ABCA1, ADIPOQ, APOE, FSTL4, and KCNQ1 Gene DNA Methylation Correlates with Lipid Profiles in Mexican Populations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Gene Selection and Primer Design
2.3. Methylation Analysis
2.4. Sequencing Data and Bioinformatic Analyses
2.5. Statistical Analyses
3. Results
3.1. Clinical Data of Participants
3.2. DNA Methylation and Correlation with Clinical Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, M.J.; Chin, S.L.; Rangarajan, S.; Xavier, D.; Liu, L.; Zhang, H.; Rao-Melacini, P.; Zhang, X.; Pais, P.; Agapay, S.; et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. Lancet 2016, 388, 761–775. [Google Scholar] [CrossRef]
- Tzoulaki, I.; Elliott, P.; Kontis, V.; Ezzati, M. Worldwide Exposures to Cardiovascular Risk Factors and Associated Health Effects: Current Knowledge and Data Gaps. Circulation 2016, 133, 2314–2333. [Google Scholar] [CrossRef]
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef]
- Mendoza-Caamal, E.; Barajas-Olmos, F.; García-Ortiz, H.; Cicerón-Arellano, I.; Martínez-Hernández, A.; Cordova, E.J.; Esparza-Aguilar, M.; Contreras-Cubas, C.; Centeno-Cruz, F.; Cid-Soto, M.Á.; et al. Metabolic Syndrome in Indigenous Communities in Mexico: A Descriptive and Cross-Sectional Study. BMC Public Health 2020, 20, 339. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.D.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef]
- Yamada, Y.; Kato, K.; Oguri, M.; Horibe, H.; Fujimaki, T.; Yasukochi, Y.; Takeuchi, I.; Sakuma, J. Identification of 12 Novel Loci That Confer Susceptibility to Early-Onset Dyslipidemia. Int. J. Mol. Med. 2018, 43, 57–82. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Molina, M.T.; Aguilar-Salinas, C.A.; Rodríguez-Cruz, M.; Riaño, D.; Villalobos-Comparan, M.; Coral-Vazquez, R.; Menjivar, M.; Yescas-Gomez, P.; Königsoerg-Fainstein, M.; Romero-Hidalgo, S.; et al. The ATP-binding cassette transporter A1 R230C variant affects HDL cholesterol levels and BMI in the Mexican population: Association with obesity and obesity-related comorbidities. Diabetes 2007, 56, 1881–1887. [Google Scholar] [CrossRef]
- Kuivenhoven, J.A.; Hegele, R.A. Mining the genome for lipid genes. Biochim. Biophys Acta 2014, 1842, 1993–2009. [Google Scholar] [CrossRef] [PubMed]
- Proust, C.; Empana, J.P.; Boutouyrie, P.; Alivon, M.; Challande, P.; Danchin, N.; Escriou, G.; Esslinger, U.; Laurent, S.; Li, Z.; et al. Contribution of Rare and Common Genetic Variants to Plasma Lipid Levels and Carotid Stiffness and Geometry: A Substudy of the Paris Prospective Study 3. Circ. Cardiovasc. Genet. 2015, 8, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.W.; Thalamuthu, A.; Braidy, N.; Mather, K.A.; Liu, Y.; Ciobanu, L.; Baune, B.T.; Armstrong, N.J.; Kwok, J.; Schofield, P.; et al. Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins. eLife 2020, 9, e58954. [Google Scholar] [CrossRef]
