Comorbidity Profile of Chronic Mast Cell–Mediated Angioedema Versus Chronic Spontaneous Urticaria
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Demographic and Clinical Variables
2.4. Medication Exposure
2.5. Statistical Analysis
2.6. Ethics Approval
3. Results
3.1. Demographics
3.2. Comorbidities at Baseline
3.2.1. Cardiovascular Diseases
3.2.2. Renal Diseases
3.2.3. Endocrine and Metabolic Diseases
3.2.4. Allergic and Dermatologic Disorders
3.2.5. Infectious Diseases
3.3. Medication Use Against MC-AE and CSU
3.4. Comorbidities After 10 Years of Follow-Up
3.4.1. Cardiovascular Diseases
3.4.2. Renal Diseases
3.4.3. Endocrine and Metabolic Diseases
3.4.4. Allergic and Dermatologic Disorders
3.4.5. Infectious Diseases
3.5. Medication Use and Adjusted Odds of MC-AE
3.6. Stepwise Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
AE | Angioedema |
ARBs | Angiotensin receptor blockers |
ATC | Anatomical Therapeutic Chemical |
BMI | Body mass index |
CHF | Congestive heart failure |
CI | Confidence interval |
CKD | Chronic kidney disease |
CSU | Chronic spontaneous urticaria |
EHR | Electronic health record |
FDR | False discovery rate |
H1 | Histamine type 1 receptor |
hs-CRP | High-sensitivity C-reactive protein |
ICD-9 | International Classification of Diseases, Ninth Revision |
IgE | Immunoglobulin E |
IL | Interleukin |
IHD | Ischemic heart disease |
IRB | Institutional Review Board |
LHS | Leumit Health Services |
MC-AE | Mast cell–mediated angioedema |
MACE | Major adverse cardiovascular events |
MRGPRX2 | Mas-related G protein–coupled receptor X2 |
OR | Odds ratio |
PCI | Percutaneous coronary intervention |
SD | Standard deviation |
SES | Socioeconomic status |
SMD | Standardized mean difference |
sVCAM-1 | Soluble vascular cell adhesion molecule-1 |
T2DM | Type 2 diabetes mellitus |
TGF-β | Transforming growth factor beta |
References
- Wong, D.; Waserman, S.; Sussman, G.L. Endotypes of chronic spontaneous urticaria and angioedema. J. Allergy Clin. Immunol. 2025, 156, 17–23. [Google Scholar] [CrossRef]
- Reshef, A.; Buttgereit, T.; Betschel, S.D.; Caballero, T.; Farkas, H.; Grumach, A.S.; Hide, M.; Jindal, A.K.; Longhurst, H.; Peter, J.; et al. Definition, acronyms, nomenclature, and classification of angioedema (DANCE): AAAAI, ACAAI, ACARE, and APAAACI DANCE consensus. J. Allergy Clin. Immunol. 2024, 154, 398–411.e1. [Google Scholar] [CrossRef]
- Katelaris, C.H.; Grumach, A.S.; Bork, K. Angioedema With Normal Complement Studies: What Do We Know? J. Allergy Clin. Immunol. Pract. 2023, 11, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Kolkhir, P.; Bonnekoh, H.; Metz, M.; Maurer, M. Chronic Spontaneous Urticaria: A Review. JAMA 2024, 332, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Gialama, D.; Bonnekoh, H.; Rothermel, N.D.; Oldenburg, R.; Khan, D.A.; Hoffman, H.M.; Lang, D.; Kolkhir, P. Differential diagnosis of chronic spontaneous urticaria. J. Allergy Clin. Immunol. Pract. 2025, 25, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Magen, E.; Merzon, E.; Green, I.; Magen, I.; Waitman, D.A.; Kahan, N.R. A comparative study of chronic spontaneous urticaria and chronic mast cell mediated angioedema. Allergy Asthma Proc. 2023, 44, 122–129. [Google Scholar] [CrossRef]
