Exploring the Associations Between CHRNA5 and IREB2 Gene Polymorphisms and COPD in the Kazakhstan Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, M.H.; Hobbs, B.D.; Silverman, E.K. Genetics of chronic obstructive pulmonary disease: Understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir. Med. 2022, 10, 485–496. [Google Scholar] [CrossRef]
- Pillai, S.G.; Ge, D.; Zhu, G.; Kong, X.; Shianna, K.V.; Need, A.C.; Feng, S.; Hersh, C.P.; Bakke, P.; Gulsvik, A.; et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 2009, 5, e1000421. [Google Scholar] [CrossRef]
- DeMeo, D.L.; Mariani, T.; Bhattacharya, S.; Srisuma, S.; Lange, C.; Litonjua, A.; Bueno, R.; Pillai, S.G.; Lomas, D.A.; Sparrow, D.; et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am. J. Hum. Genet. 2009, 85, 493–509. [Google Scholar] [CrossRef]
- Routhier, J.; Pons, S.; Freidja, M.; Dalstein, V.; Cutrona, J.; Jonquet, A.; Lalun, N.; Mérol, J.C.; Lathrop, M.; Stitzel, J.A.; et al. An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat. Commun. 2021, 12, 6384. [Google Scholar] [CrossRef]
- Hollenhorst, M.I.; Krasteva-Christ, G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021, 26, 6097. [Google Scholar] [CrossRef]
- Taly, A.; Corringer, P.-J.; Guedin, D.; Lestage, P.; Changeux, J.-P. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Disco. 2009, 8, 733–750. [Google Scholar] [CrossRef]
- Du, Y.; Xue, Y.; Xiao, W. Association of IREB2 Gene rs2568494 Polymorphism with Risk of Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Med. Sci. Monit. 2016, 22, 177–182. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, Q.; Zou, D.; Guo, R.; Xiao, D.; Jiang, S.; Chen, R.; Wang, Y.; Ma, G. Different associations between the IREB2 variants and chronic obstructive pulmonary disease susceptibility. Front. Genet. 2020, 11, 598053. [Google Scholar] [CrossRef] [PubMed]
- Hardin, M.; Zielinski, J.; Wan, E.S.; Hersh, C.P.; Castaldi, P.J.; Schwinder, E.; Hawrylkiewicz, I.; Sliwinski, P.; Cho, M.H.; Silverman, E.K. CHRNA3/5, IREB2, and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. Am. J. Respir. Cell Mol. Biol. 2012, 47, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, J.; Li, D.; Xiao, J.; Wang, B.; Wang, L.; Ma, C.; Xu, S.; Ou, X.; Feng, Y. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J. Hum. Genet. 2012, 57, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Ge, X.; Ma, H. Four SNPs in the CHRNA3/5 Alpha-Neuronal Nicotinic Acetylcholine Receptor Subunit Locus Are Associated with COPD Risk Based on Meta-Analyses. PLoS ONE 2014, 9, e102324. [Google Scholar] [CrossRef]
- Korytina, G.F.; Akhmadishina, L.Z.; Viktorova, E.V.; Kochetova, O.V.; Viktorova, T.V. IREB2, CHRNA5, CHRNA3, FAM13A & hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia. Indian J. Med. Res. 2016, 144, 865–876. [Google Scholar]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Vogelmeier, C.F. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Ex-ecutive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef]
- Kurmanova, G.; Zhanaev, A.; Kaldybek, A.; Abdrakhmanova, B.; Akparova, A. Impact of the COVID-19 pandemic on the clinical features of patients with chronic obstructive pulmonary disease: An observational cross-sectional study. Monaldi Arch. Chest Dis. 2024. [Google Scholar] [CrossRef]
