The Current State of Mock Circulatory Loop Applications in Aortic and Cardiovascular Research: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Design
2.2. Objectives
2.3. Literature Sources and Search Strategy
2.4. Inclusion and Exclusion Criteria
2.5. Study Selection
2.6. Data Acquisition and Categorization
2.7. Core Components of Mock Circulatory Loops
2.8. Data Presentation
3. Results
3.1. Study Selection
3.2. Study Characteristics and Publication Trends
3.3. Characteristics of Mock Circulatory Loops
3.3.1. Flow Patterns and Pump Types
3.3.2. Type of Aortic Models
3.3.3. Type and Temperature of Working Fluid
3.3.4. Thoracic and Abdominal Environment
3.3.5. Study Themes
3.3.5.1. Aortic (Bio)mechanical Characteristics
3.3.5.2. Hemodynamics
3.3.5.3. Device Testing
3.3.5.4. Diagnostics—Image Validation
3.3.5.5. Training
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statements
Conflicts of Interest
Abbreviations
| 2D | Two-Dimensional |
| 3D | Three-Dimensional |
| 4D | Four-Dimensional |
| AAA | Abdominal Aortic Aneurysm |
| CO2 | Carbon Dioxide |
| CTA | Computed Tomography Angiography |
| CVS | Cardiovascular System |
| EVAR | Endovascular Aneurysm Repair |
| FBS | Fetal Bovine Serum |
| FORS | Fiber Optic RealShape |
| kDa | Kilodalton |
| MRI | Magnetic Resonance Imaging |
| MCL | Mock Circulatory Loop |
| n | Number (sample size) |
| O2 | Oxygen |
| OAR | Open Arch Replacement |
| PIV | Particle Image Velocimetry |
| PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analyses—Extension for Scoping Reviews |
| PWV | Pulse Wave Velocity |
| SD | Standard Deviation |
| TBAD | Type B Aortic Dissection |
| TEVAR | Thoracic Endovascular Aortic Repair |
| U/mL | Units per Milliliter |
| US | Ultrasound |
| USA | United States of America |
References
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Tewari, V.; Chen, J.; Sawchuk, A.P.; Yu, H. A Comprehensive Review of Mock Circulation Loop Systems for Experimental Hemodynamics of Cardiovascular Diseases. Fluids 2025, 10, 166. [Google Scholar] [CrossRef]
- Zimmermann, J.; Loecher, M.; Kolawole, F.O.; Bäumler, K.; Gifford, K.; Dual, S.A.; Levenston, M.; Marsden, A.L.; Ennis, D.B. On the impact of vessel wall stiffness on quantitative flow dynamics in a synthetic model of the thoracic aorta. Sci. Rep. 2021, 11, 6703. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, J.; Yin, M.; Glaser, K.J.; Xu, L.; Ehman, R.L. Quantification of regional aortic stiffness using MR elastography: A phantom and ex-vivo porcine aorta study. Magn. Reson. Imaging 2016, 34, 91–96. [Google Scholar] [CrossRef]
- Zehtabi, F.; Gangrade, A.; Tseng, K.; Haghniaz, R.; Abbasgholizadeh, R.; Montazerian, H.; Khorsandi, D.; Bahari, J.; Ahari, A.; Mohaghegh, N.; et al. Injectable Shear-Thinning Hydrogels with Sclerosing and Matrix Metalloproteinase Modulatory Properties for the Treatment of Vascular Malformations. Adv. Funct. Mater. 2023, 33, 2305880. [Google Scholar] [CrossRef]
- Xu, L.; Chen, J.; Glaser, K.J.; Yin, M.; Ms, P.J.R.; Ehman, R.L. MR elastography of the human abdominal aorta: A preliminary study. J. Magn. Reson. Imaging 2013, 38, 1549–1553. [Google Scholar] [CrossRef]
- Tsai, T.T.; Schlicht, M.S.; Khanafer, K.; Bull, J.L.; Valassis, D.T.; Williams, D.M.; Berguer, R.; Eagle, K.A. Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aortic dissection. J. Vasc. Surg. 2008, 47, 844–851. [Google Scholar] [CrossRef]
- Timaran, C.H.; Ohki, T.; Veith, F.J.; Lipsitz, E.C.; Gargiulo, N.J.; Rhee, S.J.; Malas, M.B.; Suggs, W.D.; Pacanowski, J.P. Influence of type II endoleak volume on aneurysm wall pressure and distribution in an experimental model. J. Vasc. Surg. 2005, 41, 657–663. [Google Scholar] [CrossRef]
