Theoretical, Technical, and Analytical Foundations of Task-Based and Resting-State Functional Magnetic Resonance Imaging (fMRI)—A Narrative Review
Abstract
1. Introduction
2. The BOLD Mechanism
2.1. Hemodynamic Response and Neural Activity Coupling
2.2. Signal Susceptibility, Motion, and Noise
3. Task-Based fMRI (Tb-fMRI)
3.1. Experimental Design: Block vs. Event-Related Paradigms
3.2. Role of Statistical Modeling
- Y represents the measured BOLD signal across all time points for a single voxel.
- X is the design matrix, which includes the model of expected neural activity.
- β is the vector of parameter weights that the model solves for. These values quantify the degree to which the observed BOLD signal is explained by each explanatory variable.
3.3. Example Paradigms
3.4. Dependence on Subject Compliance and Task Performance
4. Resting-State fMRI (Rs-fMRI)
4.1. Concept of Spontaneous Low-Frequency Fluctuations
4.2. Default Mode Network, Motor, Auditory, and Language Systems
- The Medial Temporal Lobe (MTL) subsystem, associated with episodic memory and mental simulation of past or future events.
- The Dorsal Medial (DM) prefrontal subsystem, involved in social cognition and Theory of Mind processes.
4.3. Connectivity Analysis
4.3.1. Seed-Based Correlation Analysis (SCA)
4.3.2. Independent Component Analysis (ICA)
4.3.3. Graph Theory Analysis
4.3.4. Regional Homogeneity (ReHo)
4.3.5. Amplitude of Low-Frequency Fluctuations (ALFF) and Fractional ALFF (fALFF)
5. Methodological Comparison of Tb-fMRI and Rs-fMRI
5.1. Acquisition and Data Processing
5.2. Preprocessing Pipelines
5.3. Motion Correction
5.4. Spatial Smoothing
5.5. Signal Regression
5.6. Artifact Sensitivity and Post-Processing Controversies
5.7. Patient Cooperation
5.8. Scan Duration
5.9. Robustness to Pathology
5.10. Clinical Acceptance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALFF | Amplitude of Low-Frequency Fluctuations |
| AN | Auditory Network |
| AFNI | Analysis of Functional NeuroImages |
| BIDS | Brain Imaging Data Structure |
| BOLD | Blood Oxygenation Level–Dependent |
| CBF | Cerebral Blood Flow |
| CBV | Cerebral Blood Volume |
| CMRO2 | Cerebral Metabolic Rate of Oxygen |
| CO2 | Carbon Dioxide |
| CONN | CONN Functional Connectivity Toolbox |
| CSF | Cerebrospinal Fluid |
| DCS | Direct Cortical Stimulation |
| dHb | Deoxygenated Hemoglobin |
| DM | Dorsal Medial |
| DMN | Default Mode Network |
| DPABI | Data Processing & Analysis for Brain Imaging |
| DPARSF | Data Processing Assistant for Resting-State fMRI |
| DVARS | Temporal Derivative of Time Courses, Variance Across Voxels |
| EPI | Echo-Planar Imaging |
| fALFF | Fractional Amplitude of Low-Frequency Fluctuations |
| FD | Framewise Displacement |
| FDR | False Discovery Rate |
| FEAT | FMRI Expert Analysis Tool |
| FLIRT | FMRIB’s Linear Image Registration Tool |
| FMRIB | Functional Magnetic Resonance Imaging of the Brain |
| FNIRT | FMRIB’s Nonlinear Image Registration Tool |
| FOV | Field of View |
| fMRI | Functional Magnetic Resonance Imaging |
| FSL | FMRIB Software Library |
| FWE | Family-Wise Error |
| GLM | General Linear Model |
| GNN | Graph Neural Networks |
| GSR | Global Signal Regression |
| Hb | Hemoglobin |
| HRF | Hemodynamic Response Function |
| ICA | Independent Component Analysis |
| ICA-AROMA | ICA-based Automatic Removal Of Motion Artifacts |
| ICs | Independent Components |
| KCC | Kendall’s Coefficient of Concordance |
| LFPs | Local Field Potentials |
| MTL | Medial Temporal Lobe |
| MUA | Multiunit Activity |
