Promote EMT
Competitively interact with miR-508 and
negatively regulated, resulting in the
up-regulated of ZEB1.

CRC [61]

ZFAS1 miR-150 ↑
ZEB1,

MMP14/16 —
Promote EMT

and
metastasis.

Competitively binding miR-150, resulting
in the up-regulated of ZEB1, MMP14/16 HCC [62]

lncRNA:
mRNA

RP11 Fbxo45, Siah1 ↑ Zeb1 — Promote EMT

Interacted with the 3’UTR of Fbxo45
mRNA and CDS of Siah1 mRNA, and
subsequently prevented the proteasomal
degradation of Zeb1.

CRC [28]

AC132217.4 IGF2 ↑ E-cadherin AKT
Promote EMT

and
metastasis.

Interacted with the 3’UTR of IGF2 mRNA
and activated AKT signalling by
increasing IGF2 mRNA stability,
remarkably down-regulated of
E-cadherin.

OSCC [43]

lnc-ATB IL-11 ↑ E-cadherin IL-11/STAT3 Promote EMT

Binds to IL-11 mRNA, thus increasing
IL-11 mRNA stability, causing autocrine
induction of IL-11, and then activating
STAT3 signaling.

HCC [27]

RCC: renal cell carcinoma; BC: breast cancer; HNSCC: head and neck squamous cell carcinoma; HCC: hepatocellular carcinoma; OSCC: oral squamous cell carcinoma; hESCs: human
pluripotent stem cells; ESCC: esophageal squamous cell carcinoma; NSCLC: non-small cell lung carcinomas; TNBC: triple-negative breast cancer; LUAD: Lung adenocarcinoma; PADC:
pancreatic ductal adenocarcinoma.
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3. The Molecular Mechanisms of lncRNAs in EMTs

3.1. LncRNAs Acting on EMTs at the Epigenetic and Transcriptional Levels

3.1.1. Chromatin Modification and Regulation

Accumulating studies have shown that lncRNAs can interact with chromatin-modifying enzymes
to stimulate or silence gene expression [63]. EZH2 is the most common epigenetic factor that influence
indirectly EMT markers through interacting with lncRNAs. For example, a well-known lncRNA,
HOTAIR, is essential for cancer metastasis, is located in the HOXD locus and displays cell-type and
tissue-specific expression [64]. In gastric cancer (GC), HOTAIR epigenetically silences miR-34a by
binding the PRC2 (polycomb repressive complex 2) component EZH2 to promote EMT progression [65].
The PRC2 complex is indispensable for epigenetic silencing during normal development and
cancer [66,67]. Similarly, in lung and pancreatic cancer, MEG8 binds specifically to EZH2 and
suppresses miR-34a and miR-203 gene expression, resulting in SNAI1 and SNAI2 upregulation [15]
(Figure 3a). Additionally, in TGF-β-induced EMT of lung cancer, MEG3 interacts with EZH2 and
JARID2 at the regulatory regions of CDH1 and miR-200 family genes, resulting in transcriptional
repression and ZEB upregulation [39] (Figure 3a). MALAT1 in renal cell carcinoma (RCC) and CASC15
in GC induce EMT by decreasing the level of E-cadherin [13,68]. In contrast, ANCR suppresses
EMT in breast cancer (BC) by actively regulating E-cadherin via the WNT (Wingless/Integrated)
pathway [41]. Together, these findings indicate that lncRNAs epigenetically orchestrate EMT and
broaden our understanding of lncRNA-mediated molecular mechanisms involved in cancer initiation
and malignancy progression.