- Peelukhana, S.V.; Wang, Y.; Berwick, Z.; Kratzberg, J.; Krieger, J.; Roeder, B.; Clough, R.E.; Hsiao, A.; Chambers, S.; Kassab, G.S. Role of Pulse Pressure and Geometry of Primary Entry Tear in Acute Type B Dissection Propagation. Ann. Biomed. Eng. 2017, 45, 592–603, Erratum in Ann. Biomed. Eng. 2017, 45, 604. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.J.; Perra, E.; McElhinney, D.B.; Marsden, A.L.; Ennis, D.B.; Dual, S.A. Experiments and Simulations to Assess Exercise-Induced Pressure Drop Across Aortic Coarctations. J. Biomech. Eng. 2025, 147, 071007. [Google Scholar] [CrossRef] [PubMed]
- Moresco, K.P.; Patel, N.; Johnson, M.S.; Trobridge, D.; Bergan, K.A.; Lalka, S.G. Accuracy of CO2 Angiography in Vessel Diameter Assessment: A Comparative Study of CO2 versus Iodinated Contrast Material in an Aortoiliac Flow Model. J. Vasc. Interv. Radiol. 2000, 11, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Meess, K.M.; Izzo, R.L.; Dryjski, M.L.; Curl, R.E.; Harris, L.M.; Springer, M.; Siddiqui, A.H.; Rudin, S.; Ionita, C.N. 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. In Proceedings of the SPIE Medical Imaging 2017, Orlando, FL. USA, 11–16 February 2017; p. 101380P. [Google Scholar]
- Madurska, M.J.; Franklin, C.; Richmond, M.; Adnan, S.M.; Stansby, G.P.; White, J.M.; Morrison, J.J. Improving the safety of resuscitative endovascular balloon occlusion of the aorta—Compliant versus semi-compliant balloon systems. Vascular 2020, 28, 612–618. [Google Scholar] [CrossRef]
- Li, R.X.; Qaqish, W.; Konofagou, E.E. Performance assessment of pulse wave imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo. Artery Res. 2015, 11, 19–28. [Google Scholar] [CrossRef]
- Lan, I.S.; Liu, J.; Yang, W.; Zimmermann, J.; Ennis, D.B.; Marsden, A.L. Validation of the Reduced Unified Continuum Formulation Against In Vitro 4D-Flow MRI. Ann. Biomed. Eng. 2023, 51, 377–393. [Google Scholar] [CrossRef]
- Kratzberg, J.A.; Golzarian, J.; Raghavan, M.L. Role of graft oversizing in the fixation strength of barbed endovascular grafts. J. Vasc. Surg. 2009, 49, 1543–1553. [Google Scholar] [CrossRef]
- Chung, J.W.; Elkins, C.; Sakai, T.; Kato, N.; Vestring, T.; Semba, C.P.; Slonim, S.M.; Dake, M.D. True-Lumen Collapse in Aortic Dissection Part I. Evaluation of Causative Factors in Phantoms with Pulsatile Flow. Radiology 2000, 214, 87–98. [Google Scholar] [CrossRef]
- Chung, J.W.; Elkins, C.; Sakai, T.; Kato, N.; Vestring, T.; Semba, C.P.; Slonim, S.M.; Dake, M.D. True-Lumen Collapse in Aortic Dissection Part II. Evaluation of Treatment Methods in Phantoms with Pulsatile Flow. Radiology 2000, 214, 99–106. [Google Scholar] [CrossRef]
- Blackwood, S.; Mix, D.; Chandra, A.; Dietzek, A.M. A model to demonstrate that endotension is a nonvisualized type I endoleak. J. Vasc. Surg. 2016, 64, 779–787. [Google Scholar] [CrossRef]
- Canchi, S.; Guo, X.; Phillips, M.; Berwick, Z.; Kratzberg, J.; Krieger, J.; Roeder, B.; Haulon, S.; Chambers, S.; Kassab, G.S. Role of Re-entry Tears on the Dynamics of Type B Dissection Flap. Ann. Biomed. Eng. 2018, 46, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Birjiniuk, J.; Timmins, L.H.; Young, M.; Leshnower, B.G.; Oshinski, J.N.; Ku, D.N.; Veeraswamy, R.K. Pulsatile Flow Leads to Intimal Flap Motion and Flow Reversal in an In Vitro Model of Type B Aortic Dissection. Cardiovasc. Eng. Technol. 2017, 8, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Maleckis, K.; Keiser, C.; Jadidi, M.; Anttila, E.; Desyatova, A.; MacTaggart, J.; Kamenskiy, A. Safe balloon inflation parameters for resuscitative endovascular balloon occlusion of the aorta. J. Trauma Acute Care Surgery 2021, 91, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Pasta, S.; Scardulla, F.; Rinaudo, A.; Raffa, G.M.; D’Ancona, G.; Pilato, M.; Scardulla, C. An in vitro phantom study on the role of the bird-beak configuration in endograft infolding in the aortic arch. J. Endovasc. Ther. 2016, 23, 172–181. [Google Scholar] [CrossRef]
