Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Participants
2.2. Laboratory Procedures
2.3. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Cholesterol Efflux Capacity and Cardiovascular Risk Factors
3.3. Markers of Inflammation
3.4. Cardiovascular Mortality
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lüscher, T.F.; Landmesser, U.; Von Eckardstein, A.; Fogelman, A.M. High-Density Lipoprotein. Circ. Res. 2014, 114, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pownall, H.J.; Gotto, A.M. New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol. Metab. 2016, 27, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glomset, J.A. The plasma lecithins: Cholesterol acyltransferase reaction. J. Lipid Res. 1968, 9, 155–167. [Google Scholar] [PubMed]
- Rader, D.J.; Alexander, E.T.; Weibel, G.L.; Billheimer, J.; Rothblat, G.H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 2008, 50, S189–S194. [Google Scholar] [CrossRef] [Green Version]
- Rothblat, G.H.; De La Llera-Moya, M.; Atger, V.; Kellner-Weibel, G.; Williams, D.L.; Phillips, M.C. Cell cholesterol efflux: Integration of old and new observations provides new insights. J. Lipid Res. 1999, 40, 781–796. [Google Scholar]
- Winkelmann, B.R.; März, W.; O Boehm, B.; Zotz, R.; Hager, J.; Hellstern, P.; Senges, J. Rationale and design of the LURIC study—A resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001, 2, S1–S73. [Google Scholar] [CrossRef]
- Simera, I.; Moher, D.; Hoey, J.; Schulz, K.F.; Altman, D.G. A catalogue of reporting guidelines for health research. Eur. J. Clin. Investig. 2010, 40, 35–53. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar]
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2006, 29 (Suppl. 1), S43–S48.
- Silbernagel, G.; Pagel, P.; Pfahlert, V.; Genser, B.; Scharnagl, H.; Kleber, M.E.; Delgado, G.; Ohrui, H.; Ritsch, A.; Grammer, T.B.; et al. High-Density Lipoprotein Subclasses, Coronary Artery Disease, and Cardiovascular Mortality. Clin. Chem. 2017, 63, 1886–1896. [Google Scholar] [CrossRef] [Green Version]
- Zewinger, S.; Drechsler, C.; Kleber, M.E.; Dressel, A.; Riffel, J.; Triem, S.; Lehmann, M.; Kopecky, C.; Säemann, M.D.; Lepper, P.M.; et al. Serum amyloid A: High-density lipoproteins interaction and cardiovascular risk. Eur. Heart J. 2015, 36, 3007–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharnagl, H.; Heuschneider, C.; Sailer, S.; Kleber, M.E.; März, W.; Ritsch, A. Decreased cholesterol efflux capacity in patients with low cholesteryl ester transfer protein plasma levels. Eur. J. Clin. Investig. 2014, 44, 395–401. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; De Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritsch, A.; Auer, B.; Föger, B.; Schwarz, S.; Patsch, J.R. Polyclonal antibody-based immunoradiometric assay for quantification of cholesteryl ester transfer protein. J. Lipid Res. 1993, 34, 673–679. [Google Scholar]
- Ritsch, A.; Ebenbichler, C.; Naschberger, E.; Schgoer, W.; Stanzl, U.; Dietrich, H.; Heinrich, P.C.; Saito, K.; Patsch, J.R. Phage-displayed recombinant single-chain antibody fragments with high affinity for cholesteryl ester transfer protein (CETP): cDNA cloning, characterization and CETP quantification. Clin. Chem. Lab. Med. 2004, 42, 247–255. [Google Scholar] [CrossRef]
