The Prognostic Role of IL-6 and RBP4 in Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Material
2.2. Tissue Microarrays and Immunohistochemical Staining
2.3. Evaluation of Immunohistochemical Staining
2.4. Statistical Analysis
3. Results
3.1. Immunoexpression of IL-6 and RBP4 in Tumor and Normal Adjacent Tissue and Its Clinicopathological Associations in Our Cohort
3.2. Association with the Clinical Outcome in Our Cohort
3.3. Immunoexpression of IL-6 and RBP4 in Tumor and Normal Adjacent Tissue and Its Clinicopathological Associations and Association with the Clinical Outcome of TCGA Cohort
3.4. Correlation Between IL-6 and RBP4 Expression in Our Cohort and TCGA
3.5. Univariate and Multivariate Cox Regression Analyses of Prognostic Factors in CRC
3.6. In Silico Investigation of Functional Pathways Connected to RBP4 and IL-6-Related Genes of the TCGA Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Fabregas, J.C.; Ramnaraign, B.; George, T.J. Clinical Updates for Colon Cancer Care in 2022. Clin. Color. Cancer 2022, 21, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; O’Sullivan, D.E.; Booth, C.M.; Sullivan, R.; Aggarwal, A. Mortality Due to Cancer Treatment Delay: Systematic Review and Meta-Analysis. BMJ 2020, 371, m4087. [Google Scholar] [CrossRef]
- Hugo, H.J.; Lebret, S.; Tomaskovic-Crook, E.; Ahmed, N.; Blick, T.; Newgreen, D.F.; Thompson, E.W.; Ackland, M.L. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. Cancer Microenviron. 2012, 5, 83. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Wang, T.; Gao, L.; Yang, Z.J.; Wang, F.F.; Shang, H.W.; Hua, R.; Xu, J.D. Biological Characteristics of IL-6 and Related Intestinal Diseases. Int. J. Biol. Sci. 2021, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A Panoramic Review of IL-6: Structure, Pathophysiological Roles and Inhibitors. Bioorganic Med. Chem. 2020, 28, 115327. [Google Scholar] [CrossRef]
- Schneider, M.R.; Hoeflich, A.; Fischer, J.R.; Wolf, E.; Sordat, B.; Lahm, H. Interleukin-6 Stimulates Clonogenic Growth of Primary and Metastatic Human Colon Carcinoma Cells. Cancer Lett. 2000, 151, 31–38. [Google Scholar] [CrossRef]
- Nikiteas, N.I.; Tzanakis, N.; Gazouli, M.; Rallis, G.; Daniilidis, K.; Theodoropoulos, G. Serum IL-6, TNFalpha and CRP Levels in Greek Colorectal Cancer Patients: Prognostic Implications. World J. Gastroenterol. 2005, 11, 1639–1643. [Google Scholar] [CrossRef]
- Lee, W.S.; Baek, J.H.; You, D.H.; Nam, M.J. Prognostic Value of Circulating Cytokines for Stage III Colon Cancer. J. Surg. Res. 2013, 182, 49–54. [Google Scholar] [CrossRef]
- Okugawa, Y.; Miki, C.; Toiyama, Y.; Yasuda, H.; Yokoe, T.; Saigusa, S.; Hiro, J.; Tanaka, K.; Inoue, Y.; Kusunoki, M. Loss of Tumoral Expression of Soluble IL-6 Receptor Is Associated with Disease Progression in Colorectal Cancer. Br. J. Cancer 2010, 103, 787. [Google Scholar] [CrossRef] [PubMed]