- de Beaufort, H.W.; Conti, M.; Kamman, A.V.; Nauta, F.J.; Lanzarone, E.; Moll, F.L.; van Herwaarden, J.A.; Auricchio, F.; Trimarchi, S. Stent-Graft Deployment Increases Aortic Stiffness in an Ex Vivo Porcine Model. Ann. Vasc. Surg. 2017, 43, 302–308. [Google Scholar] [CrossRef]
- Nauta, F.J.H.; de Beaufort, H.W.L.; Conti, M.; Marconi, S.; Kamman, A.V.; Ferrara, A.; van Herwaarden, J.A.; Moll, F.L.; Auricchio, F.; Trimarchi, S. Impact of thoracic endovascular aortic repair on radial strain in an ex vivo porcine model. Eur. J. Cardio-Thorac. Surg. 2017, 51, 783–789, Erratum in Eur. J. Cardiothorac. Surg. 2018, 53, 1299. [Google Scholar]
- de Beaufort, H.W.L.; Coda, M.; Conti, M.; van Bakel, T.M.J.; Nauta, F.J.H.; Lanzarone, E.; Moll, F.L.; van Herwaarden, J.A.; Auricchio, F.; Trimarchi, S. Changes in aortic pulse wave velocity of four thoracic aortic stent grafts in an ex vivo porcine model. PLoS ONE 2017, 12, e0186080. [Google Scholar] [CrossRef]
- Nauta, F.J.; Conti, M.; Marconi, S.; Kamman, A.V.; Alaimo, G.; Morganti, S.; Ferrara, A.; van Herwaarden, J.A.; Moll, F.L.; Auricchio, F.; et al. An experimental investigation of the impact of thoracic endovascular aortic repair on longitudinal strain. Eur. J. Cardio Thoracic Surg. 2016, 50, 955–961. [Google Scholar] [CrossRef]
- Mandigers, T.J.; Conti, M.; Allievi, S.; Dedola, F.; Bissacco, D.; Bianchi, D.; Marconi, S.; Domanin, M.; Van Herwaarden, J.A.; Auricchio, F.; et al. Comparison of Two Generations of Thoracic Aortic Stent Grafts and Their Impact on Aortic Stiffness in an Ex Vivo Porcine Model. EJVES Vasc. Forum 2023, 59, 8–14. [Google Scholar] [CrossRef]
- Mandigers, T.J.; Pascaner, A.F.; Conti, M.; Schembri, M.; Jelic, S.; Favilli, A.; Bissacco, D.; Domanin, M.; van Herwaarden, J.A.; Auricchio, F.; et al. Type III aortic arch angulation increases aortic stiffness: Analysis from an ex vivo porcine model. JTCVS Open 2024, 17, 37–46. [Google Scholar] [CrossRef]
- de Kort, J.F.; Mandigers, T.J.; Pascaner, A.F.; Conti, M.; Schembri, M.; Jelic, S.; Caimi, A.; Bissacco, D.; Domanin, M.; Heijmen, R.H.; et al. Impact of Open Surgical Descending Repair on Aortic Stiffness in an Ex Vivo Porcine Model. Ann. Vasc. Surg. 2025, 112, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.; Conti, M.; Bissacco, D.; Domanin, M.; Trimarchi, S.; Auricchio, F. Impact of thoracic endovascular aortic repair on aortic biomechanics: Integration of in silico and ex vivo analysis using porcine model. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3594. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, E.J.; Peters, M.F.; Nijs, J.; Rutten, M.C.; van de Vosse, F.N.; Lopata, R.G. Assessment of mechanical properties of porcine aortas under physiological loading conditions using vascular elastography. J. Mech. Behav. Biomed. Mater. 2016, 59, 185–196. [Google Scholar] [CrossRef] [PubMed]
- de Hoop, H.; Maas, E.; Muller, J.-W.; Schwab, H.-M.; Lopata, R. 3-D motion tracking and vascular strain imaging using bistatic dual aperture ultrasound acquisitions. Phys. Med. Biol. 2025, 70, 045013. [Google Scholar] [CrossRef]