- Huerta-Chagoya, A.; Moreno-Macías, H.; Sevilla-González, M.; Rodríguez-Guillén, R.; Ordóñez-Sánchez, M.L.; Gómez-Velasco, D.; Muñóz-Hernández, L.; Segura-Kato, Y.; Arellano-Campos, O.; Cruz-Bautista, I.; et al. Contribution of Known Genetic Risk Variants to Dyslipidemias and Type 2 Diabetes in Mexico: A Population-Based Nationwide Study. Genes 2020, 11, 114. [Google Scholar] [CrossRef]
- Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef]
- Barajas-Olmos, F.; Centeno-Cruz, F.; Zerrweck, C.; Imaz-Rosshandler, I.; Martínez-Hernández, A.; Cordova, E.J.; Rangel-Escareño, C.; Gálvez, F.; Castillo, A.; Maydón, H.; et al. Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC Med. Genet. 2018, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Baca, P.; Barajas-Olmos, F.; Mirzaeicheshmeh, E.; Zerrweck, C.; Guilbert, L.; Sánchez, E.C.; Flores-Huacuja, M.; Villafán, R.; Martínez-Hernández, A.; García-Ortiz, H.; et al. DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr. Diabetes 2022, 12, 50. [Google Scholar] [CrossRef]
- Sánchez, E.C.; Barajas-Olmos, F.; Baca, P.; Zerrweck, C.; Guilbert, L.; Martínez-Hernández, A.; Centeno, F.; Orozco, L. DNA Methylation Remodeling after Bariatric Surgery Correlates with Clinical Parameters. Adv. Biol. 2023, 7, e2300001. [Google Scholar] [CrossRef] [PubMed]
- Guay, S.P.; Brisson, D.; Munger, J.; Lamarche, B.; Gaudet, D.; Bouchard, L. ABCA1 gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics 2012, 7, 464–472. [Google Scholar] [CrossRef]
- Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013, 4, 439–452. [Google Scholar] [CrossRef]
- DiTroia, S.P.; Percharde, M.; Guerquin, M.J.; Wall, E.; Collignon, E.; Ebata, K.T.; Mesh, K.; Mahesula, S.; Agathocleous, M.; Laird, D.J.; et al. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature 2019, 573, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cubas, C.; Sánchez-Hernández, B.E.; García-Ortiz, H.; Martínez-Hernández, A.; Barajas-Olmos, F.; Cid, M.; Mendoza-Caamal, E.C.; Centeno-Cruz, F.; Ortiz-Cruz, G.; Jiménez-López, J.C.; et al. Heterogenous Distribution of MTHFR Gene Variants among Mestizos and Diverse Amerindian Groups from Mexico. PLoS ONE 2016, 11, e0163248. [Google Scholar] [CrossRef]
- Li, L.C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.C.; Tang, Y.Y.; Zhang, P.; Wan, W.; Yao, F.; He, P.P.; Xie, W.; Mo, Z.C.; Shi, J.F.; Wu, J.F.; et al. Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis. PLoS ONE 2016, 11, e0157265. [Google Scholar] [CrossRef]
- An, F.; Liu, C.; Wang, X.; Li, T.; Fu, H.; Bao, B.; Cong, H.; Zhao, J. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc. Disord. 2021, 21, 78. [Google Scholar] [CrossRef] [PubMed]
- Miroshnikova, V.V.; Panteleeva, A.A.; Pobozheva, I.A.; Razgildina, N.D.; Polyakova, E.A.; Markov, A.V.; Belyaeva, O.D.; Berkovich, O.A.; Baranova, E.I.; Nazarenko, M.S.; et al. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc. Disord. 2021, 21, 566. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Zhang, D.; Cai, Q.; Fan, J.; Venners, S.A.; Jiang, S.; Jiang, S.; Li, J.; Xu, X. The Effect of ABCA1 Gene DNA Methylation on Blood Pressure Levels in a Chinese Hyperlipidemic Population. J. Hum. Hypertens. 2021, 35, 1139–1148. [Google Scholar] [CrossRef]