- Belluco, C.; Nitti, D.; Frantz, M.; Toppan, P.; Basso, D.; Plebani, M.; Lise, M.; Jessup, J.M. Interleukin-6 Blood Level Is Associated with Circulating Carcinoembryonic Antigen and Prognosis in Patients with Colorectal Cancer. Ann. Surg. Oncol. 2000, 7, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.; Tosato, G. Impairment of Natural Killer Functions by Interleukin 6 Increases Lymphoblastoid Cell Tumorigenicity in Athymic Mice. J. Clin. Investig. 1991, 88, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Hara, T.; Mitsuyama, K.; Yamamoto, M.; Tsuruta, O.; Sata, M.; Scheller, J.; Rose-John, S.; Kado, S.; Takada, T. Essential Roles of IL-6 Trans -Signaling in Colonic Epithelial Cells, Induced by the IL-6/Soluble–IL-6 Receptor Derived from Lamina Propria Macrophages, on the Development of Colitis-Associated Premalignant Cancer in a Murine Model. J. Immunol. 2010, 184, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Karunanithi, S.; Levi, L.; DeVecchio, J.; Karagkounis, G.; Reizes, O.; Lathia, J.D.; Kalady, M.F.; Noy, N. RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis. Stem Cell Rep. 2017, 9, 438–450. [Google Scholar] [CrossRef]
- Noy, N.; Li, L.; Abola, M.V.; Berger, N.A. Is Retinol Binding Protein 4 a Link between Adiposity and Cancer? Horm. Mol. Biol. Clin. Investig. 2015, 23, 39–46. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, Z. Adipokine RBP4 Drives Ovarian Cancer Cell Migration. J. Ovarian Res. 2018, 11, 29. [Google Scholar] [CrossRef]
- Zhang, H.; Zuo, L.; Li, J.; Geng, Z.; Ge, S.; Song, X.; Wang, Y.; Zhang, X.; Wang, L.; Zhao, T.; et al. Construction of a Fecal Immune-Related Protein-Based Biomarker Panel for Colorectal Cancer Diagnosis: A Multicenter Study. Front. Immunol. 2023, 14, 1126217. [Google Scholar] [CrossRef]
- Abola, M.V.; Thompson, C.L.; Chen, Z.; Chak, A.; Berger, N.A.; Kirwan, J.P.; Li, L. Serum Levels of Retinol-Binding Protein 4 and Risk of Colon Adenoma. Endocr. Relat. Cancer 2015, 22, L1–L4. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Sun, Q.; Baral, S.; Ding, J.; Zhao, F.; Yao, Q.; Gao, S.; Liu, B.; Wang, D. Retinol Binding Protein 4 Serves as a Potential Tumor Biomarker and Promotes Malignant Behavior in Gastric Cancer. Cancer Manag. Res. 2024, 16, 891–908. [Google Scholar] [CrossRef]