- de Hoop, H.; Petterson, N.J.; van de Vosse, F.N.; van Sambeek, M.R.H.M.; Schwab, H.M.; Lopata, R.G.P. Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta. IEEE Trans. Med. Imaging. 2020, 39, 3714–3724, Erratum in IEEE Trans. Med. Imaging. 2021, 40, 3968. [Google Scholar] [CrossRef]
- Mirgolbabaee, H.; van de Velde, L.; Geelkerken, R.H.; Versluis, M.; Jebbink, E.G.; Reijnen, M.M.P.J. Ultrasound Particle Image Velocimetry to Investigate Potential Hemodynamic Causes of Limb Thrombosis After Endovascular Aneurysm Repair with the Anaconda Device. J. Endovasc. Ther. 2023, 32, 2223–2235. [Google Scholar] [CrossRef]
- Mirgolbabaee, H.; Nagel, J.R.; Plomp, J.; Ghanbarzadeh-Dagheyan, A.; Simmering, J.A.; Versluis, M.; Reijnen, M.M.P.J.; Groot Jebbink, E. Vascular Flow Phantom of A Cohort-Based Averaged Abdominal Aortic Aneurysm: Design, Fabrication and Characterization. Ann. Biomed. Eng. 2025, 53, 1439–1452. [Google Scholar] [CrossRef]
- Jansen, M.; Khandige, A.; Kobeiter, H.; Vonken, E.J.; Hazenberg, C.; van Herwaarden, J. Three Dimensional Visualisation of Endovascular Guidewires and Catheters Based on Laser Light instead of Fluoroscopy with Fiber Optic RealShape Technology: Preclinical Results. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 135–143. [Google Scholar] [CrossRef]
- Nagel, J.R.; Groot Jebbink, E.; Smorenburg, S.P.M.; Hoksbergen, A.W.J.; Lely, R.J.; Versluis, M.; Reijnen, M.M.P.J. Optimizing the Radiopacity of an Injectable Polymer on Fluoroscopy used for Treatment of Type II Endoleak After Endovascular Aneurysm Repair. Cardiovasc. Eng. Technol. 2025, 16, 377–385. [Google Scholar] [CrossRef]
- Schurink, G.W.H.; Aarts, N.J.M.; Wilde, J.; van Baalen, J.M.; Chuter, T.A.M.; Schultze Kool, L.J.; van Bockel, J.H. Endoleakage after stent-graft treatment of abdominal aneurysm: Implications on pressure and imaging-an in vitro study. J. Vasc. Surg. 1998, 28, 232–241. [Google Scholar] [CrossRef]
- van Disseldorp, E.M.J.; van den Hoven, M.H.M.H.; van de Vosse, F.N.; van Sambeek, M.R.H.M.; Lopata, R.G.P. Reproducibility assessment of ultrasound-based aortic stiffness quantification and verification using Bi-axial tensile testing. J. Mech. Behav. Biomed. Mater. 2020, 103, 103571. [Google Scholar] [CrossRef] [PubMed]
- Agrafiotis, E.; Mayer, C.; Grabenwöger, M.; Zimpfer, D.; Regitnig, P.; Mächler, H.; Holzapfel, G.A. Global and local stiffening of ex vivo-perfused stented human thoracic aortas: A mock circulation study. Acta Biomater. 2023, 161, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Dziodzio, T.; Juraszek, A.; Reineke, D.; Jenni, H.; Zermatten, E.; Zimpfer, D.; Stoiber, M.; Scheikl, V.; Schima, H.; Grimm, M.; et al. Experimental acute type B aortic dissection: Different sites of primary entry tears cause different ways of propagation. Ann. Thorac. Surg. 2011, 91, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Hauck, S.R.; Kupferthaler, A.; Stelzmüller, M.; Eilenberg, W.; Ehrlich, M.; Neumayer, C.; Wolf, F.; Loewe, C.; Funovics, M.A. Endovascular Stent-Graft Repair of the Ascending Aorta: Assessment of a Specific Novel Stent-Graft Design in Phantom, Cadaveric, and Clinical Application. Cardiovasc. Intervent. Radiol. 2021, 44, 1448–1455. [Google Scholar] [CrossRef]
- Jarman, J.; Navarro, D.; Ticar, J.; Tosto, G.; Dittrich, M.; Santer, D.; Radloff, J.; Mora, B.; Moore, M.; Czerny, M.; et al. Evaluation of different indices to measure elastic properties of the aorta in a pulsatile mock circulation loop. Eur. J. Cardio Thorac. Surg. 2025, 67, ezaf073. [Google Scholar] [CrossRef]