- Dileepan, K.N.; Raveendran, V.V.; Sharma, R.; Abraham, H.; Barua, R.; Singh, V.; Sharma, R.; Sharma, M. Mast cell-mediated immune regulation in health and disease. Front. Med. 2023, 10, 1213320. [Google Scholar] [CrossRef]
- Poto, R.; Marone, G.; Galli, S.J.; Varricchi, G. Mast cells: A novel therapeutic avenue for cardiovascular diseases? Cardiovasc. Res. 2024, 120, 681–698. [Google Scholar] [CrossRef]
- Shalom, G.; Magen, E.; Dreiher, J.; Freud, T.; Bogen, B.; Comaneshter, D.; Vardy, D.; Khoury, R.; Agmon-Levin, N.; Cohen, A. Chronic urticaria and atopic disorders: A cross-sectional study of 11 271 patients. Br. J. Dermatol. 2017, 177, e96–e97. [Google Scholar] [CrossRef]
- Sabaté-Brescó, M.; Rodriguez-Garijo, N.; Azofra, J.; Baeza, M.L.; Donado, C.D.; Gaig, P.; Guilarte, M.; Herrera-Lasso, V.; Labrador-Horrillo, M.; Sala-Cunill, A.; et al. A Comparative Study of Sex Distribution, Autoimmunity, Blood, and Inflammatory Parameters in Chronic Spontaneous Urticaria with Angioedema and Chronic Histaminergic Angioedema. J. Allergy Clin. Immunol. Pract. 2021, 9, 2284–2292. [Google Scholar] [CrossRef]
- Wang, X.; Yi, W.; He, L.; Luo, S.; Wang, J.; Jiang, L.; Long, H.; Zhao, M.; Lu, Q. Abnormalities in Gut Microbiota and Metabolism in Patients with Chronic Spontaneous Urticaria. Front. Immunol. 2021, 12, 691304. [Google Scholar] [CrossRef]
- Ye, Y.M.; Kim, B.E.; Shin, Y.S.; Park, H.S.; Leung, D.Y.M. Increased epidermal filaggrin in chronic idiopathic urticaria is associated with severity of urticaria. Ann. Allergy, Asthma Immunol. 2014, 112, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Kolkhir, P.; Pereira, M.P.; Siebenhaar, F.; Witte-Händel, E.; Bergmann, K.C.; Bonnekoh, H.; Buttgereit, T.; Fluhr, J.W.; Frischbutter, S.; et al. Disease modification in chronic spontaneous urticaria. Allergy 2024, 79, 2396–2413. [Google Scholar] [CrossRef]
- Hermans, M.; Lennep, J.R.V.; van Daele, P.; Bot, I. Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int. J. Mol. Sci. 2019, 20, 3395. [Google Scholar] [CrossRef]
- Blank, U.; Essig, M.; Scandiuzzi, L.; Benhamou, M.; Kanamaru, Y. Mast cells and inflammatory kidney disease. Immunol. Rev. 2007, 217, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Atiakshin, D.; Morozov, S.; Dlin, V.; Kostin, A.; Volodkin, A.; Ignatyuk, M.; Kuzovleva, G.; Baiko, S.; Chekmareva, I.; Chesnokova, S.; et al. Renal Mast Cell-Specific Proteases in the Pathogenesis of Tubulointerstitial Fibrosis. J. Histochem. Cytochem. 2024, 72, 495–515. [Google Scholar] [CrossRef] [PubMed]