- Dias, S.; Adam, S.; Abrahams, Y.; Rheeder, P.; Pheiffer, C. Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection. PLoS ONE 2021, 16, e0248694. [Google Scholar] [CrossRef]
- Cierzniak, A.; Pawelka, D.; Kaliszewski, K.; Rudnicki, J.; Dobosz, T.; Malodobra-Mazur, M. DNA methylation in adipocytes from visceral and subcutaneous adipose tissue influences insulin-signaling gene expression in obese individuals. Int. J. Obes. 2021, 45, 650–658. [Google Scholar] [CrossRef]
- Ereqat, S.; Cauchi, S.; Eweidat, K.; Elqadi, M.; Ghatass, M.; Sabarneh, A.; Nasereddin, A. Association of DNA methylation and genetic variations of the APOE gene with the risk of diabetic dyslipidemia. Biomed. Rep. 2022, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Relloso, A.; Makhani, K.; Riffo-Campos, A.L.; Tellez-Plaza, M.; Klein, K.O.; Subedi, P.; Zhao, J.; Moon, K.A.; Bozack, A.K.; Haack, K.; et al. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ. Res. 2022, 131, e51–e69. [Google Scholar] [CrossRef]
- Horak, M.; Fairweather, D.; Kokkonen, P.; Bednar, D.; Bienertova-Vasku, J. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail. Rev. 2022, 27, 2251–2265. [Google Scholar] [CrossRef]
- Rathjens, F.S.; Blenkle, A.; Iyer, L.M.; Renger, A.; Syeda, F.; Noack, C.; Jungmann, A.; Dewenter, M.; Toischer, K.; El-Armouche, A.; et al. Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control. Cardiovasc. Res. 2021, 117, 1908–1922. [Google Scholar] [CrossRef]
- Sun, Q.; Song, K.; Shen, X.; Cai, Y. The association between KCNQ1 gene polymorphism and type 2 diabetes risk: A meta-analysis. PLoS ONE 2012, 7, e48578. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Miao, K.; Zhao, J.; Liu, L.; Cui, G.; Chen, C.; Wang, D.W.; Ding, H. Common variants in KCNQ1 confer increased risk of type 2 diabetes and contribute to the diabetic epidemic in East Asians: A replication and meta-analysis. Ann. Hum. Genet. 2013, 77, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Úriz, A.M.; Milagro, F.I.; Mansego, M.L.; Cordero, P.; Abete, I.; De Arce, A.; Goyenechea, E.; Blázquez, V.; Martínez-Zabaleta, M.; Martínez, J.A.; et al. Obesity and ischemic stroke modulate the methylation levels of KCNQ1 in white blood cells. Hum. Mol. Genet. 2015, 24, 1432–1440. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, Y.; Qin, P.; Zhao, Y.; Liu, D.; Zhou, Q.; Tian, G.; Li, Q.; Guo, C.; Wu, X.; et al. Integrated analysis of probability of type 2 diabetes mellitus with polymorphisms and methylation of KCNQ1 gene: A nested case-control study. J. Diabetes 2021, 13, 975–986. [Google Scholar] [CrossRef]
Region | |||
---|---|---|---|
North | South | ||
Age (years) | 42.9 ± 4.9 | 42.1 ± 4.2 | |
Triglycerides (mg/dL) | 212.2 ± 162.8 | 232.5 ± 115.7 | p = 0.59 |
Triglycerides ≥ 150 mg/dL) | 59% | 76% | |
Total cholesterol (mg/dL) | 198.7 ± 33.2 | 176.9 ± 28.1 | p = 0.004 |
Total cholesterol ≥ 200 mg/dL | 50% | 21% | |