- Yusefi, M.; Agrafiotis, E.; Regitnig, P.; Laufer, G.; Sommer, G.; Holzapfel, G.A.; Mächler, H. TEVAR versus open aortic arch replacement in ex vivo perfused human thoracic aortas. Acta Biomater. 2025, 192, 140–150. [Google Scholar] [CrossRef]
- Zimpfer, D.; Schima, H.; Czerny, M.; Kasimir, M.-T.; Sandner, S.; Seebacher, G.; Losert, U.; Simon, P.; Grimm, M.; Wolner, E.; et al. Experimental Stent-Graft Treatment of Ascending Aortic Dissection. Ann. Thorac. Surg. 2008, 85, 470–473. [Google Scholar] [CrossRef]
- Amabili, M.; Balasubramanian, P.; Ferrari, G.; Franchini, G.; Giovanniello, F.; Tubaldi, E. Identification of viscoelastic properties of Dacron aortic grafts subjected to physiological pulsatile flow. J. Mech. Behav. Biomed. Mater. 2020, 110, 103804. [Google Scholar] [CrossRef]
- Amabili, M.; Balasubramanian, P.; Bozzo, I.; Breslavsky, I.D.; Ferrari, G.; Franchini, G.; Giovanniello, F.; Pogue, C. Nonlinear Dynamics of Human Aortas for Material Characterization. Phys. Rev. X 2020, 10, 011015. [Google Scholar] [CrossRef]
- Ferrari, G.; Balasubramanian, P.; Tubaldi, E.; Giovanniello, F.; Amabili, M. Experiments on dynamic behaviour of a Dacron aortic graft in a mock circulatory loop. J. Biomech. 2019, 86, 132–140. [Google Scholar] [CrossRef]
- Franchini, G.; Giovanniello, F.; Amabili, M. Viscoelasticity of human descending thoracic aorta in a mock circulatory loop. J. Mech. Behav. Biomed. Mater. 2022, 130, 105205. [Google Scholar] [CrossRef] [PubMed]
- Cameron, K.; El Hassan, M.; Sabbagh, R.; Freed, D.H.; Nobes, D.S. Experimental investigation into the effect of compliance of a mock aorta on cardiac performance. PLoS ONE 2020, 15, e0239604. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chayer, B.; Destrempes, F.; Toumoux, F.; Cloutier, G. Stiffness Evaluation of Aortic Aneurysms Using an Ultrafast Principal Strain Estimator: In Vitro Validation. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Canaud, L.; Alric, P.; Laurent, M.; Baum, T.-P.; Branchereau, P.; Marty-Ané, C.H.; Berthet, J.P. Proximal fixation of thoracic stent-grafts as a function of oversizing and increasing aortic arch angulation in human cadaveric aortas. J. Endovasc. Ther. 2008, 15, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Cosset, B.; Sigovan, M.; Boccalini, S.; Farhat, F.; Douek, P.; Boussel, L.; Si-Mohamed, S.A. Bicolor K-edge spectral photon-counting CT imaging for the diagnosis of thoracic endoleaks: A dynamic phantom study. Diagn. Interv. Imaging 2023, 104, 235–242. [Google Scholar] [CrossRef]
- Faure, E.M.; Canaud, L.; Cathala, P.; Serres, I.; Marty-Ané, C.; Alric, P. Human ex-vivo model of Stanford type B aortic dissection. J. Vasc. Surg. 2014, 60, 767–775. [Google Scholar] [CrossRef]
- McCarthy, C.; Kanterman, I.; Trauzettel, F.; Jaeger, H.A.; Goetz, A.-A.; Colvard, B.; Swanstrom, L.; Cantillon-Murphy, P. Automated Balloon Control in Resuscitative Endovascular Balloon Occlusion of the Aorta. IEEE Trans. Biomed. Eng. 2019, 66, 1723–1729. [Google Scholar] [CrossRef]
- Moravia, A.; Simoëns, S.; El Hajem, M.; Bou-Saïd, B.; Menut, M.; Kulisa, P.; Lermusiaux, P.; Della-Schiava, N. Particle Image Velocimetry to Evaluate Pulse Wave Velocity in Aorta Phantom with the lnD–U Method. Cardiovasc. Eng. Technol. 2023, 14, 141–151. [Google Scholar] [CrossRef]
- Perrot, V.; Meier, S.; Bel-Brunon, A.; Berre, H.W.-L.; Bou-Saïd, B.; Chaudet, P.; Detti, V.; Vray, D.; Liebgott, H. Biofidelic Abdominal Aorta Phantom: Cross-Over Preliminary Study Using UltraSound and Digital Image Stereo-Correlation. IRBM 2017, 38, 238–244. [Google Scholar] [CrossRef]