LncRNAs have been studied most extensively in the context of other epigenetic factors, such
as CDX2 (Caudal-related homeobox 2), ARID1A (AT-rich interaction domain 1A), and LOXL2 (lysyl
oxidase-like 2). LINC00518 binds to the CDX2 gene promoter region and promotes CDX2 methylation
by activating the WNT signaling pathway, leading to E-cadherin suppression in BC [40]. DGCR5
negatively regulates EMT by interacting with ARID1A, a chromatin-remodeling protein, to promote
CDKN1A (P21) transcription and mediate cell proliferation and apoptosis. Thus, DGCR5 can potentially
serve as a theranostic target for bladder cancer [69]. GATA6-AS epigenetically modulates endothelial
gene expression by interacting with nuclear LOXL2 and impairing its function as an H3K4me3
deaminase, thus facilitating histone methylation and controlling endothelial cell functions [70].
Recently, genome-wide epigenetic reprogramming during EMT has been demonstrated [71]. Thus,
additional studies identifying diverse lncRNA partners of epigenetic regulation will broaden our
understanding of EMT and may lead to the development of targeted therapies.
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Figure 3. LncRNAs regulate EMT at different levels. (a) LncRNAs regulate RNA-protein interactions
at the epigenetic level. Both MEG8 and MEG3 suppress the expression of downstream target genes by
interacting with EZH2, resulting in EMT marker upregulation. (b–c) During transcription, lncRNAs
function via RNA-TF or RNA-DNA (e.g., B3GALT5-AS1) interactions. LncRNAs act as guides and
molecular scaffolds for TF activation (e.g., HOTTIP and BX111) or target gene repression (e.g., MALAT1
and NEAT1) to regulate EMT-related genes such as ZEB1 and E-cadherin. Furthermore, lncRNA
B3GALT5-AS1 directly binds the miRNA-203 promotor to repress miR-203 expression, upregulate
SNAI2 and ZEB2, and induce EMT. (d) LncRNAs (e.g., CAR10 and HCP5) and exosomal lncRNAs (e.g.,
Sox2ot) act as ceRNAs by competitively binding miRNAs to increase EMT TF expression. (e) LncRNAs
affect mRNA splicing (e.g., Zeb2-NAT) and stability (e.g., lnc-ATB and AC132217.4) to modulate EMT.
(f) LncRNAs regulate protein and mRNA modifications to manipulate EMT. They also act as scaffolds
to recruit proteins and impact protein phosphorylation and ubiquitination (e.g., SNHG15 and CYTOR).
Additionally, m6A methylation can induce lncRNA expression (e.g., RP11) by increasing lncRNA
accumulation in nuclei.
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3.1.2. Transcriptional Activators

LncRNAs have been identified as a novel group of transcriptional activators that promote the
transcription of EMT-related genes, which can affect the progression of various malignant tumors. Snail,
one of the most significant EMT TFs, is frequently overexpressed in metastatic cancers. A novel lncRNA
ELIT-1, Smad3, and Snail form a positive feedback loop by recruiting Smad3 (Sekelsky mothers against
dpp 3) to the promoter of Snail, other TGF-β-target genes, and ELIT-1 itself, enhancing TGF-β/Smad3
signaling and promoting EMT progression in lung adenocarcinoma (LUAD) and GC [44]. In contrast,
SATB2-AS1 suppresses colorectal cancer (CRC) progression by acting as a scaffold to recruit protein
p300, whose acetylation of H3K27 and H3K9 at the SATB2 promoter to upregulate the expression
of SATB2, a suppressor of CRC growth and metastasis. SATB2 subsequently recruits HDAC1 to the
Snail promoter, inhibiting Snail transcription and repressing EMT in CRC [25]. LncRNA EPR enables
epithelial cells to control proliferation by counteracting TGF-β-induced EMT. Mechanistically, EPR
stimulates binding of SMAD3 and the mRNA decay-promoting factor KHSRP to the Cdkn1a promoter,
which regulates Cdkn1a gene transcription and mRNA decay, respectively. Cdkn1a promotes cell cycle
arrest in response to many stimuli, including TGF-β expression [45].

LncRNAs HOTTIP, BX111, and TBILA have been associated with EMT, mainly through their
cross-talk with ZEB. HOTTIP directly binds adaptor protein WDR5 to the HOXA13 promoter locus
and activates HOXA13 gene transcription, resulting in upregulation of EMT-related TFs such as ZEB1.
In addition, HOTTIP functions as a ceRNA to bind miR-30b, which promotes HOXA13 expression
in esophageal squamous cell carcinoma (ESCC) [72] (Figure 3b). Additionally, BX111, induced by
HIF-1α in response to hypoxia, is significantly increased in pancreatic cancer tissues and contributes to
hypoxia-induced EMT. Mechanistically, BX111 activates ZEB1 transcription by recruiting the TF Y-box
protein (YB1) to its promoter region, increasing ZEB1 expression and inhibiting downstream proteins
E-cadherin and MMP2 [46] (Figure 3b). In non-small cell lung cancer, the TGFβ-induced lncRNA
TBILA also promotes cell proliferation and metastasis by increasing ZEB1 expression [49].

