Integrated Biomarker–Volumetric Profiling Defines Neurodegenerative Subtypes and Predicts Neuroaxonal Injury in Multiple Sclerosis Based on Bayesian and Machine Learning Analyses
Abstract
1. Introduction
- -
- Bayesian factor analysis is used to quantify the strength of evidence for correlations, overcoming the dichotomous “significant/insignificant” limitation of p-values and allowing for the interpretation of evidence in favour of alternative and null hypotheses [12].
- -
- Unsupervised machine learning (cluster analysis) is applied to identify data-driven patient endophenotypes based on their combined sNfL and volumetric profiles. This method has proven successful in deconstructing MS heterogeneity into meaningful pathobiological subtypes [13].
- -
- Supervised machine learning (regularised regression and Random Forests) is implemented to build predictive models, identify the most informative volumetric features for sNfL prediction, and capture potential nonlinear relationships, an approach increasingly recognised for its utility in MS neuroimaging [14,15,16].
- -
- Sophisticated statistical integration: This is one of the pioneering studies that combines Bayesian inference, mediation analysis, and unsupervised and supervised machine learning in a unified analytical framework to explore the connection between sNfL and cerebral volumetry. This diverse approach enables us to identify connections, quantify evidence, uncover underlying mechanisms, delineate subgroups, and simultaneously develop predictive models.
- -
- We analysed the transition from association to prediction and classification. While prior research has shown cross-sectional correlations, our study focuses on predicting sNfL levels using volumetric data and on classifying patients into distinct pathobiological subtypes. This approach moves the research from simply identifying relationships to creating sensitive tools that could be clinically valuable for prognosis and patient stratification.
- -
- Data-driven phenotyping through the integration of biomarkers and MRI imaging has led to the identification of subgroups such as “High Neurodegeneration” and “Benign Volumetry.” This approach relies on the seamless integration of fluid biomarkers and structural imaging, resulting in a more biologically relevant subtyping system than those that depend solely on clinical progression or standard MRI. This integration may offer a solution to the challenges posed by the clinical–radiological paradox.
- -
- By employing regularised regression and ensemble methods on a multidimensional matrix of volumetric features, we have identified a concise set of key predictors, specifically global grey matter and ventricular volumes. This finding is crucial for the design of future studies, suggesting that a focused examination of these critical structures may account for a significant portion of the variation in neuroaxonal injury.
2. Materials and Methods
2.1. Study Population and Design
2.2. Clinical and Paraclinical Assessments
2.3. Statistical Analysis Framework
2.3.1. Bayesian Analysis of Correlation
2.3.2. Mediation Examination
- -
- Independent Variable (X): EDSS at time 1;
- -
- Mediator (M): overall grey matter volume;
- -
- Dependent Variable (Y): concentration of sNfL.
2.3.3. Unsupervised Machine Learning (Cluster Analysis)
2.3.4. Rationale for Machine Learning Model Selection
3. Results
3.1. Mediation Analysis of Brain Volumes in the Relationship Between Disability and Neuroaxonal Damage
- -
- Independent Variable (X): EDSS score at time 1 (EDSS T1), an assessment of neurological impairment.
- -
- Dependent Variable (Y): Level of neurofilament light chain (NFL), a biomarker indicating neuroaxonal damage.
- -
- Suggested Mediator (M): Total grey matter volume, an essential measure of brain shrinkage.
- -
- Covariates: Age and gender were incorporated into the model to account for their possible confounding influences. The importance of the indirect effect was evaluated through bootstrapping with 5000 samples, producing a bias-corrected 95% confidence interval (CI).
- -
- Path a (X → M): Elevated EDSS scores showed a significant link to reduced grey matter volume (B = −15.2, p = 0.005).
- -
- Path b (M → Y): A significant correlation was found between reduced grey matter volume and elevated NFL levels, after adjusting for EDSS (B = −0.03, p = 0.001).
- -
- Direct Effect (c′): After adjusting for the mediator (grey matter volume), the direct influence of EDSS on NFL was reduced and became statistically non-significant (B = 0.40, p = 0.08).
- -
- Indirect Effect (a*b): The bootstrapped unstandardised indirect effect measured 0.45, with a 95% CI [0.20, 0.75]. Because the confidence interval excluded zero, the indirect effect was statistically significant.