| NO | Nitric Oxide |
| OEF | Oxygen Extraction Fraction |
| PCC | Posterior Cingulate Cortex |
| PET | Positron Emission Tomography |
| PLS | Partial Least Squares |
| ReHo | Regional Homogeneity |
| ROI | Region of Interest |
| Rs-fMRI | Resting-State Functional Magnetic Resonance Imaging |
| RSN | Resting-State Network |
| SCA | Seed-Based Correlation Analysis |
| SMN | Sensorimotor Network |
| SMA | Supplementary Motor Area |
| SNR | Signal-to-Noise Ratio |
| SPM | Statistical Parametric Mapping |
| SVM | Support Vector Machine |
| sLFFs | Spontaneous Low-Frequency Fluctuations |
| Tb-fMRI | Task-Based Functional Magnetic Resonance Imaging |
| TE | Echo Time |
| TR | Repetition Time |
| vACC | Ventral Anterior Cingulate Cortex |
| vMPFC | Ventral Medial Prefrontal Cortex |
| WM | White Matter |
References
- Logothetis, N.K. What We Can Do and What We Cannot Do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Bandettini, P.A. Twenty Years of Functional MRI: The Science and the Stories. Neuroimage 2012, 62, 575–588. [Google Scholar] [CrossRef]
- Buxton, R.B. The Physics of Functional Magnetic Resonance Imaging (fMRI). Rep. Prog. Phys. 2013, 76, 096601. [Google Scholar] [CrossRef]
- Huettel, S.A.; Song, A.W.; McCarthy, G. Functional Magnetic Resonance Imaging; Sinauer Associates: Sunderland, MA, USA, 2004; ISBN 978-0-87893-288-7. [Google Scholar]
- Heeger, D.J.; Ress, D. What Does fMRI Tell Us about Neuronal Activity? Nat. Rev. Neurosci. 2002, 3, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Jezzard, P.; Turner, R. Analysis of Functional MRI Time-series. Hum. Brain Mapp. 1994, 1, 153–171. [Google Scholar] [CrossRef]
- Fox, M.D.; Raichle, M.E. Spontaneous Fluctuations in Brain Activity Observed with Functional Magnetic Resonance Imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. [Google Scholar] [CrossRef]
- Leuthardt, E.C.; Guzman, G.; Bandt, S.K.; Hacker, C.; Vellimana, A.K.; Limbrick, D.; Milchenko, M.; Lamontagne, P.; Speidel, B.; Roland, J.; et al. Integration of Resting State Functional MRI into Clinical Practice—A Large Single Institution Experience. PLoS ONE 2018, 13, e0198349. [Google Scholar] [CrossRef]
- Muschelli, J.; Nebel, M.B.; Caffo, B.S.; Barber, A.D.; Pekar, J.J.; Mostofsky, S.H. Reduction of Motion-Related Artifacts in Resting State fMRI Using aCompCor. Neuroimage 2014, 96, 22–35. [Google Scholar] [CrossRef]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef]
- Uludağ, K. Physiological Modeling of the BOLD Signal and Implications for Effective Connectivity: A Primer. Neuroimage 2023, 277, 120249. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Taylor, P.A.; Reynolds, R.C.; Leibenluft, E.; Pine, D.S.; Brotman, M.A.; Pagliaccio, D.; Haller, S.P. BOLD Response Is More than Just Magnitude: Improving Detection Sensitivity through Capturing Hemodynamic Profiles. NeuroImage 2023, 277, 120224. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.S.; Rombouts, S.A.R.B.; Barkhof, F.; Scheltens, P.; Stam, C.J.; Smith, S.M.; Beckmann, C.F. Consistent Resting-State Networks across Healthy Subjects. Proc. Natl. Acad. Sci. USA 2006, 103, 13848–13853. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD Signal. Annu. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef] [PubMed]
- Lippert, M.T.; Steudel, T.; Ohl, F.; Logothetis, N.K.; Kayser, C. Coupling of Neural Activity and fMRI-BOLD in the Motion Area MT. Magn. Reson. Imaging 2010, 28, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Jezzard, P.; Clare, S. Sources of Distortion in Functional MRI Data. Hum. Brain Mapp. 1999, 8, 80–85. [Google Scholar] [CrossRef]