- Meinitzer, A.; Seelhorst, U.; Wellnitz, B.; Halwachs-Baumann, G.; Boehm, B.O.; Winkelmann, B.R.; März, W. Asymmetrical Dimethylarginine Independently Predicts Total and Cardiovascular Mortality in Individuals with Angiographic Coronary Artery Disease (The Ludwigshafen Risk and Cardiovascular Health Study). Clin. Chem. 2007, 53, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Soria-Florido, M.T.; Schröder, H.; Grau, M.; Fitó, M.; Lassale, C. High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis. Atheroscler. 2020, 302, 36–42. [Google Scholar] [CrossRef]
- Ritsch, A.; Scharnagl, H.; Marz, W. HDL cholesterol efflux capacity and cardiovascular events. N. Engl. J. Med. 2015, 372, 1870–1871. [Google Scholar]
- Banka, C.L.; Yuan, T.; De Beer, M.C.; Kindy, M.; Curtiss, L.K.; De Beer, F.C. Serum amyloid A (SAA): Influence on HDL-mediated cellular cholesterol efflux. J. Lipid Res. 1995, 36, 1058–1065. [Google Scholar]
- Getz, G.S.; Krishack, P.A.; Reardon, C.A. Serum amyloid A and atherosclerosis. Curr. Opin. Lipidol. 2016, 27, 531–535. [Google Scholar] [CrossRef]
- Hisauchi, I.; Ishikawa, T.; Ayaori, M.; Uto-Kondo, H.; Koshikawa, Y.; Ukaji, T.; Nakamura, H.; Mizutani, Y.; Taguchi, I.; Nakajima, T.; et al. High-Density Lipoprotein Cholesterol Efflux Capacity as a Novel Prognostic Surrogate for Coronary Artery Disease. J. Atheroscler. Thromb. 2020, 27, 59279. [Google Scholar]
Efflux (% C, Median, Range) | All (n = 2468) | Quartile 1 60.4 (21.8–73.7) (n = 617) | Quartile 2 80.9 (73.7–87.9) (n = 617) | Quartile 3 95.1 (87.9–102.6) (n = 617) | Quartile 4 119.1 (102.7–178.0) (n = 617) | pa |
---|---|---|---|---|---|---|
Age (years, mean ± SD) | 62.8 ± 10.4 | 63.4 ± 10.6 | 62.7 ± 10.6 | 62.6 ± 10.2 | 62.8 ± 10.2 | 0.279 |
Male sex (%) | 68.1 | 73.4 | 68.2 | 70.7 | 60.1 | <0.001 |
Body mass index (kg/m2, mean ± SD) | 27.5 ± 4.1 | 27.8 ± 4.1 | 27.8 ± 4.2 | 27.5 ± 4.0 | 27.0 ± 4.1 | 0.005 |
Waist hip ratio (mean ± SD) | 0.96 | 0.96 ± 0.07 | 0.96 ± 0.08 | 0.96 ± 0.08 | 0.95 ± 0.08 | 0.068 |
Total cholesterol (mg/dL, mean ± SD) | 208 ± 44 | 203 ± 46 | 205 ± 43 | 210 ± 43 | 215 ± 45 | <0.001 |
LDLc cholesterol (mg/dL, mean ± SD) | 116 ± 35 | 114 ± 35 | 115 ± 35 | 117 ± 35 | 118 ± 36 | 0.429 |
HDLc cholesterol (mg/dL, mean ± SD) | 39 ± 11 | 35 ± 10 | 38 ± 9 | 40 ± 11 | 44 ± 11 | <0.001 |
Effective HDL (mg/dL, mean ± SD) | 35 ± 18 | 30 ± 17 | 33 ± 16 | 36 ± 17 | 41 ± 19 | <0.001 |
Apolipoprotein AI (mg/dL, mean ± SD) | 130 ± 25 | 121 ± 24 | 127 ± 23 | 132 ± 24 | 141 ± 26 | <0.001 |
Apolipoprotein AII (mg/dL, mean ± SD) | 42 ± 10 | 39 ± 10 | 41 ± 9 | 42 ± 9 | 45 ± 10 | <0.001 |
Apolipoprotein B (mg/dL, mean ± SD) | 104 ± 25 | 104 ± 25 | 104 ± 25 | 105 ± 25 | 104 ± 25 | 0.944 |
Triglycerides (mg/dL, median, Q1 to Q3) | 143 (106–198) | 145 (104–202) | 140 (106–200) | 147 (110–200) | 139 (104–193) | 0.346 |
Systolic blood pressure (mmHg, mean ± SD) | 141 | 139 ± 23 | 142 ± 24 | 141 ± 23 | 142 ± 24 | 0.015 |
Diastolic blood pressure (mmHg, mean ± SD) | 81 | 80 ± 12 | 82 ± 12 | 81 ± 11 | 81 ± 11 | 0.097 |
CETP c (μg/mL, median, Q1 to Q3) | 1.12 (0.86–1.49) | 1.12 (0.86–1.47) | 1.09 (0.84–1.46) | 1.14 (0.87–1.56) | 1.15 (0.87–1.50) | 0.152 b |
Diabetes mellitus (%) | 28.9 | 31.0 | 32.9 | 33.7 | 29.0 | 0.286 |
Lipid lowering therapy (%) | 49.7 | 52.7 | 49.4 | 51.9 | 44.9 | 0.029 |
CAD c None (%) | 23.0 | 20.9 | 21.6 | 23.5 | 25.9 | |
Stable CAD (%) | 46.6 | 46.8 | 49.3 | 45.1 | 45.2 | |
Unstable CAD (troponin T−) (%) | 18.9 | 18.0 | 15.6 | 20.6 | 21.4 | |