- Owens, E.P.; Vesey, D.A.; Kassianos, A.J.; Healy, H.; Hoy, W.E.; Gobe, G.C. Biomarkers and the role of mast cells as facilitators of inflammation and fibrosis in chronic kidney disease. Transl. Androl. Urol. 2019, 8 (Suppl. S2), S175–S183. [Google Scholar] [CrossRef]
- Kure, S.; Toba, H.; Jin, D.; Mima, A.; Takai, S. Chymase Inhibition Attenuates Kidney Fibrosis in a Chronic Mouse Model of Renal Ischemia-Reperfusion Injury. Int. J. Mol. Sci. 2025, 26, 3913. [Google Scholar] [CrossRef]
- Higgins, C.E.; Tang, J.; Mian, B.M.; Higgins, S.P.; Gifford, C.C.; Conti, D.J.; Meldrum, K.K.; Samarakoon, R.; Higgins, P.J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: Molecular mechanisms and clinical implications. FASEB J. 2019, 33, 10596–10606. [Google Scholar] [CrossRef]
- Gaudenzio, N.; Sibilano, R.; Marichal, T.; Starkl, P.; Reber, L.L.; Cenac, N.; McNeil, B.D.; Dong, X.; Hernandez, J.D.; Sagi-Eisenberg, R.; et al. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Investig. 2016, 126, 3981–3998. [Google Scholar] [CrossRef]
- Yanase, Y.; Matsuo, Y.; Takahagi, S.; Kawaguchi, T.; Uchida, K.; Ishii, K.; Tanaka, A.; Matsubara, D.; Ozawa, K.; Hide, M. Coagulation factors induce human skin mast cell and basophil degranulation via activation of complement 5 and the C5a receptor. J. Allergy Clin. Immunol. 2021, 147, 1101–1104.e7. [Google Scholar] [CrossRef]
- Fang, X.; Li, M.; He, C.; Liu, Q.; Li, J. Plasma-Derived Exosomes in Chronic Spontaneous Urticaria Induce the Production of Mediators by Human Mast Cells. J. Investig. Dermatol. 2022, 142, 2998–3008.e5. [Google Scholar] [CrossRef]
- Kolawole, E.M.; McLeod, J.J.; Ndaw, V.; Abebayehu, D.; Barnstein, B.O.; Faber, T.; Spence, A.J.; Taruselli, M.; Paranjape, A.; Haque, T.T.; et al. Fluvastatin Suppresses Mast Cell and Basophil IgE Responses: Genotype-Dependent Effects. J. Immunol. 2016, 196, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Chamani, S.; Kooshkaki, O.; Moossavi, M.; Rastegar, M.; Soflaei, S.S.; McCloskey, A.P.; Banach, M.; Sahebkar, A. The effects of statins on the function and differentiation of blood cells. Arch. Med Sci. 2022, 19, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, A.; Marmion, N.; Boccon-Gibod, I.; Bouillet, L. Angiotensin-converting enzyme inhibitor-induced angioedema: Proposal for a diagnostic score. World Allergy Organ. J. 2025, 18, 101037. [Google Scholar] [CrossRef]
- Fok, J.S.; Kolkhir, P.; Church, M.K.; Maurer, M. Predictors of treatment response in chronic spontaneous urticaria. Allergy 2021, 76, 2965–2981. [Google Scholar] [CrossRef] [PubMed]
- Netala, V.R.; Hou, T.; Wang, Y.; Zhang, Z.; Teertam, S.K. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int. J. Mol. Sci. 2025, 26, 3218. [Google Scholar] [CrossRef]
- Santos, J.C.; de Brito, C.A.; Futata, E.A.; Azor, M.H.; Orii, N.M.; Maruta, C.W.; Rivitti, E.A.; Duarte, A.J.; Sato, M.N. Up-regulation of chemokine C-C ligand 2 (CCL2) and C-X-C chemokine 8 (CXCL8) expression by monocytes in chronic idiopathic urticaria. Clin. Exp. Immunol. 2011, 167, 129–136. [Google Scholar] [CrossRef]