- Stippich, C. (Ed.) Clinical Functional MRI: Presurgical Functional Neuroimaging; Medical Radiology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Blockley, N.P.; Griffeth, V.E.M.; Simon, A.B.; Buxton, R.B. A Review of Calibrated Blood Oxygenation Level-Dependent (BOLD) Methods for the Measurement of Task-Induced Changes in Brain Oxygen Metabolism. NMR Biomed. 2013, 26, 987–1003. [Google Scholar] [CrossRef]
- Rolinski, R.; You, X.; Gonzalez-Castillo, J.; Norato, G.; Reynolds, R.C.; Inati, S.K.; Theodore, W.H. Language Lateralization from Task-based and Resting State Functional MRI in Patients with Epilepsy. Hum. Brain Mapp. 2020, 41, 3133–3146. [Google Scholar] [CrossRef]
- Visscher, K.M.; Miezin, F.M.; Kelly, J.E.; Buckner, R.L.; Donaldson, D.I.; McAvoy, M.P.; Bhalodia, V.M.; Petersen, S.E. Mixed Blocked/Event-Related Designs Separate Transient and Sustained Activity in fMRI. Neuroimage 2003, 19, 1694–1708. [Google Scholar] [CrossRef]
- Worsley, K.J.; Friston, K.J. Analysis of fMRI Time-Series Revisited--Again. Neuroimage 1995, 2, 173–181. [Google Scholar] [CrossRef]
- Nichols, T.; Hayasaka, S. Controlling the Familywise Error Rate in Functional Neuroimaging: A Comparative Review. Stat. Methods Med. Res. 2003, 12, 419–446. [Google Scholar] [CrossRef]
- Petrella, J.R.; Shah, L.M.; Harris, K.M.; Friedman, A.H.; George, T.M.; Sampson, J.H.; Pekala, J.S.; Voyvodic, J.T. Preoperative Functional MR Imaging Localization of Language and Motor Areas: Effect on Therapeutic Decision Making in Patients with Potentially Resectable Brain Tumors. Radiology 2006, 240, 793–802. [Google Scholar] [CrossRef]
- Huang, S.; De Brigard, F.; Cabeza, R.; Davis, S.W. Connectivity Analyses for Task-Based fMRI. Phys. Life Rev. 2024, 49, 139–156. [Google Scholar] [CrossRef]
- Morrison, M.A.; Tam, F.; Garavaglia, M.M.; Hare, G.M.T.; Cusimano, M.D.; Schweizer, T.A.; Das, S.; Graham, S.J. Sources of Variation Influencing Concordance between Functional MRI and Direct Cortical Stimulation in Brain Tumor Surgery. Front. Neurosci. 2016, 10, 461. [Google Scholar] [CrossRef]
- Lemée, J.-M.; Berro, D.H.; Bernard, F.; Chinier, E.; Leiber, L.-M.; Menei, P.; Ter Minassian, A. Resting-State Functional Magnetic Resonance Imaging versus Task-Based Activity for Language Mapping and Correlation with Perioperative Cortical Mapping. Brain Behav. 2019, 9, e01362. [Google Scholar] [CrossRef]
- Rutten, G.-J.; Ramsey, N.F. The Role of Functional Magnetic Resonance Imaging in Brain Surgery. Neurosurg. Focus 2010, 28, E4. [Google Scholar] [CrossRef]
- Drobyshevsky, A.; Baumann, S.B.; Schneider, W. A Rapid fMRI Task Battery for Mapping of Visual, Motor, Cognitive, and Emotional Function. Neuroimage 2006, 31, 732–744. [Google Scholar] [CrossRef]
- Lee, K.S.; Hagan, C.N.; Hughes, M.; Cotter, G.; McAdam Freud, E.; Kircanski, K.; Leibenluft, E.; Brotman, M.A.; Tseng, W.-L. Systematic Review and Meta-Analysis: Task-Based fMRI Studies in Youths With Irritability. J. Am. Acad. Child. Adolesc. Psychiatry 2023, 62, 208–229. [Google Scholar] [CrossRef] [PubMed]
- Hacker, C.D.; Roland, J.L.; Kim, A.H.; Shimony, J.S.; Leuthardt, E.C. Resting-State Network Mapping in Neurosurgical Practice: A Review. Neurosurg. Focus 2019, 47, E15. [Google Scholar] [CrossRef]
- Soares, J.F.; Abreu, R.; Lima, A.C.; Sousa, L.; Batista, S.; Castelo-Branco, M.; Duarte, J.V. Task-Based Functional MRI Challenges in Clinical Neuroscience: Choice of the Best Head Motion Correction Approach in Multiple Sclerosis. Front. Neurosci. 2022, 16, 1017211. [Google Scholar] [CrossRef] [PubMed]