In addition, lncRNA NBR2 is downregulated in osteosarcoma tissues and serves as a tumor
suppressor gene by directly binding the Notch1 protein, thereby decreasing Notch1 mRNA expression
and increasing E-cadherin mRNA expression [52]. Similarly, lncRNA NEF acts as an activator
of its neighbor gene, FOXA2, which forms a positive-feedback loop in hepatocellular carcinoma
(HCC). NEF, transcriptionally activated by FOXA2, physically interacts with β-catenin to increase
GSK3β–β-catenin binding and thus promoting the inhibitory phosphorylation of β-catenin, resulting in
FOXA2 upregulation and inhibited Wnt/β-catenin signaling, eventually suppressing EMT progression
and cancer metastasis [53].

3.1.3. Transcriptional Repressors

Recent findings indicate a role for lncRNAs as transcriptional repressors in a wide spectrum of
malignant tumors. NEAT1, an estrogen-inducible lncRNA, is prerequisite for FOXN3 interactions with
the SIN3A complex. FOXN3, as a transcriptional repressor, can bind the SIN3A repressor complex in
estrogen receptor–positive cells. The FOXN3–NEAT1–SIN3A complex promotes EMT progression by
transcriptionally repressing downstream target genes including GATA3 and TJP1. Interestingly, the
FOXN3–NEAT1–SIN3A complex trans-represses the ER itself, forming a negative-feedback loop during
transcriptional regulation. Increased expression of both FOXN3 and NEAT1 during BC progression
corresponds to reduced GATA3 expression, and high levels of FOXN3 and NEAT1 are strongly associated
with higher histological grades and poor prognosis [26] (Figure 3c). Similarly, HOTAIR and NEAT1
promote BC EMTs by regulating Twist and E-cadherin expression, respectively [26,73]. B3GALT5-AS1
directly binds to the miR-203 promoter, represses miR-203 transcription, upregulates miR-203 targets
SNAI2 and ZEB2, and induces EMT progression in colon cancer (Figure 3c) [57]. In contrast, MALAT1
suppresses BC EMTs by acting as a scaffold to recruit ELAVL1 to the promoter region of CD133 (also
known as PROM1) to downregulate CD133 expression. CD133, a marker of cancer stem cells, can
promote EMT in various cancers [74]. This study indicates that the failure of a repressive complex to
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form or stabilize in breast cancer facilitates CD133 upregulation and an EMT-like program, providing
new mechanistic insights into the control of pro-metastatic processes [75] (Figure 3c). Taken together,
these findings indicate that lncRNAs regulate EMT progression by binding TFs or recruiting cofactors to
the promoter regions of EMT-related genes. LncRNAs also directly bind the promoters of EMT-related
genes, further promoting or inhibiting transcription to manipulate EMT states.

3.2. LncRNAs in EMTs at the Post-Transcriptional Level

3.2.1. Interactions with miRNAs

MiRNAs play promoting and suppressive roles in a plethora of biological processes [76]. Recent
studies have shown that lncRNAs act as ceRNAs to bind miRNAs and facilitate EMT-related gene
expression. Here, we summarize recent advances in understanding lncRNAs as ceRNAs, based on the
classification of EMT markers.

SNAI1 and SNAI2 (also known as Slug), two members of the Snail superfamily of zinc-finger
transcriptional repressors, participate in EMT development and other processes [77]. Snail is most
widely accepted as a suppressor of E-cadherin expression, and an increasing number of lncRNAs are
being reported to regulate its expression. As mentioned above, lncRNA CAR10 and HCP5 induce
LUAD EMT by directly binding miR-203 and regulating both SNAI1 and SNAI2 [59,78] (Figure 3d).
Similarly, the oncogenic lncRNA TTN-AS1 facilitates expression of Snail1 and the actin-binding protein
Fascin homolog 1 (FSCN1) by competitively binding miR-133b, resulting in ESCC cell proliferation,
EMT, and metastasis [79]. TINCR and UCA1 also significantly upregulate Snail1 and Slug, respectively,
and promote BC EMT [58,80]. Furthermore, TINCR is a potential prognostic indicator and therapeutic
target molecule because it can promote trastuzumab resistance by binding miR-125b [80].