- Wlodarczyk, B.; Gasiorowska, A.; Borkowska, A.; Malecka-Panas, E. Evaluation of Insulin-like Growth Factor (IGF-1) and Retinol Binding Protein (RBP-4) Levels in Patients with Newly Diagnosed Pancreatic Adenocarcinoma (PDAC). Pancreatology 2017, 17, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Sayagués, J.M.; Corchete, L.A.; Gutiérrez, M.L.; Sarasquete, M.E.; Abad, M.d.M.; Bengoechea, O.; Fermiñán, E.; Anduaga, M.F.; del Carmen, S.; Iglesias, M.; et al. Genomic Characterization of Liver Metastases from Colorectal Cancer Patients. Oncotarget 2016, 7, 72908–72922. [Google Scholar] [CrossRef]
- El-Mesallamy, H.O.; Hamdy, N.M.; Zaghloul, A.S.; Sallam, A.M. Serum Retinol Binding Protein-4 and Neutrophil Gelatinase-Associated Lipocalin Are Interrelated in Pancreatic Cancer Patients. Scand. J. Clin. Lab. Investig. 2012, 72, 602–607. [Google Scholar] [CrossRef]
- Sobotka, R.; Apoun, O.; Kalousová, M.; Hanuŝ, T.; Zima, T.; Koŝtíová, M.; Soukup, V. Prognostic Importance of Vitamins A, E and Retinol-Binding Protein 4 in Renal Cell Carcinoma Patients. Anticancer. Res. 2017, 37, 3801–3806. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nono Nankam, P.A.; Blüher, M. Retinol-Binding Protein 4 in Obesity and Metabolic Dysfunctions. Mol. Cell. Endocrinol. 2021, 531, 111312. [Google Scholar] [CrossRef]
- Antosik, P.; Durślewicz, J.; Smolińska-Świtała, M.; Podemski, J.; Podemska, E.; Neska-Długosz, I.; Jóźwicki, J.; Grzanka, D. KIF11 and KIF14 Are a Novel Potential Prognostic Biomarker in Patients with Endometrioid Carcinoma. Cancers 2025, 17, 804. [Google Scholar] [CrossRef]
- Ogłuszka, M.; Orzechowska, M.; Jędroszka, D.; Witas, P.; Bednarek, A.K. Evaluate Cutpoints: Adaptable Continuous Data Distribution System for Determining Survival in Kaplan-Meier Estimator. Comput. Methods Programs Biomed. 2019, 177, 133–139. [Google Scholar] [CrossRef]
- Wan, F.; Zhu, Y.; Wu, F.; Huang, X.; Chen, Y.; Zhou, Y.; Li, H.; Liang, L.; Qin, L.; Wang, Q.; et al. Retinol-Binding Protein 4 as a Promising Serum Biomarker for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Transl. Oncol. 2024, 45, 101979. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Zhao, Y.M.; Wang, L.; Ren, G.; Wang, F.; Xia, Z.G.; Wang, X.L.; Zhang, T.; Pan, Q.; Dai, Z.; et al. Preoperative Serum Retinol-Binding Protein 4 Is Associated with the Prognosis of Patients with Hepatocellular Carcinoma after Curative Resection. J. Cancer Res. Clin. Oncol. 2011, 137, 651–658. [Google Scholar] [CrossRef]
- Komoda, H.; Tanaka, Y.; Honda, M.; Matsuo, Y.; Hazama, K.; Takao, T. Interleukin-6 Levels in Colorectal Cancer Tissues. World J. Surg. 1998, 22, 895–898. [Google Scholar] [CrossRef]
- Lu, C.C.; Kuo, H.C.; Wang, F.S.; Jou, M.H.; Lee, K.C.; Chuang, J.H. Upregulation of TLRs and IL-6 as a Marker in Human Colorectal Cancer. Int. J. Mol. Sci. 2014, 16, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, T.; Hara, M.; Nakanishi, H.; Takahashi, H.; Sato, M.; Takeyama, H. Interleukin-6 Released by Colon Cancer-Associated Fibroblasts Is Critical for Tumour Angiogenesis: Anti-Interleukin-6 Receptor Antibody Suppressed Angiogenesis and Inhibited Tumour-Stroma Interaction. Br. J. Cancer 2014, 110, 469–478. [Google Scholar] [CrossRef]