- Lu, T.; Jiao, X.; Si, M.; He, P.; Zou, J.; Zhang, S.; Zeng, K. The Correlation of Serums CCL11, CCL17, CCL26, and CCL27 and Disease Severity in Patients with Urticaria. Dis. Markers 2016, 2016, 1381760. [Google Scholar] [CrossRef]
- Angeli, I.; Vassilopoulou, E.; Cassimos, D.; Fotopoulos, I.; Serbis, A.; Alexandros, M.; Tsabouri, S. Blood Adhesion Molecules as Biomarkers in Children with Chronic Urticaria. Children 2024, 11, 449. [Google Scholar] [CrossRef]
- Puxeddu, I.; Panza, F.; Pratesi, F.; Bartaloni, D.; Casigliani Rabl, S.; Rocchi, V.; Del Corso, I.; Migliorini, P. CCL5/RANTES, sVCAM-1, and sICAM-1 in chronic spontaneous urticaria. Int. Arch. Allergy Immunol. 2013, 162, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.S.; Asero, R.; Cugno, M.; Park, H.S.; Oliver, E.T. Pathogenesis of Chronic Spontaneous Urticaria With or Without Angioedema. J. Allergy Clin. Immunol. Pract. 2025, 25, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, B. Endothelial dysfunction: Molecular mechanisms and clinical implications. Medcomm 2024, 5, e651. [Google Scholar] [CrossRef] [PubMed]
- Bucci, T.; Parente, R.; De Feo, G.; Cardamone, C.; Triggiani, M. Flow-mediated dilation shows impaired endothelial function in patients with mastocytosis. J. Allergy Clin. Immunol. 2019, 144, 1106–1111. [Google Scholar] [CrossRef]
- Prema, S.S.; Shanmugamprema, D. Systemic Psoriasis: From Molecular Mechanisms to Global Management Strategies. Clin. Rev. Allergy Immunol. 2025, 68, 79. [Google Scholar] [CrossRef]
- Faraj, S.; Kemp, E.H.; Gawkrodger, D.J. Patho-immunological mechanisms of vitiligo: The role of the innate and adaptive immunities and environmental stress factors. Clin. Exp. Immunol. 2022, 207, 27–43. [Google Scholar] [CrossRef]
- Katayama, I.; Yang, L.; Takahashi, A.; Yang, F.; Wataya-Kaneda, M. The two faces of mast cells in vitiligo pathogenesis. Explor. Immunol. 2021, 1, 269–284. [Google Scholar] [CrossRef]
- Cao, Y.; Kan, H.; Wang, X.; Zhi, Y. Gut microbiome alterations in hereditary angioedema. Ann. Allergy Asthma Immunol. 2022, 128, 451–458.e6. [Google Scholar] [CrossRef]
- Haidar, L.; Bănărescu, C.F.; Uța, C.; Zimbru, E.L.; Zimbru, R.I.; Tîrziu, A.; Pătrașcu, R.; Șerb, A.F.; Georgescu, M.; Nistor, D.; et al. Beyond the Skin: Exploring the Gut-Skin Axis in Chronic Spontaneous Urticaria and Other Inflammatory Skin Diseases. Biomedicines 2025, 13, 2014. [Google Scholar] [CrossRef]
- Cai, R.; Zhou, C.; Tang, R.; Meng, Y.; Zeng, J.; Li, Y.; Wen, X. Current insights on gut microbiome and chronic urticaria: Progress in the pathogenesis and opportunities for novel therapeutic approaches. Gut Microbes 2024, 16, 2382774. [Google Scholar] [CrossRef]
Variable | MC-AE (n = 2133) | CSU (n = 2133) | p-Value | |
---|---|---|---|---|
Female, n (%) | 1258 (59.0%) | 1258 (59.0%) | 1.000 | |
Age (years), mean ± SD | 37.7 ± 22.6 | 37.5 ± 22.6 | 0.759 | |
AGE category (years) | 0–2 | 81 (3.79%) | 100 (4.69%) | 0.171 |