LDLc (mg/dL) | 122.3 ± 21.9 | 100.6 ± 29.3 | p = 0.001 |
LDLc ≥ 130 mg/dL | 27% | 19% | |
HDLc (mg/dL) | 42.8 ± 13.3 | 33.8 ± 9.7 | p = 0.007 |
HDL < 40 mg/dL | 41% | 66% | |
BMI (kg/m2) | 27.0 ± 4.4 | 26.7 ± 3.8 | p = 0.775 |
Overweight | 41% | 41% | |
Obesity | 27% | 24% | |
Body fat (%) | 40.1 ± 8.9 | 34.6 ± 9.6 | p = 0.021 |
Gene | CpG Location | Gene Region | BMI | BF | TC | TG | LDLc | HDLc |
---|---|---|---|---|---|---|---|---|
ABCA1 | Chr9: 104903713 | 5′UTR | 0.015 | 0.2 | 0.7 | 0.2 | 0.4 | 0.1 |
Chr9:104903757 | 5′UTR | 0.4 | 0.5 | 0.1 | 0.03 | 0.8 | 0.9 | |
ADIPOQ | Chr3: 186854335 | CDS | 0.3 | 0.9 | 0.5 | 0.8 | 0.03 | 0.9 |
Chr3: 186854209 | CDS | 0.1 | 0.7 | 0.1 | 0.7 | 0.005 | 0.4 | |
Chr3: 186854227 | CDS | 0.7 | 0.2 | 0.3 | 0.3 | 0.04 | 0.2 | |
APOE | Chr19: 44909101 | CDS | 0.04 | 0.7 | 0.9 | 0.2 | 0.1 | 0.7 |
Chr19: 44909128 | CDS | 0.8 | 0.3 | 0.004 | 0.03 | 0.3 | 0.3 | |
Chr19: 44909288 | 3′UTR | 0.5 | 0.5 | 0.6 | 0.4 | 0.2 | 0.02 | |
Chr19: 44909305 | 3′UTR | 0.2 | 0.5 | 0.9 | 0.7 | 0.3 | 0.005 | |
FSTL4 | Chr5: 133384144 | Intron | 0.7 | 0.02 | 0.6 | 0.9 | 0.9 | 0.8 |
Chr5: 133384155 | Intron | 0.7 | 0.8 | 0.01 | 0.9 | 0.3 | 0.1 | |
Chr5: 133384280 | Intron | 0.2 | 0.9 | 0.2 | 0.8 | 0.2 | 0.01 | |
Chr5: 133384355 | Intron | 0.4 | 0.7 | 0.7 | 0.01 | 0.6 | 0.4 | |
KCNQ1 | Chr11: 2445714 | Intron | 0.9 | 0.01 | 0.1 | 0.5 | 0.4 | 0.7 |
Chr11: 2445762 | Intron | 0.5 | 0.04 | 0.9 | 0.4 | 0.3 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tello-Ortega, K.E.; Romero-Tlalolini, M.A.; Martínez-Hernández, A.; Ortiz-Sánchez, E.; Contreras-Cubas, C.; García-Ortiz, H.; Barajas-Olmos, F.; Orozco, L.; Centeno, F. ABCA1, ADIPOQ, APOE, FSTL4, and KCNQ1 Gene DNA Methylation Correlates with Lipid Profiles in Mexican Populations. Biomedicines 2025, 13, 2273. https://doi.org/10.3390/biomedicines13092273
Tello-Ortega KE, Romero-Tlalolini MA, Martínez-Hernández A, Ortiz-Sánchez E, Contreras-Cubas C, García-Ortiz H, Barajas-Olmos F, Orozco L, Centeno F. ABCA1, ADIPOQ, APOE, FSTL4, and KCNQ1 Gene DNA Methylation Correlates with Lipid Profiles in Mexican Populations. Biomedicines. 2025; 13(9):2273. https://doi.org/10.3390/biomedicines13092273
Chicago/Turabian StyleTello-Ortega, Karla E., María A. Romero-Tlalolini, Angélica Martínez-Hernández, Elizabeth Ortiz-Sánchez, Cecilia Contreras-Cubas, Humberto García-Ortiz, Francisco Barajas-Olmos, Lorena Orozco, and Federico Centeno. 2025. "ABCA1, ADIPOQ, APOE, FSTL4, and KCNQ1 Gene DNA Methylation Correlates with Lipid Profiles in Mexican Populations" Biomedicines 13, no. 9: 2273. https://doi.org/10.3390/biomedicines13092273
APA StyleTello-Ortega, K. E., Romero-Tlalolini, M. A., Martínez-Hernández, A., Ortiz-Sánchez, E., Contreras-Cubas, C., García-Ortiz, H., Barajas-Olmos, F., Orozco, L., & Centeno, F. (2025). ABCA1, ADIPOQ, APOE, FSTL4, and KCNQ1 Gene DNA Methylation Correlates with Lipid Profiles in Mexican Populations. Biomedicines, 13(9), 2273. https://doi.org/10.3390/biomedicines13092273