- Chung, Y.C.; Chang, Y.F. Serum Interleukin-6 Levels Reflect the Disease Status of Colorectal Cancer. J. Surg. Oncol. 2003, 83, 222–226. [Google Scholar] [CrossRef]
- Galizia, G.; Orditura, M.; Romano, C.; Lieto, E.; Castellano, P.; Pelosio, L.; Imperatore, V.; Catalano, G.; Pignatelli, C.; De Vita, F. Prognostic Significance of Circulating IL-10 and IL-6 Serum Levels in Colon Cancer Patients Undergoing Surgery. Clin. Immunol. 2002, 102, 169–178. [Google Scholar] [CrossRef]
- Milan, J.C. Effects of Natural Aging and Gender on Pro-Inflammatory Markers. Braz. J. Med. Biol. Res. 2019, 52, e8392. [Google Scholar] [CrossRef]
- Brozek, W.; Bises, G.; Fabjani, G.; Cross, H.S.; Peterlik, M. Clone-Specific Expression, Transcriptional Regulation, and Action of Interleukin-6 in Human Colon Carcinoma Cells. BMC Cancer 2008, 8, 13. [Google Scholar] [CrossRef]
- Legrand-Poels, S.; Schoonbroodt, S.; Piette, J. Regulation of Interleukin-6 Gene Expression by pro-Inflammatory Cytokines in a Colon Cancer Cell Line. Biochem. J. 2000, 349, 765–773. [Google Scholar] [CrossRef]
- Olsen, J.; Kirkeby, L.T.; Olsen, J.; Eiholm, S.; Jess, P.; Gögenur, I.; Troelsen, J.T. High Interleukin-6 MRNA Expression Is a Predictor of Relapse in Colon Cancer. Anticancer. Res. 2015, 35, 2235–2240. [Google Scholar] [PubMed]
- Tsakogiannis, D.; Kalogera, E.; Zagouri, F.; Zografos, E.; Balalis, D.; Bletsa, G. Determination of FABP4, RBP4 and the MMP-9/NGAL Complex in the Serum of Women with Breast Cancer. Oncol. Lett. 2021, 21, 85. [Google Scholar] [CrossRef]
- Lorkova, L.; Pospisilova, J.; Lacheta, J.; Leahomschi, S.; Zivny, J.; Cibula, D.; Zivny, J.; Petrak, J. Decreased Concentrations of Retinol-Binding Protein 4 in Sera of Epithelial Ovarian Cancer Patients: A Potential Biomarker Identified by Proteomics. Oncol. Rep. 2012, 27, 318–324. [Google Scholar] [CrossRef]
- Jiao, C.; Cui, L.; Ma, A.; Li, N.; Si, H. Elevated Serum Levels of Retinol-Binding Protein 4 Are Associated with Breast Cancer Risk: A Case-Control Study. PLoS ONE 2016, 11, e0167498. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, S.; Smith, E.; De Young, N.J.; Wang, X.; Tian, Z.Q.; Liu, J.F.; Jamieson, G.G.; Drew, P.A. Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in Esophageal Squamous Cell Carcinoma. Oncol. Rep. 2009, 21, 1067–1073. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Zhou, L.; Liu, Y. Retinol-Binding Protein 4 as a Biomarker in Cancer: Insights from a Pan-Cancer Analysis of Expression, Immune Infiltration, and Methylation. Genes 2025, 16, 150. [Google Scholar] [CrossRef]