- Cairo, G.; Recalcati, S. Iron-regulatory proteins: Molecular biology and pathophysiological implications. Expert Rev. Mol. Med. 2007, 9, 1–13. [Google Scholar] [CrossRef]
- Ying, J.F.; Lu, Z.B.; Fu, L.Q.; Tong, Y.; Wang, Z.; Li, W.F.; Mou, X.Z. The role of iron homeostasis and iron-mediated ROS in cancer. Am. J. Cancer Res. 2021, 11, 1895–1912. [Google Scholar]
- Paul, B.T.; Manz, D.H.; Torti, F.M.; Torti, S.V. Mitochondria and Iron: Current questions. Expert Rev. Hematol. 2017, 10, 65–79. [Google Scholar] [CrossRef]
- Guo, Z.; Huo, D.; Shao, Y.; Yang, W.; Wang, J.; Zhang, Y.; Xiao, H.; Hao, B.; Liao, S. Novel biallelic variants in IREB2 cause an early-onset neurodegenerative disorder in a Chinese pedigree. Orphanet J. Rare Dis. 2024, 19, 435. [Google Scholar] [CrossRef]
- Ghio, A.J.; Hilborn, E.D.; Stonehuerner, J.G.; Dailey, L.A.; Carter, J.D.; Richards, J.H.; Crissman, K.M.; Foronjy, R.F.; Uyeminami, D.L.; Pinkerton, K.E. Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am. J. Respir. Crit. Care Med. 2008, 178, 1130–1138. [Google Scholar] [CrossRef]
- Rola, S.Z.; Sung, M.H.; Leeuwenburgh, C.; Xiao, R. Iron homeostasis and organismal aging. Ageing Res. Rev. 2021, 72, 101510. [Google Scholar] [CrossRef]
- Chmielowiec, K.; Chmielowiec, J.; Strońska-Pluta, A.; Trybek, G.; Śmiarowska, M.; Suchanecka, A.; Woźniak, G.; Jaroń, A.; Grzywacz, A. Association of Polymorphism CHRNA5 and CHRNA3 Gene in People Addicted to Nicotine. Int. J. Environ. Res. Public Health 2022, 19, 10478. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Howe, W.M.; Wills, L.; Smith, A.C.W.; Lei, Y.; Bali, P.; Heyer, M.P.; Moen, J.K.; Ables, J.L.; Elayouby, K.S.; et al. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc. Natl. Acad. Sci. USA 2022, 119, e2209870119. [Google Scholar] [CrossRef]
- Öztürk, A.N.A.; Dilektaşlı, G.A.; Demirdöğen, E.; Coşkun, F.; Ursavaş, A.; Karadağ, M.; Kunt, U.E. Is serum iron responsive protein-2 level associated with pulmonary functions and frequent exacerbator phenotype in COPD? Tuberk. Toraks. 2020, 68, 252–259. [Google Scholar] [CrossRef]
- Saber, C.L.; Diabasana, Z.; Perotin, J.M.; Ancel, J.; Petit, L.M.G.; Devilliers, M.A.; Bonnomet, A.; Lalun, N.; Delepine, G.; Maskos, U.; et al. The Nicotinic Receptor Polymorphism rs16969968 Is Associated with Airway Remodeling and Inflammatory Dysregulation in COPD Patients. Cells 2022, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.J.; Duan, F.; Gamble, G.D.; Chiles, C.; Cavadino, A.; Billings, P.; Aberle, D.; Young, R.P. Chr15q25 genetic variant (rs16969968) independently confers risk of lung cancer, COPD and smoking intensity in a prospective study of high-risk smokers. Thorax 2021, 76, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.J.; McKay, J.D.; Gaborieau, V.; Boffetta, P.; Hashibe, M.; Zaridze, D.; Mukeria, A.; Szeszenia-Dabrowska, N.; Lissowska, J.; Rudnai, P.; et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008, 452, 633–637. [Google Scholar] [CrossRef] [PubMed]
- The Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 2010, 42, 441–447. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, H.; Gao, K.; Xu, H.; Deng, X.; Zhang, Q.; Luo, Z.; Sun, S.; Deng, H. Genetic analysis of IREB2, FAM13A and XRCC5 variants in Chinese Han patients with chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 2011, 415, 284–287. [Google Scholar] [CrossRef]