3.2. Identification of Patient Subgroups via Cluster Analysis
3.3. Machine Learning Analysis for Predicting NFL from Multimodal Volumetric Data
3.3.1. Net Elastic Regression
3.3.2. Random Forest Regression
3.3.3. Model Evaluation
4. Discussion
4.1. Clinical Significance of the Study
4.2. Limitations of the Study
4.3. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barkhof, F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 2002, 15, 239–245. [Google Scholar] [CrossRef]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef] [PubMed]
- Barro, C.; Benkert, P.; Disanto, G.; Tsagkas, C.; Amann, M.; Naegelin, Y.; Leppert, D.; Gobbi, C.; Granziera, C.; Yaldizli, Ö.; et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 2018, 141, 2382–2391. [Google Scholar] [CrossRef]
- Calabrese, M.; Magliozzi, R.; Ciccarelli, O.; Geurts, J.J.G.; Reynolds, R.; Martin, R. Pathological insights from the spectrum of clinical and imaging responses to multiple sclerosis treatments. Brain 2015, 138, 1102–1115. [Google Scholar] [CrossRef]
- Jacobsen, C.; Hagemeier, J.; Myhr, K.M.; Nyland, H.; Lode, K.; Bergsland, N.; Ramasamy, D.P.; Dalaker, T.O.; Larsen, J.P.; Farbu, E.; et al. Brain atrophy and disability progression in multiple sclerosis patients: A 10-year follow-up study. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1109–1115. [Google Scholar] [CrossRef]
- Fisher, E.; Lee, J.C.; Nakamura, K.; Rudick, R.A. Gray matter atrophy in multiple sclerosis: A longitudinal study. Ann. Neurol. 2008, 64, 255–265. [Google Scholar] [CrossRef]
- Eshaghi, A.; Prados, F.; Brownlee, W.J.; Altmann, D.R.; Tur, C.; Cardoso, M.J.; De Angelis, F.; van de Pavert, S.H.; Cawley, N.; De Stefano, N.; et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 2018, 83, 210–222. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef]
- Jakimovski, D.; Zivadinov, R.; Ramanthan, M.; Hagemeier, J.; Weinstock-Guttman, B.; Tomic, D.; Kropshofer, H.; Bittner, S.; Bergsland, N.; Dwyer, M.G.; et al. Serum neurofilament light chain level associations with clinical and MRI outcomes in progressive multiple sclerosis. J. Neurol. 2019, 266, 1766–1775. [Google Scholar] [CrossRef]
- Keysers, C.; Gazzola, V.; Wagenmakers, E.J. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat. Neurosci. 2020, 23, 788–799, Erratum in Nat. Neurosci. 2020, 23, 1453. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Young, A.L.; Wijeratne, P.A.; Prados, F.; Arnold, D.L.; Narayanan, S.; Guttmann, C.R.G.; Barkhof, F.; Alexander, D.C.; Thompson, A.J.; et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat. Commun. 2021, 12, 2078, Erratum in Nat. Commun. 2021, 12, 3169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, J.; Bekelis, K.; Zhang, Z. Machine Learning in Multiple Sclerosis: A Systematic Review of Applications in MRI. Mult. Scler. Relat. Disord. 2021, 52, 102975. [Google Scholar] [CrossRef]
- Yperman, J.; Becker, T.; Valkenborg, D.; Popescu, V.; Hellings, N.; Van Wijmeersch, B.; Peeters, L.M. Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BMC Neurol. 2020, 20, 105. [Google Scholar] [CrossRef]
- Ciubotaru, A.; Smihor, M.I.; Grosu, C.; Alexa, D.; Covali, R.; Anicăi, R.C.; Păvăleanu, I.; Cucu, A.I.; Bobu, A.M.; Ghiciuc, C.M.; et al. Neurodegenerative Biomarkers in Multiple Sclerosis: At the Interface Between Research and Clinical Practice. Diagnostics 2025, 15, 1178. [Google Scholar] [CrossRef]
- Ziemssen, T.; Akgün, K.; Brück, W. Molecular biomarkers in multiple sclerosis. J. Neuroinflamm. 2019, 16, 272. [Google Scholar] [CrossRef]