ZEB1 and ZEB2 have emerged as key regulators of E-cadherin and are associated with the
malignancy of various human tumors, including CRC, HCC, and BC [27,61,81]. LncRNA PNUTS
acts as a ceRNA to competitively bind miR-205, which targets ZEB during EMT. Importantly, PNUTS
production is regulated by hnRNP E1 binding to an alternative splicing site in the PNUTS pre-RNA [81].
Through alternative splicing, the PNUTS gene can encode either an mRNA or lncRNA, the latter of
which competitively binds miR-205 to promote EMT [81]. Similarly, lncRNA AK000053 competitively
interacts with miR-508 and promotes the expression of miR-508-targeted genes (Zeb1, Bmi1, and Sall4),
resulting in altered EMT properties [61].

Twist is a basic helix-loop-helix (bHLH) protein that is transcriptionally active during lineage
determination and cell differentiation [82]. It exerts a well-established role in inducing EMT to facilitate
tumor invasion and metastasis [83]. Lnc-ATB was first reported to be abundant in HCC cells after
stimulation with TGF-β and a prognostic marker of HCC patient survival [27]. Strikingly, since its
discovery in HCC, lnc-ATB has been found to competitively bind miR-200s to restore ZEB1 and ZEB2
expression or promote IL-11 signaling [27]. In BC, lnc-ATB facilitates EMT by binding miR-200c to
increase Twist1 expression [84].

Previous studies have also indicated that lncRNAs regulate EMT by indirectly increasing the
expression of Snail, ZEB, or Twist. E-cadherin, occludins, and cytokeratins are the most common
epithelial markers, and N-cadherin and vimentin are the most common mesenchymal markers [85].
Some experimental models require a dramatic change in the expression of select epithelial and
mesenchymal markers to distinguish between EMT states [86]. SNHG3 and LUCAT1 are increased
in HCC promote EMT by competitively binding miR-128 and miR-301b, respectively, to regulate
E-cadherin and N-cadherin expression [87,88]. Importantly, SNHG3 is a novel biomarker and
therapeutic target for forecasting sorafenib responses by regulating drug resistance [87]. In addition,
LUCAT1 can form a positive feedback loop with STAT3 and miR-301b to promote cell proliferation,
migration, and invasion. STAT3 binds to the LUCAT1 promoter region and enhances its transcription.
LUCAT1 increases STAT3 expression by competitively binding miR-301b [88]. Recent study suggested
that ceRNAs are inherent regulatory components of EMT and represent potential targets for interfering
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with EMT during tumorigenesis [89]. Taken together, these findings show that lncRNAs can affect
EMT and mediate drug resistance as ceRNAs. Hence, it is crucial to extend the analyses of ceRNAs to
the dynamic biological processes in EMT to further elucidate the role of ceRNA-based regulation and
obtain novel insights into possible tumor therapies.

Exosomes are a subtype of extracellular vesicles that are frequently associated with tumor
progression [90]. Emerging evidence suggests that exosomal lncRNAs play significant roles in
regulating tumor progression, including EMT. For example, the exosomal lncRNA Sox2ot is a ceRNA
that can promote pancreatic ductal adenocarcinoma (PDAC) EMT and induce stem cell-like properties
by competitively binding miR-200s to increase expression of the neighboring Sox2 gene. Moreover,
high plasma exosomal Sox2ot expression correlates with the tumor node metastasis (TNM) stage and
overall survival rate of patients with PDAC [91] (Figure 3d). Besides ceRNA, exosomal lnc-MMP2-2
can promote EMT by acting as an “enhancer- like lncRNA” and can bind to the upstream site of
MMP-2 gene, resulting in augmentation of MMP2 expression in TGF-β- mediated lung cancer invasion
and also increasing vascular permeability [92]. In addition, hypoxia enhances exosome-mediated
reciprocal movement of the lncRNA UCA1 into bladder cancer cells, which facilitates cancer growth
and progression by inducing EMT [93]. Similarly, the exosomal lncRNA ZFAS1 enhances GC cell
migration and EMT involved in lymphatic metastasis [94]. In contrast, NONHSAT105177 trafficking is
mediated by exosomes and inhibits PDAC cell proliferation, migration, and EMT [95]. Taken together,
these findings suggest that gaining mechanistic insight into how exosomal lncRNAs can regulate
EMT and may lead to treatments for various diseases. Therefore, circulating exosomal lncRNAs may
serve as liquid biopsy and non-invasive biomarkers for the early detection, diagnosis, and treatment
of diseases.