3–9 | 207 (9.71%) | 195 (9.14%) | 0.564 | |
10–18 | 265 (12.42%) | 278 (13.03%) | 0.581 | |
19–29 | 320 (15.01%) | 299 (14.02%) | 0.385 | |
30–39 | 239 (11.21%) | 242 (11.35%) | 0.923 | |
40–49 | 270 (12.66%) | 271 (12.71%) | 1.000 | |
50–59 | 302 (14.16%) | 318 (14.91%) | 0.515 | |
60–69 | 285 (13.36%) | 263 (12.33%) | 0.337 | |
70–79 | 127 (5.95%) | 134 (6.28%) | 0.702 | |
80–89 | 36 (1.69%) | 33 (1.55%) | 0.808 | |
BMI (kg/m2), mean ± SD | 25.6 ± 6.6 | 24.9 ± 6.1 | 0.001 | |
BMI ≥ 30, n (%) | 462 (23.1%) | 386 (19.0%) | 0.001 | |
Past smoker, n (%) | 41 (2.28%) | 55 (3.03%) | 0.179 | |
Current smoker, n (%) | 344 (19.1%) | 309 (17.0%) | 0.110 | |
Socioeconomic status, mean ± SD | 9.50 ± 3.56 | 9.54 ± 3.56 | 0.739 | |
Creatinine (mg/dL) | 0.75 ± 0.35 | 0.74 ± 0.22 | 0.185 | |
eGFR (mL/min/1.73 m2) | 126 ± 103 | 128 ± 106 | 0.597 | |
Glucose (mg/dL) | 96.2 ± 23.3 | 94.5 ± 20.6 | 0.014 | |
HbA1c (%) | 5.71 ± 0.92 | 5.60 ± 0.86 | <0.001 | |
HDL (mg/dL) | 51.9 ± 14.4 | 52.2 ± 13.9 | 0.570 | |
LDL (mg/dL) | 108 ± 34 | 110 ± 34 | 0.027 | |
Non-HDL cholesterol (mg/dL) | 134 ± 39 | 136 ± 39 | 0.080 | |
Hemoglobin (g/dL) | 13.3 ± 1.5 | 13.4 ± 1.4 | 0.112 | |
Physical activity | 1–3 h weekly | 473 (24.95%) | 496 (26.22%) | 0.372 |
>3 h weekly | 188 (9.92%) | 168 (8.88%) | 0.290 | |
None | 631 (33.28%) | 569 (30.07%) | 0.036 | |
Occasionally | 604 (31.86%) | 659 (34.83%) | 0.054 | |
Missing data | 237 (11.11%) | 241 (11.30%) | 0.884 |
Category | Comorbidity | MC-AE n (%) | CSU n (%) | p-Value | OR (95% CI) |
---|---|---|---|---|---|
Cardiovascular Diseases | Hypertension | 508 (23.8%) | 395 (18.5%) | <0.001 | 1.37 [1.18–1.60] |
Ischemic heart disease | 121 (5.67%) | 82 (3.84%) | 0.006 | 1.50 [1.12–2.03] | |
Myocardial infarction | 53 (2.48%) | 23 (1.08%) | <0.001 | 2.34 [1.40–4.01] | |
PCI | 42 (1.97%) | 27 (1.27%) | 0.089 | 1.57 [0.94–2.65] | |
CABG | 25 (1.17%) | 15 (0.70%) | 0.152 | 1.57 [0.94–2.65] | |
CHF | 22 (1.03%) | 21 (0.98%) | 0.999 | 1.05 [0.55–2.01] | |
CVA | 29 (1.36%) | 27 (1.27%) | 0.893 | 1.08 [0.61–1.89] | |
MACE | 89 (4.17%) | 55 (2.58%) | 0.005 | 1.64 [1.16–2.36] | |
Renal Diseases | Chronic kidney disease | 22 (1.03%) | 19 (0.89%) | 0.754 | 1.05 [0.55–2.01] |
Microalbuminuria | 188 (8.81%) | 153 (7.17%) | 0.055 | 1.25 [1.00–1.57] | |
Endocrine & Metabolic Diseases | T2DM | 223 (10.45%) | 137 (6.42%) | <0.001 | 1.70 [1.36–2.14] |
Dyslipidemia | 535 (25.1%) | 527 (24.7%) | 0.804 | 1.02 [0.89 –1.18] | |
Graves’ disease | 32 (1.5%) | 19 (0.89%) | 0.090 | 1.69 [0.93–3.17] | |
Hashimoto’s thyroiditis | 94 (4.41%) | 109 (5.11%) | 0.314 | 0.86 [0.64–1.15] | |
Allergic & Dermatologic Diseases | Allergic rhinitis | 274 (14.39%) | 307 (12.85%) | 0.153 | 0.90 [0.76–1.07] |
Asthma | 157 (7.36% | 159 (7.45%) | 0.953 | 0.99 [0.78–1.25] | |
Food allergy | 58 (2.72%) | 79 (3.70%) | 0.082 | 0.73 [0.52–1.03] | |
Systemic anaphylaxis | 21 (0.98%) | 29 (1.36%) | 0.319 | 0.72 [0.41–1.27] | |