- Haider, L.; Prados, F.; Chung, K.; Goodkin, O.; Kanber, B.; Sudre, C.; Yiannakas, M.; Samson, R.S.; Mangesius, S.; Thompson, A.J.; et al. Cortical involvement determines impairment 30 years after a clinically isolated syndrome. Brain 2021, 144, 1384–1395. [Google Scholar] [CrossRef]
- Anicăi, R.C.; Ciubotaru, A.; Grosu, C.; Alexa, D.; Covali, R.; Păvăleanu, I.; Cucu, A.I.; Bobu, A.M.; Ghiciuc, C.M.; Leon, M.M.; et al. The Role of MRI Lesions in Identifying Secondary Progressive Multiple Sclerosis: A Comprehensive Review. J. Clin. Med. 2025, 14, 4114. [Google Scholar] [CrossRef]
- Honce, J.M. Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations. Mult. Scler. Int. 2013, 2013, 627870. [Google Scholar] [CrossRef]
- Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet 2018, 391, 1263–1273, Erratum in Lancet 2018, 392, 2170. [Google Scholar] [CrossRef] [PubMed]
- Grosu, C.; Ignat, E.B.; Alexa, D.; Ciubotaru, A.; Leon, M.M.; Maștaleru, A.; Popescu, G.; Cumpăt, C.M.; Cucu, L.E.; Smihor, M.I.; et al. The Role of Nutrition and Physical Activity in Modulating Disease Progression and Quality of Life in Multiple Sclerosis. Nutrients 2025, 17, 2713. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef]
- Chitnis, T.; Magliozzi, R.; Abdelhak, A.; Kuhle, J.; Leppert, D.; Bielekova, B. Blood and CSF biomarkers for multiple sclerosis: Emerging clinical applications. Lancet Neurol. 2025, 24, 1066–1078. [Google Scholar] [CrossRef] [PubMed]
- Ciubotaru, A.; Grosu, C.; Alexa, D.; Covali, R.; Maștaleru, A.; Leon, M.M.; Schreiner, T.G.; Ghiciuc, C.M.; Roman, E.M.; Azoicăi, D.; et al. The Faces of “Too Late”—A Surprisingly Progressive Cohort of “Stable” Relapsing Remitting Multiple Sclerosis Patients. Medicina 2024, 60, 1401. [Google Scholar] [CrossRef]
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; et al. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. 2019, 76, 536–541. [Google Scholar] [CrossRef]
- Jakimovski, D.; Zivadinov, R.; Ramanthan, M.; Hagemeier, J.; Weinstock-Guttman, B.; Tomic, D.; Kropshofer, H.; Fuchs, T.A.; Barro, C.; Leppert, D.; et al. Serum neurofilament light chain level associations with clinical and cognitive performance in multiple sclerosis: A longitudinal retrospective 5-year study. Mult. Scler. 2020, 26, 1670–1681. [Google Scholar] [CrossRef]
- Ontaneda, D.; Fox, R.J.; Chataway, J. Clinical trials in progressive multiple sclerosis: Lessons learned and future perspectives. Lancet Neurol. 2015, 14, 208–223. [Google Scholar] [CrossRef]
- Wottschel, V.; Alexander, D.C.; Kwok, P.P.; Chard, D.; Stromillo, M.; De Stefano, N.; Thompson, A.; Miller, D.; Ciccarelli, O. Predicting outcome in clinically isolated syndrome using machine learning. Neuroimage Clin. 2015, 7, 281–287. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Ganjgahi, H.; Häring, D.A.; Aarden, P.; Graham, G.; Sun, Y.; Gardiner, S.; Su, W.; Berge, C.; Bischof, A.; Fisher, E.; et al. AI-driven reclassification of multiple sclerosis progression. Nat. Med. 2025, 31, 3414–3424. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Huss, A.; Kassubek, J.; Tumani, H.; Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 2018, 8, 14798, Erratum in Sci. Rep. 2019, 9, 8433. [Google Scholar] [CrossRef]
- Gauthier, S.A.; Glanz, B.I.; Mandel, M.; Weiner, H.L. A model for the comprehensive investigation of a chronic autoimmune disease: The multiple sclerosis CLIMB study. Autoimmun. Rev. 2006, 5, 532–536. [Google Scholar] [CrossRef]