3.2.2. Regulation of mRNA Stability and Splicing

Recently, lncRNAs were reported to participate in mRNA regulation by affecting mRNA translation,
storage, and degradation. Interestingly, lncRNAs directly regulate EMT markers by increasing their
stabilities. LncRNA CASC11, an oncogene, facilitates osteosarcoma (OS) metastasis and EMT by
associating with Snail mRNA and inhibiting Snail degradation. CASC11 binding to the Snail mRNA
3′- untranslated region (UTR) blocks the suppression of miR-122, miR-145, miR-211, miR-34a, and
miR-137 [96] (Figure 3e). LncRNA TTN-AS1 regulates mRNA stability by interacting with HuR,
which is an omnipresent RNA binding protein (RBP) associated with specific mRNAs that promotes
their stability [97,98]. Mechanistically, HuR directly interacts with both TTN-AS1 and FSCN1 mRNA,
resulting in upregulation of FSCN1 and β-catenin protein, thereby correlating with ESCC invasion and
EMT progression [79]. Similarly, the lncRNA AC132217.4 was remarkably up-regulated and promoted
oral squamous cell carcinoma (OSCC) migration and EMT. Mechanistically, KLF8 increases AC132217.4
transcription by binding to its promoter. LncRNA AC132217.4 interacts with the 3′-UTR of IGF2
mRNA and activates AKT signaling by increasing IGF2 mRNA stability [43] (Figure 3e). Furthermore,
lnc-ATB facilitates the HCC invasion-metastasis cascade by binding IL-11 mRNA, increasing its stability,
causing autocrine induction of IL-11, and activating STAT3 signaling [27]. Recent evidence shows that
lncRNA ZEB2-AS1 (also known as ZEB2AS, ZEB2-AS, ZEB2NAT) modulates the invasion and EMT
progression in bladder cancer as well as in gastric cancer [99,100]. Strikingly, ZEB2-AS1 (Zeb2-NAT)
can also regulate the mRNA splicing to impair EMT. Mechanistically, ZEB2-AS1 prevents splicing of the
Zeb2 5′-UTR in epithelial cells, increases the levels of Zeb2 protein, and consequently down-regulates
E-cadherin mRNA and protein [101] (Figure 3e). With increasing recognition that lncRNAs play
positive and negative regulatory roles in disease processes [102], pharmacological efforts in targeting
lncRNAs might result in the development of novel anti-tumor therapeutics.
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3.2.3. Protein and mRNA Modifications

3.2.3.1. Protein Modification

LncRNAs are also diverse regulators of protein modification processes, controlling gene expression
and function at the post-transcriptional level. Protein modifications, including phosphorylation and
ubiquitination, have been used to identify post-translational modifiers that regulate many aspects
of EMT. Phosphorylation is one of the most important post-translational protein modifications; it is
related to the regulation of many vital activities. As a reaction catalyzed by protein kinases, it functions
significantly in cell signaling. LncRNA MUF, which is highly expressed in HCC, activates Wnt/β-catenin
signaling and induces EMT by binding annexin A2 and altering the subcellular localization of β-catenin,
resulting in β-catenin phosphorylation and Wnt cascade activation [47]. In CRC, SLCO4A1-AS1
activates Wnt/β-catenin signaling through enhancement of the stability of β-catenin, by attenuating
the interaction of β-catenin with GSKβ and inhibiting β-catenin degradation [54]. Similarly, the
heterotrimeric complex composed of CYTOR, NCL, and Sam68 activates the NF-κB pathway and
promotes EMT, thereby contributing to CRC progression. CYTOR mediates the interaction of NCL and
Sam68 in its EXON1, which increases phosphorylation of P65 [51] (Figure 3f). These findings provide
strong clinical evidence to support using CYTOR as a biomarker of CRC recurrence and prognosis.
Additionally, based on the importance of the NCL-CYTOR-Sam68 complex, these molecules might
serve as novel targets for CRC therapies.

Ubiquitination, a versatile molecular signature, has been found to dynamically modulate protein
functions. LncRNA SNHG15 transcription is upregulated, and ectopic expression of SNHG15 promotes
colon cancer cell migration, accelerating xenografted tumor growth. SNHG15 interacts with Slug and
blocks Slug degradation via the ubiquitin–proteasome pathway [48] (Figure 3f). Another example,
lncRNA GAEA associates with the RNA binding E3 ligase MEX3C and enhances its enzymatic activity,
resulting in K27-linked polyubiquitination (PolyUb) of PTEN. The PTENK27-PolyUb complex removes
phospho groups from serine/threonine residues in various substrates, including TWIST1, SNAI1, and
YAP1. Upon dephosphorylation, these proteins are stabilized and promote EMT in a PTEN-dependent
manner [29]. Similarly, LINC01638 is highly expressed in triple-negative breast cancer (TNBC)
tissues and cells. LINC01638 interacts with c-Myc to block SPOP-induced c-Myc ubiquitination and
degradation, and then stimulates MTDH-Twist1 signaling to maintain mesenchymal characteristics
with EMT and CSC-like features [50].