- Al-Arfaj, H.K.; Al-Sharydah, A.M.; AlSuhaibani, S.S.; Alaqeel, S.; Yousry, T. Task-Based and Resting-State Functional MRI in Observing Eloquent Cerebral Areas Personalized for Epilepsy and Surgical Oncology Patients: A Review of the Current Evidence. J. Pers. Med. 2023, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; He, L.; Huang, Z.; Sun, L.; Zhang, Y.; Zhang, X. Assessing Regional Homogeneity and Cognitive Function Alterations in Pediatric Brain Tumor Patients: A Resting-State Functional Magnetic Resonance Imaging Study. Quant. Imaging Med. Surg. 2024, 14, 8686695–8688695. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, D.A.; Sabsevitz, D.S.; Chaichana, K.L.; Quiñones-Hinojosa, A.; Middlebrooks, E.H. Current State of Functional MRI in the Presurgical Planning of Brain Tumors. Radiol. Imaging Cancer 2023, 5, e230078. [Google Scholar] [CrossRef]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional Connectivity in the Resting Brain: A Network Analysis of the Default Mode Hypothesis. Proc. Natl. Acad. Sci. USA 2003, 100, 253–258. [Google Scholar] [CrossRef]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Leopold, D.A.; Maier, A. Ongoing Physiological Processes in the Cerebral Cortex. Neuroimage 2012, 62, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Smitha, K.A.; Akhil Raja, K.; Arun, K.M.; Rajesh, P.G.; Thomas, B.; Kapilamoorthy, T.R.; Kesavadas, C. Resting State fMRI: A Review on Methods in Resting State Connectivity Analysis and Resting State Networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef]
- Lee, M.H.; Smyser, C.D.; Shimony, J.S. Resting-State fMRI: A Review of Methods and Clinical Applications. AJNR Am. J. Neuroradiol. 2013, 34, 1866–1872. [Google Scholar] [CrossRef]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Zhang, D.; Snyder, A.Z.; Fox, M.D.; Sansbury, M.W.; Shimony, J.S.; Raichle, M.E. Intrinsic Functional Relations Between Human Cerebral Cortex and Thalamus. J. Neurophysiol. 2008, 100, 1740–1748. [Google Scholar] [CrossRef]
- Tan, W.; Ouyang, X.; Huang, D.; Wu, Z.; Liu, Z.; He, Z.; Long, Y. Disrupted Intrinsic Functional Brain Network in Patients with Late-Life Depression: Evidence from a Multi-Site Dataset. J. Affect. Disord. 2023, 323, 631–639. [Google Scholar] [CrossRef]
- Cao, C.; Liu, W.; Hou, C.; Chen, Y.; Liao, F.; Long, H.; Chen, D.; Chen, X.; Li, F.; Huang, J.; et al. Disrupted Default Mode Network Connectivity and Its Role in Negative Symptoms of Schizophrenia. Psychiatry Res. 2025, 348, 116489. [Google Scholar] [CrossRef]
- Saviola, F.; Zigiotto, L.; Novello, L.; Zacà, D.; Annicchiarico, L.; Corsini, F.; Rozzanigo, U.; Papagno, C.; Jovicich, J.; Sarubbo, S. The Role of the Default Mode Network in Longitudinal Functional Brain Reorganization of Brain Gliomas. Brain Struct. Funct. 2022, 227, 2923–2937. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Tian, C.; Zeng, X.; Huang, J.; Wang, R. The Relationship of Functional Connectivity of the Sensorimotor and Visual Cortical Networks Between Resting and Task States. Front. Neurosci. 2020, 14, 592720. [Google Scholar] [CrossRef] [PubMed]
- Witt, S.T.; Laird, A.R.; Meyerand, M.E. Functional Neuroimaging Correlates of Finger-Tapping Task Variations: An ALE Meta-Analysis. Neuroimage 2008, 42, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lin, J.; You, N.; Li, X.; Xiong, Y.; Wang, X.; Lu, H.; Li, C.; Li, R.; Hu, J.; et al. Tumor Characteristics, Brain Functional Activity, and Connectivity of Tinnitus in Patients with Vestibular Schwannoma: A Pilot Study. Quant. Imaging Med. Surg. 2024, 14, 1392–1405. [Google Scholar] [CrossRef]