Atopic dermatitis | 196 (9.19%) | 256 (12.0%) | 0.003 | 0.74 [0.61–0.91] | |
Contact dermatitis | 503 (23.6%) | 595 (27.9%) | 0.002 | 0.80 [0.70–0.92] | |
Psoriasis | 56 (2.63%) | 40 (1.88%) | 0.121 | 1.41 [0.92–2.18] | |
Vitiligo | 7 (0.33%) | 13 (0.61%) | 0.262 | 0.54 [0.18–1.45] | |
Dermatophytosis | 538 (25.2%) | 661 (31.0%) | <0.001 | 0.75 [0.65–0.86] | |
Pityriasis rosea | 24 (1.13%) | 41 (1.92%) | 0.045 | 0.58 [0.33–0.99] | |
Infectious diseases | Bacterial pneumonia | 66 (3.09%) | 42 (1.97%) | 0.025 | 1.59 [1.06–2.41] |
Tonsillitis | 860 (40.3%) | 930 (43.6%) | 0.030 | 0.87 [0.77–0.99] | |
Viral infections (general) | 1064 (49.9%) | 1156 (54.2%) | 0.005 | 0.84 [0.75–0.95] | |
Cytomegalovirus | 21 (0.99%) | 18 (0.84%) | 0.748 | 1.17 [0.62–2.20] | |
Viral warts | 350 (16.4%) | 420 (19.7%) | 0.005 | 0.80 [0.68–0.93] | |
Herpes zoster | 66 (3.09%) | 118 (5.53%) | <0.001 | 0.55 [0.39–0.75] | |
Connective tissue diseases | 44 (2.06%) | 48 (2.25%) | 0.915 | 0.91 [0.59–1.41] |
Medication Class | MC-AE (n = 2133) | CSU (n = 2133) | Odds Ratio (95% CI) | p |
---|---|---|---|---|
Systemic corticosteroid (any prescription) | 917 (43.0%) | 1007 (47.2%) | 0.84 (0.75–0.95) | 0.006 |
Systemic corticosteroids (≥3 months cumulative use) | 102 (4.8%) | 90 (4.2%) | 1.14 (0.85–1.52) | 0.417 |
H1-antihistamines (any prescription) | 2133 (100%) | 2133 (100%) | – | 1.000 |
H1-antihistamines (daily use ≥ 3 months) | 1986 (93.1%) | 2037 (95.5%) | 0.64 (0.49–0.83) | 0.001 |
H2-antihistamines (≥3 months) | 28 (1.3%) | 31 (1.5%) | 0.90 (0.54–1.51) | 0.793 |
Leukotriene receptor antagonists | 92 (4.3%) | 172 (8.1%) | 0.51 (0.40–0.67) | <0.001 |
Omalizumab (≥6 months use) | 0 (0.0%) | 42 (2.0%) | 0.00 (0.00–0.19) | <0.001 |
Other immunosuppressants (cyclosporine) | 0 (0.0%) | 7 (0.3%) | 0.00 (0.00–1.16) | 0.016 |
Category | Comorbidity | MC-AE n (%) | CSU n (%) | p-Value | OR (95% CI) |
---|---|---|---|---|---|
Cardiovascular Diseases | Hypertension | 702 (32.9%) | 599 (28.1%) | <0.001 | 1.25 [1.10–1.43] |
Ischemic heart disease | 195 (9.14%) | 152 (7.13%) | 0.019 | 1.31 [1.05–1.65] | |
Myocardial infarction | 88 (4.13%) | 48 (2.25%) | <0.001 | 1.87 [1.29–2.73] | |
PCI | 74 (3.47%) | 47 (2.20%) | 0.016 | 1.59 [1.09–2.36] | |
CABG | 35 (1.64%) | 28 (1.31%) | 0.447 | 1.25 [0.74–2.15] | |
CHF | 101 (4.74%) | 69 (3.23%) | 0.015 | 1.49 [1.08–2.06] | |
CVA | 67 (3.14%) | 61 (2.86%) | 0.654 | 1.10 [0.76–1.59] | |
MACE | 142 (6.66%) | 96 (4.5%) | 0.003 | 1.51 [1.15–2.00] | |
Renal Diseases | Chronic kidney disease | 88 (4.13%) | 62 (2.91%) | 0.037 | 1.44 [1.02–2.03] |
Microalbuminuria | 224 (10.50%) | 181 (8.49%) | 0.028 | 1.27 [1.02 –1.56] | |
Endocrine & Metabolic Diseases | T2DM | 382 (17.9%) | 284 (13.3%) | <0.001 | 1.42 [1.20–1.69] |
Dyslipidemia | 38 (1.78%) | 22 (1.03%) | 0.050 | 1.74 [1.00–3.10] | |
Graves’ disease | 54 (2.53%) | 50 (2.34%) | 0.766 | 1.08 [0.72–1.63] | |
Hashimoto’s thyroiditis | 163 (7.64%) | 194 (9.10%) | 0.097 | 0.83 [0.66–1.03] | |