- Papiernik, D.; Urbaniak, A.; Kłopotowska, D.; Nasulewicz-Goldeman, A.; Ekiert, M.; Nowak, M.; Jarosz, J.; Cuprych, M.; Strzykalska, A.; Ugorski, M.; et al. Retinol-Binding Protein 4 Accelerates Metastatic Spread and Increases Impairment of Blood Flow in Mouse Mammary Gland Tumors. Cancers 2020, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Ren, J.; Bi, Z.; Fu, Z. Positive Expression of Retinol-Binding Protein 4 Is Related to the Malignant Clinical Features Leading to Poor Prognosis of Glioblastoma. Genet. Res. 2022, 2022, 5435523. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Shen, D.; He, L.; Wang, H.; Liu, C.; Zhang, W. Prognostic Significance of SOCS3 and Its Biological Function in Colorectal Cancer. Gene 2017, 627, 114–122. [Google Scholar] [CrossRef]
- Li, Y.; De Haar, C.; Chen, M.; Deuring, J.; Gerrits, M.M.; Smits, R.; Xia, B.; Kuipers, E.J.; Van Janneke Der Woude, C. Disease-Related Expression of the IL6/STAT3/SOCS3 Signalling Pathway in Ulcerative Colitis and Ulcerative Colitis-Related Carcinogenesis. Gut 2010, 59, 227–235. [Google Scholar] [CrossRef]
- Bártů, M.; Hojný, J.; Hájková, N.; Michálková, R.; Krkavcová, E.; Simon, K.; Frýba, V.; Stružinská, I.; Němejcová, K.; Dundr, P. Expression, Epigenetic, and Genetic Changes of HNF1B in Colorectal Lesions: An Analysis of 145 Cases. Pathol. Oncol. Res. 2020, 26, 2337–2350. [Google Scholar] [CrossRef]
- Razi, S.; Baradaran Noveiry, B.; Keshavarz-Fathi, M.; Rezaei, N. IL-17 and Colorectal Cancer: From Carcinogenesis to Treatment. Cytokine 2019, 116, 7–12. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, X.; Yuan, M.; Li, Y. The Diverse Function of IL-6 in Biological Processes and the Advancement of Cancer. Immune Netw. 2025, 25, e22. [Google Scholar] [CrossRef]
- Du, W.; Xia, X.; Gou, Q.; Qiu, Y. Mendelian Randomization and Transcriptomic Analysis Reveal a Positive Cause-and-Effect Relationship between Alzheimer’s Disease and Colorectal Cancer. Transl. Oncol. 2024, 51, 102169. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Cao, B.; Ma, N.; Wu, K.Y.; Chen, W.B.; Wu, W.; Dong, X.; Liu, C.F.; Gao, Y.F.; Diao, T.Y.; et al. Collectin-11 Promotes Cancer Cell Proliferation and Tumor Growth. JCI Insight 2023, 8, e159452. [Google Scholar] [CrossRef] [PubMed]
Clinicopathological Parameters | n (%) n = 118 | Il-6 Expression | p Value | RBP4 Expression | p Value | ||
---|---|---|---|---|---|---|---|
Low | High | Low | High | ||||
n = 91 | n = 27 | n = 68 | n = 50 | ||||
Age (years) | |||||||
≤65 | 50 (42.37) | 44 (88.00) | 6 (12.00) | 0.0254 | 34 (68.00) | 16 (32.00) | 0.0607 |
>65 | 68 (57.63) | 47 (69.12) | 21 (30.88) | 34 (50.00) | 34 (50.00) | ||
Gender | |||||||