- Ziółkowska-Suchanek, I.; Mosor, M.; Gabryel, P.; Grabicki, M.; Żurawek, M.; Fichna, M.; Strauss, E.; Batura-Gabryel, H.; Dyszkiewicz, W.; Nowak, J. Susceptibility loci in lung cancer and COPD: Association of IREB2 and FAM13A with pulmonary diseases. Sci. Rep. 2015, 5, 13502. [Google Scholar] [CrossRef]
- Chappell, S.L.; Daly, L.; Lotya, J.; Alsaegh, A.; Guetta-Baranes, T. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: A replication case-control study. J. BMC Med. Genet. 2011, 12, 24. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.; Zuo, C.; Lv, X.; Liu, T.; Jia, C.; Chen, H. Epidemiological evidence for associations between variants in CHRNA genes and risk of lung cancer and chronic obstructive pulmonary disease. Front. Oncol. 2022, 12, 1001864. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Pérez, R.D.; Falfán-Valencia, R.; Fricke-Galindo, I.; Buendía-Roldán, I.; Chávez-Galán, L.; Nava-Quiroz, K.J.; Alanis-Ponce, J.; Pérez-Rubio, G. The rs16969968 Tobacco Smoking-Related Single-Nucleotide Variant Is Associated with Clinical Markers in Patients with Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 9811. [Google Scholar] [CrossRef] [PubMed]
Variables | COPD (n = 265) | Controls (n = 267) | p |
---|---|---|---|
Male, n (%) Female, n (%) | 182 (68.7%) | 177 (66.3%) | |
83 (31.3%) | 90 (33.7%) | ||
Age (mean ± SD) (year) | 65.3 ± 9.9 | 64.3 ± 10.1 | |
BMI (mean ± SD) (kg/m2) | 25.8 ± 6.3 | 27.8 ± 8.5 | |
Smoking status: | |||
Pack-years smoked (mean ± SD) | 36.7 ± 17.1 | 23.5 ± 11.1 | <0.05 |
Current and former smokers, n (%) | 176 (66.4%) | 148 (55.4%) | <0.001 |
Non-smokers, n (%) | 89 (33.6%) | 119 (44.3%) | <0.001 |
Post-FEV1% (mean ± SD) | 39.8 ± 16.7 | 101.63 ± 14.8 | <0.0001 |
Post-FEV1/FVC ratio (mean ± SD) | 0.59 ± 0.27 | 0.82 ± 0.45 | <0.0001 |
GOLD stage (%): | |||
I, n (%) II, n (%) III, n (%) IV, n (%) | 37 (13.9%) | ||
58 (21.9%) | - | ||
106 (40.0%) | - | ||
64 (24.2%) | - |
SNP | Chromosome Position (NCBI) | Category | Minor Allele | Alleles/Genotypes | HWE p Value in Controls | COPD Patients (%) n = 265 | Controls (%) n = 267 | OR (95% CI) | p |
---|---|---|---|---|---|---|---|---|---|
IREB2: rs2568494 | 76528019 | Intron | A | G | 0.51 | 368 (69.4) | 384 (71.9) | 0.89 (0.68–1.16) | 0.38 |
A | 162 (30.6) | 150 (28.1) | 1.13 (0.87–1.47) | ||||||
G/G | 130 (49.1) | 135 (50.6) | 0.94 (0.67–1.32) | 0.37 | |||||
G/A | 108 (40.8) | 114 (42.7) | 0.92 (0.65–1.30) | ||||||
A/A | 27 (10.2) | 18 (6.7) | 0.57 (0.84–2.92) | ||||||
IREB2: rs13180 | 76576543 | Exon | C | T | 0.46 | 269 (50.8) | 278 (52.1) | 0.96 (0.75–1.21) | 0.67 |
C | 261 (49.2) | 257 (47.9) | 1.05 (0.83–1.34) | ||||||
T/T | 74 (27.9) | 68 (25.5) | 1.13 (0.77–1.67) | 0.67 | |||||
T/C | 121 (45.7) | 142 (53.2) | 0.74 (0.53–1.04) | ||||||
C/C | 70 (26.4) | 57 (21.3) | 1.32 (0.89–1.97) | ||||||
CHRNA5: rs16969968 | 76669980 | Exon | A | G | 0.45 | 424 (80.0) | 429 (80.3) | 0.98 (0.72–1.32) | 0.89 |
A | 106 (20.0) | 105 (19.7) | 1.02 (0.76–1.38) | ||||||
G/G | 168 (63.4) | 175 (65.5) | 0.91 (0.64–1.30) | 0.89 | |||||
G/A | 88 (33.2) | 79 (29.6) | 1.18 (0.82–1.71) | ||||||
A/A | 9 (3.4) | 13 (4.9) | 0.69 (0.29–1.64) |
SNP | Genotypes | COPD Patients (%) N = 228 | Controls (%) N = 267 | ORadj | 95% CIadj | p Value | p Value adj |
---|---|---|---|---|---|---|---|