NSTEMI c or STEMI (troponin T+) (%) | 11.5 | 14.3 | 13.6 | 10.9 | 7.5 | 0.001 |
Smoking | ||||||
Never (%) | 37.5 | 34.0 | 36.8 | 37.6 | 41.5 | |
Past (%) | 43.2 | 45.7 | 43.8 | 42.6 | 40.8 | |
Current (%) | 19.3 | 20.3 | 19.4 | 19.8 | 17.7 | 0.262 |
All Patients (n = 2468) | ||||||
---|---|---|---|---|---|---|
Efflux Quartile | Model 1 HR (95% CI) | p | Model 2 HR (95% CI) | p | Model 3 HR (95% CI) | p |
1st (n = 617) | 1.0reference | 1.0reference f | 1.0reference | |||
2nd (n = 617) | 0.756 (0.590–0.968) | 0.026 | 0.800 (0.625–1.025) | 0.077 | 0.804 (0.628–1.031) | 0.086 |
3rd (n = 617) | 0.658 (0.509–0.852) | 0.001 | 0.711 (0.549–0.920) | 0.010 | 0.698 (0.539–0.905) | 0.007 |
4th (n = 617) | 0.632 (0.488–0.818) | 0.001 | 0.701 (0.540–0.910) | 0.008 | 0.726 (0.559–0.943) | 0.016 |
Model 4 HR (95% CI) | p | Model 5 HR (95% CI) | p | Model 6 HR (95% CI) | p | |
1st (n = 617) | 1.0reference | 1.0reference | 1.0reference | |||
2nd (n = 617) | 0.841 (0.655–1.080) | 0.174 | 0.863 (0.671–1.109) | 0.249 | 0.911 (0.705–1.177) | 0.475 |
3rd (n = 617) | 0.755 (0.579–0.984) | 0.037 | 0.786 (0.602–1.024) | 0.075 | 0.798 (0.607–1.049) | 0.105 |
4th (n = 617) | 0.815 (0.620–1.070) | 0.141 | 0.851 (0.648–1.120) | 0.250 | 0.850 (0.641–1.125) | 0.256 |
CAD Patients (n = 1886) | ||||||
Model 1 HR (95% CI) | p | Model 2 HR (95% CI) | p | Model 3 HR (95% CI) | p | |
1st (n = 483) | 1.0reference | 1.0reference | 1.0reference | |||
2nd (n = 482) | 0.854 (0.659–1.106) | 0.232 | 0.907 (0.700–1.176) | 0.461 | 0.904 (0.697–1.172) | 0.445 |
3rd (n = 465) | 0.695 (0.527–0.917) | 0.010 | 0.732 (0.555–0.966) | 0.027 | 0.731 (0.554–0.965) | 0.027 |
4th (n = 456) | 0.6665 (0.503–0.881) | 0.004 | 0.716 (0.540–0.949) | 0.020 | 0.731 (0.551–0.970) | 0.030 |
Efflux Quartile | Model 4 HR (95% CI) | p | Model 5 HR (95% CI) | p | Model 6 HR (95% CI) | p |
1st (n = 483) | 1.0reference | 1.0reference | 1.0reference | |||
2nd (n = 482) | 0.937 (0.721–1.219) | 0.630 | 0.956 (0.735–1.244) | 0.738 | 1.019 (0.778–1.335) | 0.892 |
3rd (n = 465) | 0.772 (0.582–1.025) | 0.073 | 0.605 (0.602–1.067) | 0.131 | 0.821 (0.613–1.100) | 0.186 |
4th (n = 456) | 0.799 (0.595–1.074) | 0.137 | 0.620 (0.648–1.123) | 0.233 | 0.838 (0.618–1.137) | 0.257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritsch, A.; Duerr, A.; Kahler, P.; Hunjadi, M.; Stojakovic, T.; Silbernagel, G.; Scharnagl, H.; Kleber, M.E.; März, W. Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Biomedicines 2020, 8, 524. https://doi.org/10.3390/biomedicines8110524
Ritsch A, Duerr A, Kahler P, Hunjadi M, Stojakovic T, Silbernagel G, Scharnagl H, Kleber ME, März W. Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Biomedicines. 2020; 8(11):524. https://doi.org/10.3390/biomedicines8110524
Chicago/Turabian StyleRitsch, Andreas, Angela Duerr, Patrick Kahler, Monika Hunjadi, Tatjana Stojakovic, Guenther Silbernagel, Hubert Scharnagl, Marcus E. Kleber, and Winfried März. 2020. "Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study" Biomedicines 8, no. 11: 524. https://doi.org/10.3390/biomedicines8110524
APA StyleRitsch, A., Duerr, A., Kahler, P., Hunjadi, M., Stojakovic, T., Silbernagel, G., Scharnagl, H., Kleber, M. E., & März, W. (2020). Cholesterol Efflux Capacity and Cardiovascular Disease: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. Biomedicines, 8(11), 524. https://doi.org/10.3390/biomedicines8110524