Male | 71 | 54 | 17 | 0.8248 | 36 | 35 | 0.0864 |
Female | 47 | 37 | 10 | 32 | 15 | ||
Grading | |||||||
G1–G2 | 113 | 86 | 27 | 0.5876 | 63 | 50 | 0.0717 |
G3 | 5 | 5 | 0 | 5 | 0 | ||
pT status | |||||||
T1–T2 | 61 | 49 | 12 | 40 | 21 | ||
T3 | 54 | 39 | 15 | 0.2757 | 26 | 28 | 0.0398 |
T4 | 3 | 2 | 1 | 1 | 2 | ||
pN status | |||||||
N0 | 80 | 59 | 21 | 0.8005 | 53 | 27 | 0.0044 |
N1–N2 | 35 | 21 | 6 | 13 | 22 | ||
pM status | |||||||
M0 | 115 | 88 | 27 | 0.5599 | 67 | 48 | 0.5733 |
M1 | 3 | 2 | 1 | 1 | 2 | ||
TNM stage | |||||||
I | 51 | 40 | 11 | 0.9851 | 34 | 17 | 0.0119 |
II | 28 | 18 | 10 | 18 | 10 | ||
III | 33 | 27 | 6 | 13 | 20 | ||
IV | 3 | 2 | 1 | 1 | 2 | ||
VI | |||||||
Absent | 105 | 80 | 25 | 0.7298 | 64 | 41 | 0.0708 |
Present | 13 | 11 | 2 | 4 | 9 | ||
PNI | |||||||
Absent | 111 | 87 | 24 | 0.1955 | 66 | 45 | 0.1323 |
Present | 7 | 4 | 3 | 2 | 5 | ||
Resection margin | |||||||
R0 | 114 | 89 | 25 | 0.2243 | 66 | 48 | >0.9999 |
R1–R2 | 4 | 2 | 2 | 2 | 2 | ||
Primary tumor location | |||||||
Right colon | 40 | 30 | 10 | 0.9018 | 26 | 14 | 0.3779 |
Left colon | 40 | 33 | 7 | 21 | 19 | ||
Rectum | 38 | 28 | 10 | 21 | 17 | ||
Obesity | |||||||
BMI <30 kg/m2 | 83 | 74 | 9 | <0.0001 | 48 | 35 | 0.0264 |
BMI ≥30 kg/m2 | 35 | 17 | 18 | 12 | 23 | ||
Waist circumference | |||||||
<88 cm (female)/<102 cm (male) | 48 | 40 | 8 | 0.0127 | 32 | 16 | 0.0396 |
≥88 cm (female)/≥102 cm (male) | 47 | 28 | 19 | 21 | 26 |
Clinicopathological Parameters | n (%) n = 350 | Il-6 Expression | p Value | RBP4 Expression | p Value | ||
---|---|---|---|---|---|---|---|
Low | High | Low | High | ||||
n = 191 | n = 159 | n = 95 | n = 255 | ||||
Age (years) | |||||||
≤65 | 169 (48.29) | 88 (52.07) | 81 (47.93) | 0.364 | 48 (28.4) | 121 (71.6) | 0.6086 |
>65 | 181 (51.71) | 103 (56.91) | 78 (43.09) | 47 (25.97) | 134 (74.03) | ||
Gender | |||||||
Male | 189 (54) | 110 (58.2) | 79 (41.8) | 0.1395 | 60 (31.75) | 129 (68.25) | 0.0359 |
Female | 161 (46) | 81 (50.31) | 80 (49.69) | 35 (21.74) | 126 (78.26) | ||
pT status | |||||||
T1–T2 | 64 (18.29) | 35 (54.69) | 29 (45.31) | 0.3761 | 17 (26.56) | 47 (73.44) | 0.9912 |
T3 | 239 (68.29) | 126 (52.72) | 113 (47.28) | 65 (27.2) | 174 (72.8) | ||
T4 | 47 (13.43) | 30 (63.83) | 17 (36.17) | 13 (27.66) | 34 (72.34) | ||
pN status | |||||||
N0 | 195 (55.71) | 101 (51.79) | 94 (48.21) | 0.2386 | 40 (20.51) | 155 (79.49) | 0.0018 |
N1–N2 | 155 (44.29) | 90 (58.06) | 65 (41.94) | 55 (35.48) | 100 (54.52) | ||
pM status | |||||||
M0 | 247 (70.57) | 137 (55.47) | 110 (44.53) | 0.1364 | 62 (25.1) | 185 (74.9) | 0.0086 |
M1 | 48 (13.71) | 21 (43.75) | 27 (56.25) | 21 (43.75) | 27 (56.25) | ||
MX | 55 (15.71) | 33 (60) | 22 (40) | 12 (21.82) | 43 (78.18) | ||
TNM stage | |||||||