- Boese, J.M.; Bock, M.; O Schoenberg, S.; Schad, L.R. Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. Phys. Med. Biol. 2000, 45, 1703–1713. [Google Scholar] [CrossRef]
- Büsen, M.; Arenz, C.; Neidlin, M.; Liao, S.; Schmitz-Rode, T.; Steinseifer, U.; Sonntag, S.J. Development of an In Vitro PIV Setup for Preliminary Investigation of the Effects of Aortic Compliance on Flow Patterns and Hemodynamics. Cardiovasc. Eng. Technol. 2017, 8, 368–377. [Google Scholar] [CrossRef]
- Mohl, L.; Karl, R.; Hagedorn, M.N.; Runz, A.; Skornitzke, S.; Toelle, M.; Bergt, C.S.; Hatzl, J.; Uhl, C.; Böckler, D.; et al. Simulation of thoracic endovascular aortic repair in a perfused patient-specific model of type B aortic dissection. Int. J. Comput. Assist. Radiol. Surg. 2025, 20, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Rengier, F.; Delles, M.; Unterhinninghofen, R.; Ley, S.; Partovi, S.; Dillmann, R.; Kauczor, H.U.; von Tengg-Kobligk, H. Impact of an Aortic Nitinol Stent Graft on Flow Measurements by Time-resolved Three-dimensional Velocity-encoded MRI. Acad. Radiol. 2012, 19, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Schellinger, I.N.; Naumann, J.; Hoffmann, A.; Barnard, S.-J.; Düsing, S.; Wagenhäuser, M.U.; Haunschild, J.; Scheinert, D.; Hasenfuß, G.; Etz, C.D.; et al. Abdominal Aortic Endograft Implantation Immediately Induces Vascular Stiffness Gradients That May Promote Adverse Aortic Neck Dilatation: Results of A Porcine Ex Vivo Study. J. Endovasc. Ther. 2025, 32, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Sieren, M.M.; Schareck, C.; Kaschwich, M.; Horn, M.; Matysiak, F.; Stahlberg, E.; Wegner, F.; Oechtering, T.H.; Barkhausen, J.; Goltz, J. Accuracy of registration techniques and vascular imaging modalities in fusion imaging for aortic endovascular interventions: A phantom study. CVIR Endovasc. 2021, 4, 51. [Google Scholar] [CrossRef]
- Desai, M.; Ahmed, M.; Darbyshire, A.; You, Z.; Hamilton, G.; Seifalian, A.M. An aortic model for the physiological assessment of endovascular stent-grafts. Ann. Vasc. Surg. 2011, 25, 530–537. [Google Scholar] [CrossRef]
- Qing, K.-X.; Chan, Y.-C.; Ting, A.; Cheng, S. Persistent Intraluminal Pressure after Endovascular Stent Grafting for Type B Aortic Dissection. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 656–663. [Google Scholar] [CrossRef]
- Chen, D.; Liang, S.; Li, Z.; Mei, Y.; Dong, H.; Ma, Y.; Zhao, J.; Xu, S.; Zheng, J.; Xiong, J. A Mock Circulation Loop for In Vitro Hemodynamic Evaluation of Aorta: Application in Aortic Dissection. J. Endovasc. Ther. 2022, 29, 132–142. [Google Scholar] [CrossRef]
- Morris, L.; Stefanov, F.; McGloughlin, T. Stent graft performance in the treatment of abdominal aortic aneurysms: The influence of compliance and geometry. J. Biomech. 2013, 46, 383–395. [Google Scholar] [CrossRef]
- Morris, L.; Tierney, P.; Hynes, N.; Sultan, S. An in vitro Assessment of the Haemodynamic Features Occurring Within the True and False Lumens Separated by a Dissection Flap for a Patient-Specific Type B Aortic Dissection. Front. Cardiovasc. Med. 2022, 9, 797829. [Google Scholar] [CrossRef]
- Morris, L.; Stefanov, F.; Hynes, N.; Diethrich, E.B.; Sultan, S. An Experimental Evaluation of Device/Arterial Wall Compliance Mismatch for Four Stent-Graft Devices and a Multi-layer Flow Modulator Device for the Treatment of Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 44–55. [Google Scholar] [CrossRef]