- Mowry, E.M.; Bermel, R.A.; Williams, J.R.; Benzinger, T.L.S.; de Moor, C.; Fisher, E.; Hersh, C.M.; Hyland, M.H.; Izbudak, I.; Jones, S.E.; et al. Harnessing Real-World Data to Inform Decision-Making: Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS). Front. Neurol. 2020, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Tur, C.; Lorenzi, M.; Pardini, M.; Piana, M.; Uccelli, A.; Arnold, D.L.; Cree, B.A.C.; Sormani, M.P.; Bovis, F. A data-driven model of disability progression in progressive multiple sclerosis. Brain Commun. 2024, 7, fcae434. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef]
- Andlauer, T.F.M.; Buck, D.; Antony, G.; Bayas, A.; Bechmann, L.; Berthele, A.; Chan, A.; Gasperi, C.; Gold, R.; Graetz, C.; et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci. Adv. 2016, 2, e1501678. [Google Scholar] [CrossRef]
- Comabella, M.; Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 2014, 13, 113–126. [Google Scholar] [CrossRef]
- Uchida, Y.; Nishimaki, K.; Soldan, A.; Pettigrew, C.; Ho, S.G.; Moghekar, A.; Wang, M.C.; Miller, M.I.; Albert, M.; Oishi, K. Change points for dynamic biomarkers in the Alzheimer’s disease pathological cascade: A 30-year cohort study. Alzheimers Dement. 2025, 21, e70544. [Google Scholar] [CrossRef]
| Variable | Mean | Std. Deviation | Minimum | Maximum |
|---|---|---|---|---|
| NFL | 8.96 | 7.05 | 3.35 | 16.7 |
| Age | 39.88 | 12.31 | 18 | 66 |
| EDSS at T0 | 4.01 | 1.76 | 1.0 | 7.5 |
| EDSS at T1 | 4.22 | 1.85 | 1.0 | 7.5 |
| SDMT at T0 | 32.72 | 12.66 | 12 | 65 |
| SDMT at T1 | 26.70 | 12.84 | 8 | 56 |
| Total Grey Matter Volume | 647.64 | 87.88 | 399.7 | 847.9 |
| Right Lateral Ventricle Volume | 12.36 | 7.22 | 1.31 | 34.8 |
| Left Temporal Lobe Percentile | 65.87 | 8.83 | 50.2 | 87.8 |
| Variable | Pearson Correlation (r) | Bayes Factor (BF10) | Evidence Category |
|---|---|---|---|
| Age | 0.423 | 0.046 | Strong for Ha |
| Sex | 0.061 | 8.696 | Strong for H0 |
| Education Level | 0.008 | 9.606 | Strong for H0 |
| EDSS at T0 | 0.338 | 0.362 | Moderate for Ha |
| EDSS at T1 | 0.355 | 0.251 | Strong for Ha |
| SDMT at T0 | −0.285 | 0.969 | Anecdotal for Ha |
| SDMT at T1 | −0.244 | 1.926 | Anecdotal for Ha |
| Left Temporal Lobe Percentile | 0.360 | 0.224 | Strong for Ha |
| Left Frontal Lobe Percentile | −0.244 | 1.836 | Anecdotal for Ha |
| Left Frontal Lobe Volume | −0.270 | 1.234 | Anecdotal for Ha |
| Right Lateral Ventricle Volume | 0.349 | 0.285 | Strong for Ha |
| Hippocampal Volumes | ~−0.1 to −0.3 | >2.0 | Anecdotal to Moderate for H0 |
| Total Grey Matter Volume | −0.449 | 0.022 | Strong for Ha |
| Total Intracranial Volume | −0.026 | 9.443 | Strong for H0 |
| Total White Matter Volume | −0.194 | 3.391 | Moderate for H0 |
| Lesion Load (Volume/Count) | ~−0.05 to 0.22 | >2.5 | Anecdotal to Strong for H0 |
| Pathway | Statistical Evidence | Biological Interpretation |
|---|---|---|
| Main Mediation Pathway EDSS → Grey Matter → NFL | Indirect effect: 0.45 [0.20–0.75] Grey Matter: r = −0.45, BF = 0.022 | Clinical disability leads to grey matter atrophy, which drives neuroaxonal damage |
| Direct Effects Age → NFL | r = 0.42, BF = 0.046 | Ageing independently contributes to axonal injury regardless of brain volume |
| Ventricular Pathway Ventricular Volume → NFL | r = 0.35, BF = 0.285 | Ventricular enlargement (atrophy marker) correlates with increased NFL |
| Cognitive Correlations SDMT → NFL | r = −0.24 to −0.29 | Worse cognitive performance is associated with more serious axonal damage |
| Temporal Lobe Finding Left Temporal → NFL | r = 0.36, BF = 0.224 | Counterintuitive—requires further investigation of regional specificity |