I | 56 (16) | 31 (55.36) | 25 (44.64) | 0.9259 | 15 (26.79) | 41 (73.21) | 0.0017 |
II | 132 (37.71) | 69 (52.27) | 63 (47.73) | 22 (16.67) | 110 (83.33) | ||
III | 110 (31.43) | 62 (56.36) | 48 (43.64) | 36 (32.72) | 74 (67.27) | ||
IV | 52 (14.86) | 29 (55.77) | 23 (44.23) | 22 (42.31) | 30 (57.69) |
Variable | Univariable Cox | Multivariable Cox | ||||||
---|---|---|---|---|---|---|---|---|
HR | CI Lower 95% | CI Upper 95% | p-Value | HR | CI Lower 95% | CI Upper 95% | p-Value | |
IL-6 | 1.935 | 1.038 | 3.611 | 0.038 | 1.748 | 0.906 | 3.373 | 0.096 |
RBP4 | 4.583 | 2.445 | 8.592 | <0.0001 | 3.398 | 1.775 | 6.505 | <0.0001 |
Age | 1.046 | 1.015 | 1.078 | 0.004 | 1.034 | 1.0 | 1.068 | 0.048 |
Gender | 2.578 | 1.311 | 5.071 | 0.006 | 1.922 | 0.956 | 3.864 | 0.067 |
TNM | 3.447 | 1.938 | 6.131 | <0.0001 | 3.025 | 1.66 | 5.513 | <0.0001 |
Obesity | 1.13 | 0.612 | 2.087 | 0.696 | - | - | - | - |
pN status | 3.295 | 1.852 | 5.86 | <0.0001 | - | - | - | - |
Variable | Univariable Cox | Multivariable Cox | ||||||
---|---|---|---|---|---|---|---|---|
HR | CI Lower 95% | CI Upper 95% | p-Value | HR | CI Lower 95% | CI Upper 95% | p-Value | |
IL-6 | 0.901 | 0.815 | 0.997 | 0.044 | - | - | - | - |
RBP4 | 0.982 | 0.871 | 1.108 | 0.773 | - | - | - | - |
Age | 1.03 | 1.011 | 1.05 | 0.002 | 1.04 | 1.02 | 1.06 | <0.0001 |
Gender | 1.284 | 0.816 | 2.022 | 0.28 | - | - | - | - |
TNM | 2.519 | 1.579 | 4.017 | <0.0001 | 3.116 | 1.931 | 5.027 | <0.0001 |
pN status | 2.339 | 1.477 | 3.704 | <0.0001 | - | - | - | - |
IL-6 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p Value | IL-6 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p Value |
---|---|---|---|---|---|---|---|
IL11 | 19q13.42 | 0.765 | 5.83 × 10−102 | GPR84 | 12q13.13 | 0.608 | 2.37 × 10−54 |
SOCS3 | 17q25.3 | 0.753 | 9.05 × 10−97 | FCAR | 19q13.42 | 0.603 | 3.64 × 10−53 |
IL24 | 1q32.1 | 0.742 | 1.34 × 10−92 | CCL8 | 17q12 | 0.601 | 7.69 × 10−53 |
CXCL8 | 4q13.3 | 0.738 | 3.66 × 10−91 | PAPPA | 9q33.1 | 0.601 | 9.60 × 10−53 |
CSF2 | 5q31.1 | 0.724 | 2.24 × 10−86 | ADAMTS4 | 1q23.3 | 0.600 | 1.48 × 10−52 |
OSM | 22q12.2 | 0.721 | 3.34 × 10−85 | SELE | 1q24.2 | 0.598 | 4.18 × 10−52 |
PTGS2 | 1q31.1 | 0.710 | 1.07 × 10−81 | NR4A3 | 9q31.1 | 0.596 | 8.60 × 10−52 |
MMP3 | 11q22.2 | 0.708 | 6.63 × 10−81 | HSD11B1 | 1q32.2 | 0.595 | 1.37 × 10−51 |
CSF3 | 17q21.1 | 0.706 | 3.81 × 10−80 | FPR1 | 19q13.41 | 0.595 | 1.85 × 10−51 |
CXCL5 | 4q13.3 | 0.685 | 6.51 × 10−74 | PROK2 | 3p13 | 0.589 | 3.74 × 10−50 |
MMP1 | 11q22.2 | 0.682 | 8.15 × 10−73 | LILRA5 | 19q13.42 | 0.585 | 2.35 × 10−49 |
IL1B | 2q14.1 | 0.673 | 2.25 × 10−70 | CCL4 | 17q12 | 0.585 | 2.43 × 10−49 |
CCL2 | 17q12 | 0.655 | 1.42 × 10−65 | SERPINE1 | 7q22.1 | 0.583 | 4.88 × 10−49 |