- Wen, C.-Y.; Yang, A.-S.; Tseng, L.-Y.; Chai, J.-W. Investigation of pulsatile flowfield in healthy thoracic aorta models. Ann. Biomed. Eng. 2010, 38, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Gaddum, N.R.; Schaeffter, T.; Bührer, M.; Rutten, M.; Smith, L.; Chowienczyk, P.J.; Beerbaum, P.B. Beat-to-beat variation in pulse wave velocity during breathing maneuvers. Magn. Reson. Med. 2014, 72, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.A.; Cowan, B.R.; Liu, Y.; Lin, A.C.W.; Nielsen, P.M.F.; Taberner, A.J.; Stewart, R.A.; Lam, H.I.; Young, A.A. Real-time aortic pulse wave velocity measurement during exercise stress testing. J. Cardiovasc. Magn. Reson. 2015, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Saida, T.; Mori, K.; Yabe, H.; Shindo, M.; Nasu, K.; Shiigai, M.; Takahashi, H.; Minami, M. Noninvasive visualization of endoleaks after endovascular aortic aneurysm repair through unenhanced MRI with motion-sensitized driven equilibrium preparation: Phantom experiments. J. Magn. Reson. Imaging 2013, 38, 714–721. [Google Scholar] [CrossRef]
- Ene, F.; Gachon, C.; Delassus, P.; Carroll, R.; Stefanov, F.; O’Flynn, P.; Morris, L. In vitro evaluation of the effects of intraluminal thrombus on abdominal aortic aneurysm wall dynamics. Med. Eng. Phys. 2011, 33, 957–966. [Google Scholar] [CrossRef]
- Legerer, C.; Stevens, M.; Vazquez, G.; Müller, T.; Ferrington, L. An experimental evaluation of a concept to improve conventional aortic prostheses. J. Biomech. 2020, 112, 110010. [Google Scholar] [CrossRef]
- Rudenick, P.A.; Bijnens, B.H.; García-Dorado, D.; Evangelista, A. An in vitro phantom study on the influence of tear size and configuration on the hemodynamics of the lumina in chronic type B aortic dissections. J. Vasc. Surg. 2013, 57, 464–474.e5. [Google Scholar] [CrossRef]
- Ong, C.W.; Xiong, F.; Kabinejadian, F.; Kumar, G.P.; Cui, F.; Chen, G.; Ho, P.; Leo, H. Hemodynamic analysis of a novel stent graft design with slit perforations in thoracic aortic aneurysm. J. Biomech. 2019, 85, 210–217. [Google Scholar] [CrossRef]
- Williamson, P.N.; Docherty, P.D.; Yazdi, S.G.; Khanafer, A.; Kabaliuk, N.; Jermy, M. PIV Analysis of Haemodynamics Distal to the Frozen Elephant Trunk Stent Surrogate. Cardiovasc. Eng. Technol. 2021, 12, 373–386. [Google Scholar] [CrossRef]
- Yazdi, S.G.; Docherty, P.D.; Williamson, P.N.; Jermy, M.; Kabaliuk, N.; Khanafer, A.; Geoghegan, P.H. In vitro pulsatile flow study in compliant and rigid ascending aorta phantoms by stereo particle image velocimetry. Med. Eng. Phys. 2021, 96, 81–90. [Google Scholar] [CrossRef]
- Steinlauf, S.; Shenberger, S.H.; Halak, M.; Liberzon, A.; Avrahami, I. Aortic arch aneurysm repair—Unsteady hemodynamics and perfusion at different heart rates. J. Biomech. 2021, 121, 110351. [Google Scholar] [CrossRef]
- Riga, C.V.; Bicknell, C.D.; Hamady, M.S.; Cheshire, N.J.W. Evaluation of robotic endovascular catheters for arch vessel cannulation. J. Vasc. Surg. 2011, 54, 799–809. [Google Scholar] [CrossRef]
- Riga, C.V.; Cheshire, N.J.W.; Hamady, M.S.; Bicknell, C.D. The role of robotic endovascular catheters in fenestrated stent grafting. J. Vasc. Surg. 2010, 51, 810–820. [Google Scholar] [CrossRef]
- Sidhu, R.; Weir-McCall, J.; Cochennec, F.; Riga, C.; DiMarco, A.; Bicknell, C.D. Evaluation of an electromagnetic 3D navigation system to facilitate endovascular tasks: A feasibility study. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 22–29. [Google Scholar] [CrossRef]
- Urbina, J.; Sotelo, J.A.; Springmüller, D.; Montalba, C.; Letelier, K.; Tejos, C.; Irarrázaval, P.; Andia, M.E.; Razavi, R.; Valverde, I.; et al. Realistic aortic phantom to study hemodynamics using MRI and cardiac catheterization in normal and aortic coarctation conditions. J. Magn. Reson. Imaging 2016, 44, 683–697. [Google Scholar] [CrossRef]