| Parameter | Cluster 1: “High Neurodegeneration” (n = 18) | Cluster 2: “Moderate Injury” (n = 22) | Cluster 3: “Benign Volumetrics” (n = 17) | p-Value |
|---|---|---|---|---|
| Biomarker Profile | ||||
| NFL (pg/mL) | 12.4 ± 3.2 | 7.9 ± 2.1 | 4.8 ± 1.4 | <0.001 |
| Neuroimaging Volumetrics | ||||
| Total Grey Matter Volume (mL) | 489.3 ± 87.2 | 612.4 ± 72.8 | 681.2 ± 65.3 | <0.001 |
| Total White Matter Volume (mL) | 452.1 ± 78.5 | 515.6 ± 68.9 | 575.3 ± 61.4 | <0.001 |
| Right Lateral Ventricle Volume (mL) | 18.7 ± 8.4 | 11.3 ± 5.2 | 8.2 ± 3.9 | <0.001 |
| Left Temporal Lobe Volume (mL) | 28.3 ± 5.1 | 35.6 ± 4.8 | 42.1 ± 4.2 | <0.001 |
| Clinical Characteristics | ||||
| EDSS Score | 5.8 ± 1.3 | 3.8 ± 1.6 | 2.4 ± 1.1 | <0.001 |
| SDMT Score | 21.5 ± 8.3 | 31.2 ± 10.1 | 42.7 ± 11.5 | <0.001 |
| Age (years) | 51.2 ± 9.8 | 39.8 ± 10.2 | 32.4 ± 8.7 | <0.001 |
| Treatment Patterns | ||||
| High-Efficacy Therapies (%) 1 | 33% | 59% | 76% | 0.012 |
| First-Line Therapies (%) | 67% | 41% | 24% | 0.012 |
| Disease Burden | ||||
| Total Lesion Volume (mL) | 25.4 ± 15.2 | 14.8 ± 9.6 | 8.3 ± 6.1 | <0.001 |
| Rank | Predictor | Elastic Net Coefficient | Random Forest Importance | Consensus Score |
|---|---|---|---|---|
| 1 | Total Grey Matter Volume | −0.412 | 0.184 | 1.00 |
| 2 | Right Lateral Ventricle Volume | 0.385 | 0.148 | 0.85 |
| 3 | Age | 0.321 | 0.162 | 0.82 |
| 4 | EDSS at T1 | 0.267 | 0.121 | 0.67 |
| 5 | Left Temporal Lobe Volume | 0.294 | 0.095 | 0.65 |
| 6 | Total White Matter Volume | −0.231 | 0.087 | 0.54 |
| 7 | Cortical Volume | −0.187 | 0.076 | 0.44 |
| Model | R2 (Coefficient of Determination) | MAE (Mean Absolute Error) | MSE (Mean Squared Error) | RMSE (Root Mean Squared Error) |
|---|---|---|---|---|
| Elastic Net | 0.61 | 1.84 | 5.92 | 2.43 |
| Random Forest | 0.65 | 1.71 | 5.25 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ciubotaru, A.; Covali, R.; Grosu, C.; Alexa, D.; Riscanu, L.; Robert-Valentin, B.; Popa, R.; Sargu, G.D.; Popa, C.; Filip, C.; et al. Integrated Biomarker–Volumetric Profiling Defines Neurodegenerative Subtypes and Predicts Neuroaxonal Injury in Multiple Sclerosis Based on Bayesian and Machine Learning Analyses. Biomedicines 2026, 14, 42. https://doi.org/10.3390/biomedicines14010042
Ciubotaru A, Covali R, Grosu C, Alexa D, Riscanu L, Robert-Valentin B, Popa R, Sargu GD, Popa C, Filip C, et al. Integrated Biomarker–Volumetric Profiling Defines Neurodegenerative Subtypes and Predicts Neuroaxonal Injury in Multiple Sclerosis Based on Bayesian and Machine Learning Analyses. Biomedicines. 2026; 14(1):42. https://doi.org/10.3390/biomedicines14010042
Chicago/Turabian StyleCiubotaru, Alin, Roxana Covali, Cristina Grosu, Daniel Alexa, Laura Riscanu, Bîlcu Robert-Valentin, Radu Popa, Gabriela Dumachita Sargu, Cristina Popa, Cristiana Filip, and et al. 2026. "Integrated Biomarker–Volumetric Profiling Defines Neurodegenerative Subtypes and Predicts Neuroaxonal Injury in Multiple Sclerosis Based on Bayesian and Machine Learning Analyses" Biomedicines 14, no. 1: 42. https://doi.org/10.3390/biomedicines14010042
APA StyleCiubotaru, A., Covali, R., Grosu, C., Alexa, D., Riscanu, L., Robert-Valentin, B., Popa, R., Sargu, G. D., Popa, C., Filip, C., Cucu, L.-E., Vamanu, A., Constantinescu, V., & Ignat, E. B. (2026). Integrated Biomarker–Volumetric Profiling Defines Neurodegenerative Subtypes and Predicts Neuroaxonal Injury in Multiple Sclerosis Based on Bayesian and Machine Learning Analyses. Biomedicines, 14(1), 42. https://doi.org/10.3390/biomedicines14010042