LncRNAs have also been identified as a group of regulators of EMT by regulating other protein
modifications, such as competitive protein-binding sites and the inhibition of nuclear entry. In CRC,
LINC01133 and CRCMSL function as EMT-suppressor genes by competing with SRSF6 protein
binding sites and inhibiting nuclear translocation of high mobility-group box 2 (HMGB2), respectively.
LINC01133 is downregulated by TGF-β and suppresses EMT by binding to SRSF6 and blocking the
function of its critical domain [55]. lnc-CRCMSL acts as an anti-metastasis gene that suppresses EMT by
physically binding to HMGB2 and stabilizing the retention of HMGB2 in the cytoplasm to weaken the
HMGB2-OCT4 interactions [56]. Together, while functional lncRNA research has illustrated important
associated post-translational modifications, many intriguing issues remain concerning how lncRNAs
obstruct the modifications of diverse biological proteins.

3.2.3.2. mRNA Modification

The mRNA modification has opened a new realm of post-transcriptional gene regulation, of
which most abundant internal mRNA modification is m6A [103–105]. A recent study showed a new
link between m6A and lncRNAs that modulates all phases of the RNA life cycle associated with
expression. LncRNA FOXM1-AS can promote the interaction of ALKBH5 with FOXM1 nascent
transcripts to maintain tumorigenesis [106]. Studies on the biological functions of m6A modification
during EMT progression have also been reported. As described above, m6A can regulate EMT
progression by triggering the translation of Snail, via YTHDF1 and eEF-2 binding with methylated
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mRNA [107]. Modification with m6A in the Snail coding sequence (CDS) but not the 3′-UTR
induces polysome-mediated translation of Snail mRNA in liver cancer. Research has also shown
that m6A-modified lncRNA RP11 positively regulates CRC migration and EMT and enhances liver
metastasis by upregulating Zeb1. Post-translational upregulation of Zeb1 is essential for RP11-induced
CRC cell dissemination. Mechanistically, m6A causes RP11 to accumulate in the nucleus and on
chromatin. RP11 stimulates Zeb1 expression by downregulating Siah1 and Fbxo45 mRNAs by binding
to hnRNP A2B1 [28] (Figure 3f). This finding suggests that RP11 could be used as a predictive biomarker
of CRC metastasis and an effective target for anti-metastatic therapies. Because our understanding of
the mechanisms underlying RNA methylation is still in its infancy, additional research of regulatory
patterns mediated by m6A modification of lncRNA is warranted.

4. EMT Pathways Control by lncRNAs

EMT can be induced by the activation of various signaling pathways when epithelial cells
encounter specific signals released by the cells forming their stromal microenvironment [86,108].
The binding of ligands of stromal origin to their cognate receptors expressed by normal and neoplastic
epithelial cells triggers consecutive signal-transduction pathways that ultimately converge and activate
the EMT program. The cellular adaptations characterizing the EMT hallmarks can be driven by growth
factor signaling pathways, such as transforming growth factor β (TGF-β), Wnt (Wingless/Integrated),
fibroblast growth factor (FGF), and Notch. These pathways instruct the expression and activity of
EMT-TFs, which operate in coordination with changes of gene expression in order to modulate the
EMT [109].