- Potthast, S.; Bongartz, G.M.; Huegli, R.; Schulte, A.-C.; Schwarz, J.G.; Aschwanden, M.; Bilecen, D. Intraarterial contrast-enhanced MR aortography with and without parallel acquisition technique in patients with peripheral arterial occlusive disease. Am. J. Roentgenol. 2007, 188, 823–829. [Google Scholar] [CrossRef]
- Bonanni, M.; Russo, G.; De Siati, M.; Tomao, F.; Massaro, G.; Benedetto, D.; Longoni, M.; Matteucci, A.; Maffi, V.; Mariano, E.G.; et al. Holographic mixed reality for planning transcatheter aortic valve replacement. Int. J. Cardiol. 2024, 412, 132330. [Google Scholar] [CrossRef] [PubMed]



| Theme | n | Subcategory | n | Condition | n |
|---|---|---|---|---|---|
| (Bio)mechanical Aortic Characteristics | 25 | Intervention | 13 | ||
| No intervention | 12 | Physiologic | 11 | ||
| Pathologic | 1 | ||||
| Hemodynamics | 23 | Intervention | 10 | – | |
| No intervention | 13 | Physiologic | 2 | ||
| Pathologic | 11 | ||||
| Products/Devices | 22 | Surgical | 11 | ||
| Radiological | 6 | ||||
| Aortic Phantoms | 5 | ||||
| Diagnostics | 13 | ||||
| Training | 1 |
| Characteristics | n | ||
|---|---|---|---|
| Flow Pattern | Continuous | 6 | |
| Pulsatile | 75 | ||
| Pulsatile and (quasi)static | 2 | ||
| Unknown | 1 | ||
| Pump type | Centrifugal | 4 | |
| Continuous + valve | 1 | ||
| Diaphragm/sac-type | 8 | ||
| Gear | 6 | ||
| ICS | 5 | ||
| Piston | 43 | ||
| Roller | 3 | ||
| Unknown | 14 | ||
| Aorta Type | Biomaterial | Canine | 1 |
| Human cadaveric | 7 | ||
| Porcine | 20 | ||
| Porcine and Ovine | 1 | ||
| Synthetic | 52 | ||
| Combination | Bovine and synthetic phantom | 1 | |
| Porcine and synthetic phantom | 2 | ||
| Working Fluid | Anti-coagulated blood | 1 | |
| Blood mimicking fluid | 4 | ||
| Glycerol/glycerin | 33 | ||
| Gelofusine | 1 | ||
| Starch solution | 1 | ||
| Saline buffered | 14 | ||
| Water based | 22 | ||
| Unknown | 8 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Osinga, F.E.N.; Hasami, N.A.; de Kort, J.F.; Maris, E.-L.; Domanin, M.; Schembri, M.; Caimi, A.; Conti, M.; Hazenberg, C.E.V.B.; Auricchio, F.; et al. The Current State of Mock Circulatory Loop Applications in Aortic and Cardiovascular Research: A Scoping Review. Biomedicines 2026, 14, 28. https://doi.org/10.3390/biomedicines14010028
Osinga FEN, Hasami NA, de Kort JF, Maris E-L, Domanin M, Schembri M, Caimi A, Conti M, Hazenberg CEVB, Auricchio F, et al. The Current State of Mock Circulatory Loop Applications in Aortic and Cardiovascular Research: A Scoping Review. Biomedicines. 2026; 14(1):28. https://doi.org/10.3390/biomedicines14010028
Chicago/Turabian StyleOsinga, Felix E. N., Nesar A. Hasami, Jasper F. de Kort, Emma-Lena Maris, Maurizio Domanin, Martina Schembri, Alessandro Caimi, Michele Conti, Constantijn E. V. B. Hazenberg, Ferdinando Auricchio, and et al. 2026. "The Current State of Mock Circulatory Loop Applications in Aortic and Cardiovascular Research: A Scoping Review" Biomedicines 14, no. 1: 28. https://doi.org/10.3390/biomedicines14010028
APA StyleOsinga, F. E. N., Hasami, N. A., de Kort, J. F., Maris, E.-L., Domanin, M., Schembri, M., Caimi, A., Conti, M., Hazenberg, C. E. V. B., Auricchio, F., de Bruin, J. L., van Herwaarden, J. A., & Trimarchi, S. (2026). The Current State of Mock Circulatory Loop Applications in Aortic and Cardiovascular Research: A Scoping Review. Biomedicines, 14(1), 28. https://doi.org/10.3390/biomedicines14010028