- Ramage, A.E.; Aytur, S.; Ballard, K.J. Resting-State Functional Magnetic Resonance Imaging Connectivity Between Semantic and Phonological Regions of Interest May Inform Language Targets in Aphasia. J. Speech Lang. Hear. Res. 2020, 63, 3051–3067. [Google Scholar] [CrossRef]
- Dierker, D.; Roland, J.L.; Kamran, M.; Rutlin, J.; Hacker, C.D.; Marcus, D.S.; Milchenko, M.; Miller-Thomas, M.M.; Benzinger, T.L.; Snyder, A.Z.; et al. Resting-State Functional Magnetic Resonance Imaging in Presurgical Functional Mapping: Sensorimotor Localization. Neuroimaging Clin. N. Am. 2017, 27, 621–633. [Google Scholar] [CrossRef]
- Joel, S.E.; Caffo, B.S.; van Zijl, P.C.M.; Pekar, J.J. On the Relationship between Seed-Based and ICA-Based Measures of Functional Connectivity. Magn. Reson. Med. 2011, 66, 644–657. [Google Scholar] [CrossRef]
- Beckmann, C.F.; DeLuca, M.; Devlin, J.T.; Smith, S.M. Investigations into Resting-State Connectivity Using Independent Component Analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 1001–1013. [Google Scholar] [CrossRef]
- Robinson, S.D.; Schöpf, V.; Cardoso, P.; Geissler, A.; Fischmeister, F.P.S.; Wurnig, M.; Trattnig, S.; Beisteiner, R. Applying Independent Component Analysis to Clinical fMRI at 7 T. Front. Hum. Neurosci. 2013, 7, 496. [Google Scholar] [CrossRef]
- Iraji, A.; Faghiri, A.; Lewis, N.; Fu, Z.; Rachakonda, S.; Calhoun, V.D. Tools of the Trade: Estimating Time-Varying Connectivity Patterns from fMRI Data. Soc. Cogn. Affect. Neurosci. 2021, 16, 849–874. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Maria Rossini, P. Connectome: Graph Theory Application in Functional Brain Network Architecture. Clin. Neurophysiol. Pract. 2017, 2, 206–213. [Google Scholar] [CrossRef]
- Hassett, J.D.; Craig, B.T.; Hilderley, A.; Kinney-Lang, E.; Yeates, K.O.; MacMaster, F.P.; Miller, J.; Noel, M.; Brooks, B.L.; Barlow, K.; et al. Development of the Whole-Brain Functional Connectome Explored via Graph Theory Analysis. Aperture Neuro 2024, 4, 1–15. [Google Scholar] [CrossRef]
- Tanglay, O.; Dadario, N.B.; Chong, E.H.N.; Tang, S.J.; Young, I.M.; Sughrue, M.E. Graph Theory Measures and Their Application to Neurosurgical Eloquence. Cancers 2023, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Farahani, F.V.; Karwowski, W.; Lighthall, N.R. Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review. Front. Neurosci. 2019, 13, 585. [Google Scholar] [CrossRef]
- Mohammadi, H.; Karwowski, W. Graph Neural Networks in Brain Connectivity Studies: Methods, Challenges, and Future Directions. Brain Sci. 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zuo, X.-N. Regional Homogeneity: A Multimodal, Multiscale Neuroimaging Marker of the Human Connectome. Neuroscientist 2016, 22, 486–505. [Google Scholar] [CrossRef]
- Shen, W.; Wang, X.; Li, Q.; Ding, Q.; Zhang, H.; Qian, Z.; Sun, Z.; Chen, X.; Zhang, J.; Zhao, M.; et al. Research on Adults with Subthreshold Depression after Aerobic Exercise: A Resting-State fMRI Study Based on Regional Homogeneity (ReHo). Front. Neurosci. 2024, 18, 1231883. [Google Scholar] [CrossRef]
- Jia, X.-Z.; Sun, J.-W.; Ji, G.-J.; Liao, W.; Lv, Y.-T.; Wang, J.; Wang, Z.; Zhang, H.; Liu, D.-Q.; Zang, Y.-F. Percent Amplitude of Fluctuation: A Simple Measure for Resting-State fMRI Signal at Single Voxel Level. PLoS ONE 2020, 15, e0227021. [Google Scholar] [CrossRef]