During EMT, lncRNAs induce the expression of various EMT TFs and alter critical molecules
to regulate wound healing, development and tumor metastasis involving pathways, including the
TGF-β, Wnt, and STAT3 pathways (Figure 4). The TGF-β pathway plays a central role in inducing
EMT and can collaborate with several other signaling pathways (e.g., ERK, PI3K-AKT, and NF-κB)
contributed to EMT programs. For example, lncRNA UCA1 and AC026904.1 are upregulated through
the TGF-β/Smad and TGF-β/ERK pathways, respectively, to induce EMT in BC [58]. The Wnt signaling
pathway is one of the most important pathways that is hyperactivated in cancers [110]. Furthermore,
the Wnt pathway plays important roles in inducing different EMT-related phenotypes, culminating
mainly in the nuclear translocation of β-catenin. LncRNA NEF and ANCR suppress Wnt/β-catenin
signaling by manipulating the key protein β-catenin, which inhibits EMT [41,53]. STAT3 activation
is crucial for its mediation of cytokine and growth factor-induced cellular and biological processes
involved in cell development, proliferation, survival, and inflammation [111,112]. Aberrations in the
STAT3 pathway are intimately associated with the development of diverse cancer types [113,114].
For instance, lnc-ATB activates STAT3 signaling to promote HCC EMT by increasing IL-11 mRNA
stability [27]. In addition to the aforementioned well-known pathways, other signaling pathways
can participate in the induction of different EMT states in various cellular contexts. Recent studies
have revealed that the lncRNA-associated NF-κB and Notch pathways regulate EMT states. Previous
reports have also shown that certain drugs can inhibit cancer metastasis by blocking EMT in malignant
cells and reduce drug susceptibility by deactivating EMT-related pathways, including the AKT and
STAT3 signaling pathways [115–117]. Therefore, developing inhibitors that target lncRNAs could
effectively control EMT-related processes. Interrupting interactions between lncRNAs that have specific
expression characteristics in different EMT states and various signaling pathways represent a novel
means of controlling the EMT process.
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Figure 4. LncRNAs regulate EMT signaling pathways. When the canonical Wnt pathway is activated,
β-catenin is released from the GSK3β-AXIN-APC complex. Then, β-catenin translocates to the nucleus
and drives EMT. Thus, lncRNAs regulate this pathway by targeting β-catenin, resulting in EMT
induction (red) or inhibition (blue). Additionally, lncRNAs can modulate non-canonical Wnt signaling
to suppress EMT by repressing WNT5A (e.g., tsRMST). The Notch pathway controls cell fate decisions,
differentiation, and proliferation. LncRNAs can inhibit EMT by regulating Notch1 signaling (e.g., NBR2).
In TGF-β pathway, TGF-β-induced SMAD (Sekelsky mothers against dpp) complexes transcriptionally
activate EMT TFs. Once they are activated, EMT TFs can increase the expression of TGF-β ligands
and drive a positive feedback loop, thereby helping cells to maintain an EMT state. Thus, lncRNAs
can regulate EMT through SMAD2 (e.g., AK000053 and LINC01133), SMAD3 (e.g., ELIT-1 and EPR),
and the SMAD2/3 complex (e.g., UCA1), and TGFBR1 (e.g., AK002107). Alternate pathways involve
collaboration between TGF-β and proteins such as ERK, PI3K-AKT, and NF-κB (P65), which are also
regulated by lncRNAs (e.g., AC026904.1, GAEA, AC132217.4, and CYTOR). STAT3 in the STAT pathway
is a key TF that determines the EMT state and tumor aggression. LncRNAs can impact EMT via STAT3
activation (red) or inactivation (blue).

5. LncRNAs as Biomarkers and Therapeutic Targets

LncRNAs are uniquely expressed in differentiated tissues or tumor types in a spatiotemporal
manner. Thus, many lncRNAs are useful for understanding the molecular mechanisms underlying
physiological and pathological processes. Indeed, some lncRNAs are dysregulated in tumor samples
compared with normal tissues and have remarkable correlations with EMT, and migration, such as H19
in esophageal cancer and breast cancer [118,119]. Accumulating reports indicated that the distribution
and levels of lncRNAs are condition-specific in diverse locations, which have been exploited as
promising prognostic and diagnostic biomarkers for cancers [120]. Currently, lncRNA PCA3 has
been approved by FDA (Food and Drug Administration) as an early diagnostic biomarker of prostate
cancer [121]. Furthermore, emerging studies have shown that signatures composed of combinations
of various circulating lncRNAs can increase the efficiency of cancer detection [122]. In preclinical
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cancer models, antisense oligonucleotides (ASOs) have already proved to be useful in modulating
gene expression linked to various diseases, such as lymphoma, and solid tumors [123]. Preclinical
models with lncRNA MIR31HG outlier expression were characterized by reduced expression of
MYC targets as well as elevated EMT, TNF-α/NFκB, TGF-β, and IFN-α/γ gene expression signatures,
thereby indicating cancer cell-intrinsic properties resembling the CMS4 subgroup-associations which
were recapitulated in patient biopsies [124]. Additionally, exosomal lncRNAs that promote EMT
and accelerate the proliferation of cancer cells are associated with the occurrence and progression of
cancer and can be used for diagnosis and treatment [91,93,125]. Numerous cancers frequently become
resistant to chemotherapeutic agents. In these chemotherapy-resistant tumors, dysregulated lncRNAs,
including lncRNA SNHG3, and TINCR [80,87], contribute noticeably to the development of drug
resistance. Understanding the molecular mechanisms through which lncRNAs function is crucial for
cancer diagnosis and prognosis, developing novel therapeutics, and predicting responses to treatment
with EMT modulators.