IREB2: rs2568494 | G/G | 97 (42.5) | 135 (50.6) | 1.00 | 0.08 | 0.03 * | |
G/A | 105 (46.1) | 114 (42.7) | 0.27 | 0.08–0.94 | |||
A/A | 26 (11.4) | 18 (6.7) | 0.69 | 0.23–2.10 | |||
IREB2: rs13180 | T/T | 57 (25.0) | 68 (25.5) | 1.00 | 0.3680 | 0.3773 | |
T/C | 113 (54.8) | 142 (53.2) | 0.58 | 0.26–1.25 | |||
C/C | 58 (20.2) | 57 (21.3) | 0.72 | 0.37–1.39 | |||
CHRNA3/5: rs16969968 | G/G | 136 (59.6) | 175 (65.5) | 1.00 | 0.6017 | 0.327 | |
G/A | 86 (37.7) | 79 (29.6) | 2.75 | 0.69–10.92 | |||
A/A | 6 (2.6) | 13 (4.9) | 2.81 | 0.72–10.95 |
Gene/SNP | Nonsmokers (n = 89) | Former Smokers (n = 112) | Current Smokers (n = 64) |
---|---|---|---|
IREB2 rs2568494 | 0.60 | 0.63 | 0.73 |
IREB2 rs13180 | 0.52 | 0.02 * | 0.05 * |
CHRNA 3/5 rs16969968 | 0.98 | 0.65 | 0.72 |
IREB2 rs2568494 | IREB2 rs13180 | CHRNA5 rs16969968 | |||||||
---|---|---|---|---|---|---|---|---|---|
Standard Error | t Value | p Value | Standard Error | t Value | p Value | Standard Error | t Value | p Value | |
Smoking index (Pack-Years) | 28.09 | −0.21 | 0.84 | 11.59 | −0.91 | 0.36 | 26.67 | 0.86 | 0.39 |
FEV1 | 7.22 | −0.04 | 0.97 | 2.98 | 2.61 | 0.01 * | 6.86 | −1.72 | 0.09 |
FEV1/FVC | 7.15 | 0.79 | 0.43 | 2.95 | 3.22 | 0.002 * | 6.79 | −1.42 | 0.16 |
SNP | Genotypes | COVID-19 (+) n = 87, (%) | COVID-19 (-) n = 178, (%) | OR | 95% CI | p Value |
---|---|---|---|---|---|---|
IREB2: rs2568494 | G/G | 54 (62.1) | 86 (48.3) | 1.75 | 1.04–2.95 | |
G/A | 25 (28.7) | 81 (45.5) | 0.48 | 0.28–0.84 | ||
A/A | 8 (9.2) | 11 (6.2) | 1.54 | 0.60–3.97 | 0.19 | |
IREB2: rs13180 | T/T | 30 (34.5) | 48 (27.0) | 1.43 | 0.82–2.48 | |
T/C | 22 (25.3) | 105 (59.0) | 0.24 | 0.13–0.42 | ||
C/C | 35 (40.2) | 25 (14.0) | 4.12 | 2.26–7.52 | 0.05 * | |
CHRNA3/5: rs16969968 | G/G | 62 (71.3) | 110 (61.8) | 1.53 | 0.88–2.67 | |
G/A | 19 (21.8) | 54 (30.3) | 0.64 | 0.35–1.17 | ||
A/A | 6 (6.9) | 14 (7.9) | 2.81 | 0.32–2.34 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akparova, A.; Kurmanova, G.; Trimova, G.; Ashirbekov, Y.; Nigmatova, D.; Abdrakhmanova, B.; Mussagulova, Z.; Idrisova, G.; Kulembayeva, A.; Kurmanova, A. Exploring the Associations Between CHRNA5 and IREB2 Gene Polymorphisms and COPD in the Kazakhstan Population. Biomedicines 2025, 13, 2260. https://doi.org/10.3390/biomedicines13092260
Akparova A, Kurmanova G, Trimova G, Ashirbekov Y, Nigmatova D, Abdrakhmanova B, Mussagulova Z, Idrisova G, Kulembayeva A, Kurmanova A. Exploring the Associations Between CHRNA5 and IREB2 Gene Polymorphisms and COPD in the Kazakhstan Population. Biomedicines. 2025; 13(9):2260. https://doi.org/10.3390/biomedicines13092260
Chicago/Turabian StyleAkparova, Almira, Gaukhar Kurmanova, Gulzhan Trimova, Yeldar Ashirbekov, Diana Nigmatova, Balkiya Abdrakhmanova, Zhanar Mussagulova, Gulzhana Idrisova, Anarkul Kulembayeva, and Almagul Kurmanova. 2025. "Exploring the Associations Between CHRNA5 and IREB2 Gene Polymorphisms and COPD in the Kazakhstan Population" Biomedicines 13, no. 9: 2260. https://doi.org/10.3390/biomedicines13092260
APA StyleAkparova, A., Kurmanova, G., Trimova, G., Ashirbekov, Y., Nigmatova, D., Abdrakhmanova, B., Mussagulova, Z., Idrisova, G., Kulembayeva, A., & Kurmanova, A. (2025). Exploring the Associations Between CHRNA5 and IREB2 Gene Polymorphisms and COPD in the Kazakhstan Population. Biomedicines, 13(9), 2260. https://doi.org/10.3390/biomedicines13092260