- Shang, J.; Fisher, P.; Bäuml, J.G.; Daamen, M.; Baumann, N.; Zimmer, C.; Bartmann, P.; Boecker, H.; Wolke, D.; Sorg, C.; et al. A Machine Learning Investigation of Volumetric and Functional MRI Abnormalities in Adults Born Preterm. Hum. Brain Mapp. 2019, 40, 4239–4252. [Google Scholar] [CrossRef]
- Golestani, A.M.; Kwinta, J.B.; Khatamian, Y.B.; Chen, J.J. The Effect of Low-Frequency Physiological Correction on the Reproducibility and Specificity of Resting-State fMRI Metrics: Functional Connectivity, ALFF, and ReHo. Front. Neurosci. 2017, 11, 546. [Google Scholar] [CrossRef]
- Turner, J.A.; Damaraju, E.; Van Erp, T.G.M.; Mathalon, D.H.; Ford, J.M.; Voyvodic, J.; Mueller, B.A.; Belger, A.; Bustillo, J.; McEwen, S.C.; et al. A Multi-Site Resting State fMRI Study on the Amplitude of Low Frequency Fluctuations in Schizophrenia. Front. Neurosci. 2013, 7, 137. [Google Scholar] [CrossRef]
- Shi, S.; Meng, J.; Wu, X.; Wang, J.; Wang, H.; Li, P.; Qie, S. The Relationship between Fractional Amplitude of Low-Frequency Fluctuations (fALFF) and the Severity of Neglect in Patients with Unilateral Spatial Neglect (USN) after Stroke: A Functional near-Infrared Spectroscopy Study. IBRO Neurosci. Rep. 2025, 18, 31–38. [Google Scholar] [CrossRef]
- Ogawa, S.; Menon, R.S.; Tank, D.W.; Kim, S.G.; Merkle, H.; Ellermann, J.M.; Ugurbil, K. Functional Brain Mapping by Blood Oxygenation Level-Dependent Contrast Magnetic Resonance Imaging. A Comparison of Signal Characteristics with a Biophysical Model. Biophys. J. 1993, 64, 803–812. [Google Scholar] [CrossRef]
- Cordes, D.; Haughton, V.M.; Arfanakis, K.; Carew, J.D.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in “Resting-State” Data. AJNR Am. J. Neuroradiol. 2001, 22, 1326–1333. [Google Scholar]
- Barkhof, F.; Haller, S.; Rombouts, S.A.R.B. Resting-State Functional MR Imaging: A New Window to the Brain. Radiology 2014, 272, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. (Ed.) Statistical Parametric Mapping: The Analysis of Funtional Brain Images, 1st ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2007. [Google Scholar]
- Pauli, R.; Bowring, A.; Reynolds, R.; Chen, G.; Nichols, T.E.; Maumet, C. Exploring fMRI Results Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM. Front. Neuroinform. 2016, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Nichols, T.E.; Holmes, A.P. Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. Hum. Brain Mapp. 2002, 15, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Chao-Gan, Y.; Yu-Feng, Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front. Syst. Neurosci. 2010, 4, 13. [Google Scholar] [CrossRef]
- Yan, C.-G.; Wang, X.-D.; Zuo, X.-N.; Zang, Y.-F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Churchill, N.W.; Oder, A.; Abdi, H.; Tam, F.; Lee, W.; Thomas, C.; Ween, J.E.; Graham, S.J.; Strother, S.C. Optimizing Preprocessing and Analysis Pipelines for Single-Subject fMRI. I. Standard Temporal Motion and Physiological Noise Correction Methods. Hum. Brain Mapp. 2012, 33, 609–627. [Google Scholar] [CrossRef]
- Mikl, M.; Marecek, R.; Hlustík, P.; Pavlicová, M.; Drastich, A.; Chlebus, P.; Brázdil, M.; Krupa, P. Effects of Spatial Smoothing on fMRI Group Inferences. Magn. Reson. Imaging 2008, 26, 490–503. [Google Scholar] [CrossRef]
- Kumar, V.A.; Lee, J.; Liu, H.-L.; Allen, J.W.; Filippi, C.G.; Holodny, A.I.; Hsu, K.; Jain, R.; McAndrews, M.P.; Peck, K.K.; et al. Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy. AJNR Am. J. Neuroradiol. 2024, 45, 139–148. [Google Scholar] [CrossRef]