6. Conclusions and Perspectives

LncRNAs directly and indirectly modulate EMT progression by targeting diverse EMT markers,
which play a crucial role in all types and states of EMTs, therefore contributing to tumorigenesis and
tumor progression, as well as drug resistance [85,126,127]. The mechanisms whereby lncRNAs regulate
EMT can be summarized as follows: (i) In the epigenetic layer, lncRNAs recruit epigenetic factors to
orchestrate the expression of EMT-related genes. (ii) At the transcriptional level, lncRNAs regulate the
expression of EMT-related genes by binding TFs and promoters. (iii) At the post-transcriptional level,
EMT markers are regulated by lncRNA competitively binding miRNAs, regulating mRNA stability
and splicing, and modifying RNA or proteins. Furthermore, EMT-related signaling pathways are
strengthened or weakened by interactions with lncRNAs and cascade molecules. EMT regulation by
lncRNAs, therefore, is an extensive and complex process that occurs during the progression of several
human diseases.

LncRNA expression levels are stringently restricted spatiotemporally in diverse and heterogeneous
tissues. The high tissue specificity enables fine-scale gene regulation and likely underpins condition-
specific differences in function. Indeed, many lncRNAs have been depicted as having different and often
conflicting functions in different types of EMT and cancer regulation, such as the lncRNA XIST, ZFAS1,
and OIP5-AS1 [128–133]. Recent findings have indicated that lncRNAs exert dual functions involving
promotion and inhibition of controlling EMT. LncRNA XIST and ZFAS1 promote CRC cell proliferation,
invasion, and EMT by competitively binding miRNAs to upregulate ZEB1 expression. In contrast,
other studies indicate that XIST and ZFAS1 induce protective factors to inhibit EMT progression in
BC [128–131]. Similarly, lncRNA OIP5-AS1 facilitates EMT by increasing ZEB1 translation but inhibits
EMT in diverse range of cancers [132,133]. Together, the dual effects of lncRNAs on EMT are associated
with their expression levels, indicating that lncRNAs may serve as complex prognostic factors in
various human diseases.

Numerous studies have indicated that EMT progression contributes to early-stage dissemination
and is key for cancer invasion and metastasis [9,134]. However, some studies have shown that EMT
is not required for metastasis in certain tumors [135,136]. A confusing study revealed that lncRNA
B3GALT5-AS1 induced EMT but suppressed colon cancer liver metastasis [57]. In liver metastatic
foci, metastasized colon cancer cells undergo a mesenchymal-endothelial transition (MET), the reverse
of EMT, and regain the epithelial phenotype to permit their settlement and proliferation at distant
sites [137]. Recent studies have identified four characteristics that are required for metastasis: cell
motility and invasion potential, the ability for secondary sites or local microenvironments to be
modulated, cell plasticity, and the ability of cancer cells to colonize secondary tissues. EMT is not
essential for the completion of the metastatic cascade in every tumor type [138]. Currently, EMT
is viewed as a focal rather than a global event, and probably a response of tumor cells to their
local microenvironment [8]. Moreover, the opposing roles of EMT in the early invasion and late
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settlement stages of colon cancer metastasis to the liver imply that disease stage-specific therapies are
essential. The latest research broadens our understanding of EMT in metastasis and demonstrates that
heterogeneous EMT phenotypes are important parameters for tumor prognosis and treatment [139].
Thus, EMT features can preclinically suggest combined therapies that may eradicate transformed cell
populations at different stages.

A better understanding of how lncRNAs regulate EMT progression at different molecular levels
can drive innovative anti-metastasis therapeutic strategies and also identify prognostic or diagnostic
markers for a diverse range of diseases. Additionally, attaining a greater understanding of how
various EMT states can be regulated by lncRNAs and how their complex control mechanisms are
interconnected with different signal transduction pathways may also suggest ways to limit tumor
progression. We believe that targeting lncRNAs will lead to novel effective drugs and other therapeutic
approaches to control different EMT states in diverse diseases.
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