Allergic & Dermatologic Diseases | Allergic rhinitis | 514 (24.1%) | 538 (25.20%) | 0.414 | 0.94 [0.82–1.08] |
Asthma | 218 (10.2%) | 220 (10.30%) | 0.960 | 0.99 [0.81–1.21] | |
Food allergy | 71 (3.32%) | 93 (4.36%) | 0.094 | 0.76 [0.54–1.05] | |
Systemic anaphylaxis | 27 (1.27%) | 42 (1.96%) | 0.089 | 0.64 [0.38–1.06] | |
Atopic dermatitis | 282 (13.2%) | 382 (17.9%) | <0.001 | 0.70 [0.59–0.83] | |
Contact dermatitis | 744 (34.9%) | 907 (42.5%) | <0.001 | 0.73 [0.64–0.82] | |
Psoriasis | 99 (4.64%) | 91 (4.27%) | 0.603 | 1.09 [0.81–1.48] | |
Vitiligo | 103 (1.12%) | 332 (0.72%) | <0.001 | 1.56 [1.23–1.95] | |
Dermatophytosis | 881 (41.3%) | 1032 (48.4%) | <0.001 | 0.75 [0.66–0.85] | |
Pityriasis rosea | 42 (1.97%) | 72 (3.38%) | 0.006 | 0.58 [0.38–0.86] | |
Infectious Diseases | Bacterial pneumonia | 98 (4.59%) | 81 (3.8%) | 0.222 | 1.22 [0.89–1.67] |
Tonsillitis | 1154 (54.1%) | 1231 (57.7%) | 0.021 | 0.87 [0.77–0.98] | |
Viral infections (general) | 1425 (66.8%) | 1497 (70.2%) | 0.018 | 0.85 [0.75–0.97] | |
Cytomegalovirus | 39 (1.83%) | 37 (1.73%) | 0.912 | 1.06 [0.67–1.66] | |
Viral warts | 619 (29.0%) | 715 (33.5%) | 0.002 | 0.81 [0.71–0.93] | |
Herpes zoster | 176 (8.25%) | 229 (10.74%) | 0.007 | 0.75 [0.60–0.92] | |
Connective tissue diseases | 90 (4.22%) | 81 (3.80%) | 0.532 | 1.12 [0.81–1.54] |
Medication | Adjusted OR [95% CI] | p-Value |
---|---|---|
ACE inhibitors | 0.97 [0.67–1.40] | 0.862 |
ARBs | 1.14 [0.77–1.68] | 0.510 |
Beta blockers | 1.00 [0.63–1.59] | 0.990 |
Calcium channel blockers | 1.60 [0.88–2.89] | 0.124 |
Statins | 0.63 [0.44–0.90] | 0.012 |
Metformin | 1.21 [0.79–1.86] | 0.390 |
Insulin | 2.21 [0.76–6.46] | 0.148 |
Systemic corticosteroids | 0.81 [0.49–1.36] | 0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magen, E.; Leibovich, I.; Magen, I.; Merzon, E.; Green, I.; Golan-Cohen, A.; Vinker, S.; Israel, A. Comorbidity Profile of Chronic Mast Cell–Mediated Angioedema Versus Chronic Spontaneous Urticaria. Biomedicines 2025, 13, 2259. https://doi.org/10.3390/biomedicines13092259
Magen E, Leibovich I, Magen I, Merzon E, Green I, Golan-Cohen A, Vinker S, Israel A. Comorbidity Profile of Chronic Mast Cell–Mediated Angioedema Versus Chronic Spontaneous Urticaria. Biomedicines. 2025; 13(9):2259. https://doi.org/10.3390/biomedicines13092259
Chicago/Turabian StyleMagen, Eli, Iris Leibovich, Israel Magen, Eugene Merzon, Ilan Green, Avivit Golan-Cohen, Shlomo Vinker, and Ariel Israel. 2025. "Comorbidity Profile of Chronic Mast Cell–Mediated Angioedema Versus Chronic Spontaneous Urticaria" Biomedicines 13, no. 9: 2259. https://doi.org/10.3390/biomedicines13092259
APA StyleMagen, E., Leibovich, I., Magen, I., Merzon, E., Green, I., Golan-Cohen, A., Vinker, S., & Israel, A. (2025). Comorbidity Profile of Chronic Mast Cell–Mediated Angioedema Versus Chronic Spontaneous Urticaria. Biomedicines, 13(9), 2259. https://doi.org/10.3390/biomedicines13092259