- Power, J.D.; Barnes, K.A.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Spurious but Systematic Correlations in Functional Connectivity MRI Networks Arise from Subject Motion. Neuroimage 2012, 59, 2142–2154. [Google Scholar] [CrossRef]
- Friston, K.J.; Ashburner, J.; Frith, C.D.; Poline, J.-B.; Heather, J.D.; Frackowiak, R.S.J. Spatial Registration and Normalization of Images. Hum. Brain Mapp. 1995, 3, 165–189. [Google Scholar] [CrossRef]
- Satterthwaite, T.D.; Wolf, D.H.; Loughead, J.; Ruparel, K.; Elliott, M.A.; Hakonarson, H.; Gur, R.C.; Gur, R.E. Impact of In-Scanner Head Motion on Multiple Measures of Functional Connectivity: Relevance for Studies of Neurodevelopment in Youth. Neuroimage 2012, 60, 623–632. [Google Scholar] [CrossRef]
- Power, J.D.; Mitra, A.; Laumann, T.O.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Methods to Detect, Characterize, and Remove Motion Artifact in Resting State fMRI. Neuroimage 2014, 84, 320–341. [Google Scholar] [CrossRef]
- Pruim, R.H.R.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A Robust ICA-Based Strategy for Removing Motion Artifacts from fMRI Data. Neuroimage 2015, 112, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Jiang, T.; Lu, Y.; He, Y.; Tian, L. Regional Homogeneity Approach to fMRI Data Analysis. Neuroimage 2004, 22, 394–400. [Google Scholar] [CrossRef]
- Fox, M.D.; Zhang, D.; Snyder, A.Z.; Raichle, M.E. The Global Signal and Observed Anticorrelated Resting State Brain Networks. J. Neurophysiol. 2009, 101, 3270–3283. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef]
- Glover, G.H.; Li, T.Q.; Ress, D. Image-Based Method for Retrospective Correction of Physiological Motion Effects in fMRI: RETROICOR. Magn. Reson. Med. 2000, 44, 162–167. [Google Scholar] [CrossRef]
- Esteban, O.; Markiewicz, C.J.; Blair, R.W.; Moodie, C.A.; Isik, A.I.; Erramuzpe, A.; Kent, J.D.; Goncalves, M.; DuPre, E.; Snyder, M.; et al. fMRIPrep: A Robust Preprocessing Pipeline for Functional MRI. Nat. Methods 2019, 16, 111–116. [Google Scholar] [CrossRef]
- Gorgolewski, K.J.; Auer, T.; Calhoun, V.D.; Craddock, R.C.; Das, S.; Duff, E.P.; Flandin, G.; Ghosh, S.S.; Glatard, T.; Halchenko, Y.O.; et al. The Brain Imaging Data Structure, a Format for Organizing and Describing Outputs of Neuroimaging Experiments. Sci. Data 2016, 3, 160044. [Google Scholar] [CrossRef]
- Ciric, R.; Wolf, D.H.; Power, J.D.; Roalf, D.R.; Baum, G.L.; Ruparel, K.; Shinohara, R.T.; Elliott, M.A.; Eickhoff, S.B.; Davatzikos, C.; et al. Benchmarking of Participant-Level Confound Regression Strategies for the Control of Motion Artifact in Studies of Functional Connectivity. Neuroimage 2017, 154, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.-K.; Kim, N.; Nam, C.S. Dual Task Effects on Speed and Accuracy During Cognitive and Upper Limb Motor Tasks in Adults With Stroke Hemiparesis. Front. Hum. Neurosci. 2021, 15, 671541. [Google Scholar] [CrossRef]
- Falcó-Roget, J.; Cacciola, A.; Sambataro, F.; Crimi, A. Functional and Structural Reorganization in Brain Tumors: A Machine Learning Approach Using Desynchronized Functional Oscillations. Commun. Biol. 2024, 7, 419. [Google Scholar] [CrossRef]
- Birn, R.M.; Molloy, E.K.; Patriat, R.; Parker, T.; Meier, T.B.; Kirk, G.R.; Nair, V.A.; Meyerand, M.E.; Prabhakaran, V. The Effect of Scan Length on the Reliability of Resting-State fMRI Connectivity Estimates. Neuroimage 2013, 83, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, Z.; Kelly, A.M.C.; Reiss, P.T.; Gee, D.G.; Gotimer, K.; Uddin, L.Q.; Lee, S.H.; Margulies, D.S.; Roy, A.K.; Biswal, B.B.; et al. The Resting Brain: Unconstrained yet Reliable. Cereb. Cortex 2009, 19, 2209–2229. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, H.Y.A.; Omar, A.F.; Radzi, Y.M.; Oglat, A.A.; Akhdar, H.F.; Ewaidat, H.A.; Almahmoud, A.; Yaseen, A.-B.B.; Badarneh, L.A.; Alhamad, O.; et al. Systematic Review of Functional Magnetic Resonance Imaging (fMRI) Applications in the Preoperative Planning and Treatment Assessment of Brain Tumors. Heliyon 2025, 11, e42464. [Google Scholar] [CrossRef]
- Pillai, J.J.; Zacà, D. Comparison of BOLD Cerebrovascular Reactivity Mapping and DSC MR Perfusion Imaging for Prediction of Neurovascular Uncoupling Potential in Brain Tumors. Technol. Cancer Res. Treat. 2012, 11, 361–374. [Google Scholar] [CrossRef]
- Hou, B.L.; Bradbury, M.; Peck, K.K.; Petrovich, N.M.; Gutin, P.H.; Holodny, A.I. Effect of Brain Tumor Neovasculature Defined by rCBV on BOLD fMRI Activation Volume in the Primary Motor Cortex. Neuroimage 2006, 32, 489–497. [Google Scholar] [CrossRef]
- Rosazza, C.; Aquino, D.; D’Incerti, L.; Cordella, R.; Andronache, A.; Zacà, D.; Bruzzone, M.G.; Tringali, G.; Minati, L. Preoperative Mapping of the Sensorimotor Cortex: Comparative Assessment of Task-Based and Resting-State FMRI. PLoS ONE 2014, 9, e98860. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior. Neuron 2007, 56, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T. Neurovascular Factors in Resting-State Functional MRI. Neuroimage 2013, 80, 339–348. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. Practice Parameter for the Performance of Functional Magnetic Resonance Imaging (fMRI) of the Brain; ACR: Reston, VA, USA, 2021. [Google Scholar]
- Moia, S.; Chen, G.; Uruñuela, E.; Stickland, R.C.; Termenon, M.; Caballero-Gaudes, C.; Bright, M.G. Individual Variability in the Relationship Between Physiological and Resting-State fMRI Metrics. bioRxiv 2024, 2024.05.02.592237. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Koc, N.A.; Rakowski, M.; Dębska, A.; Szmyd, B.; Zawadzka, A.; Zaczkowski, K.; Podstawka, M.; Wilmańska, D.; Dobek, A.; Stefańczyk, L.; et al. Theoretical, Technical, and Analytical Foundations of Task-Based and Resting-State Functional Magnetic Resonance Imaging (fMRI)—A Narrative Review. Biomedicines 2026, 14, 333. https://doi.org/10.3390/biomedicines14020333
Koc NA, Rakowski M, Dębska A, Szmyd B, Zawadzka A, Zaczkowski K, Podstawka M, Wilmańska D, Dobek A, Stefańczyk L, et al. Theoretical, Technical, and Analytical Foundations of Task-Based and Resting-State Functional Magnetic Resonance Imaging (fMRI)—A Narrative Review. Biomedicines. 2026; 14(2):333. https://doi.org/10.3390/biomedicines14020333
Chicago/Turabian StyleKoc, Natalia Anna, Maurycy Rakowski, Anna Dębska, Bartosz Szmyd, Agata Zawadzka, Karol Zaczkowski, Małgorzata Podstawka, Dagmara Wilmańska, Adam Dobek, Ludomir Stefańczyk, and et al. 2026. "Theoretical, Technical, and Analytical Foundations of Task-Based and Resting-State Functional Magnetic Resonance Imaging (fMRI)—A Narrative Review" Biomedicines 14, no. 2: 333. https://doi.org/10.3390/biomedicines14020333
APA StyleKoc, N. A., Rakowski, M., Dębska, A., Szmyd, B., Zawadzka, A., Zaczkowski, K., Podstawka, M., Wilmańska, D., Dobek, A., Stefańczyk, L., Jaskólski, D. J., & Wiśniewski, K. (2026). Theoretical, Technical, and Analytical Foundations of Task-Based and Resting-State Functional Magnetic Resonance Imaging (fMRI)—A Narrative Review. Biomedicines, 14(2), 333. https://doi.org/10.3390/biomedicines14020333