CCL3 | 17q12 | 0.650 | 3.82 × 10−64 | PRR16 | 5q23.1 | 0.580 | 2.21 × 10−48 |
PLAU | 10q22.2 | 0.644 | 1.07 × 10−62 | PDPN | 1p36.21 | 0.578 | 4.03 × 10−48 |
HCAR2 | 12q24.31 | 0.641 | 4.90 × 10−62 | CCL3L1 | 17q12 | 0.578 | 4.27 × 10−48 |
FPR2 | 19q13.41 | 0.626 | 2.02 × 10−58 | TFPI2 | 7q21.3 | 0.576 | 1.21 × 10−47 |
BCL2A1 | 15q25.1 | 0.620 | 4.85 × 10−57 | TREM1 | 6p21.1 | 0.574 | 3.02 × 10−47 |
TNFAIP6 | 2q23.3 | 0.620 | 5.66 × 10−57 | CCN4 | 8q24.22 | 0.571 | 1.07 × 10−46 |
STC1 | 8p21.2 | 0.619 | 7.72 × 10−57 | AQP9 | 15q21.3 | 0.566 | 9.93 × 10−46 |
PI15 | 8q21.13 | 0.616 | 4.78 × 10−56 | KCNJ15 | 21q22.13-q22.2 | 0.564 | 2.75 × 10−45 |
S100A8 | 1q21.3 | 0.614 | 1.15 × 10−55 | CYTL1 | 4p16.2 | 0.562 | 7.00 × 10−45 |
CXCL6 | 4q13.3 | 0.614 | 1.51 × 10−55 | FCGR2A | 1q23.3 | 0.554 | 1.87 × 10−43 |
HCAR3 | 12q24.31 | 0.610 | 8.46 × 10−55 | CSF3R | 1p34.3 | 0.554 | 2.02 × 10−43 |
SLC2A3 | 12p13.31 | 0.610 | 1.20 × 10−54 | MEDAG | 13q12.3 | 0.552 | 3.54 × 10−43 |
IL-6 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p Value | IL-6 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p Value |
---|---|---|---|---|---|---|---|
HNF1B | 17q12 | −0.356 | 4.10 × 10−17 | NGEF | 2q37.1 | −0.292 | 9.47 × 10−12 |
IL17RE | 3p25.3 | −0.356 | 4.39 × 10−17 | ARHGAP8 | 22q13.31 | −0.292 | 9.73 × 10−12 |
WNK4 | 17q21.2 | −0.350 | 1.49 × 10−16 | RAVER2 | 1p31.3 | −0.291 | 1.04 × 10−11 |
C14ORF93 | 14q11.2 | −0.328 | 1.36 × 10−14 | ILDR1 | 3q13.33 | −0.291 | 1.06 × 10−11 |
FOXD2-AS1 | 1p33 | −0.326 | 1.88 × 10−14 | SIRT5 | 6p23 | −0.291 | 1.07 × 10−11 |
PPFIBP2 | 11p15.4 | −0.323 | 3.67 × 10−14 | PGAP3 | 17q12 | −0.289 | 1.44 × 10−11 |
IHH | 2q35 | −0.322 | 4.12 × 10−14 | HSD11B2 | 16q22.1 | −0.287 | 2.00 × 10−11 |
CEBPA-DT | 19q13.11 | −0.314 | 1.92 × 10−13 | CRACDL | 2q11.2 | −0.287 | 2.15 × 10−11 |
NR1I2 | 3q13.33 | −0.313 | 2.08 × 10−13 | PRKCZ | 1p36.33 | −0.287 | 2.31 × 10−11 |
TACC2 | 10q26.13 | −0.310 | 3.63 × 10−13 | CC2D1A | 19p13.12 | −0.286 | 2.42 × 10−11 |
ZNF768 | 16p11.2 | −0.310 | 4.03 × 10−13 | SHD | 19p13.3 | −0.286 | 2.63 × 10−11 |
FGFR3 | 4p16.3 | −0.308 | 6.06 × 10−13 | HNF1A-AS1 | 12q24.31 | −0.284 | 3.72 × 10−11 |
BDH1 | 3q29 | −0.307 | 6.83 × 10−13 | DAPK2 | 15q22.31 | −0.282 | 5.03 × 10−11 |
EVPL | 17q25.1 | −0.306 | 7.81 × 10−13 | COQ8A | 1q42.13 | −0.280 | 6.64 × 10−11 |
AKAP1 | 17q22 | −0.304 | 1.08 × 10−12 | CCHCR1 | 6p21.33 | −0.280 | 6.80 × 10−11 |
MKRN1 | 7q34 | −0.304 | 1.18 × 10−12 | ANKS4B | 16p12.2 | −0.280 | 7.05 × 10−11 |
PPP1R1B | 17q12 | −0.303 | 1.28 × 10−12 | TMEM184A | 7p22.3 | −0.279 | 7.41 × 10−11 |
ZNF69 | 19p13.2 | −0.302 | 1.76 × 10−12 | ARHGEF5 | 7q35 | −0.278 | 8.93 × 10−11 |
ERBB3 | 12q13.2 | −0.300 | 2.26 × 10−12 | NDUFA10 | 2q37.3 | −0.278 | 9.17 × 10−11 |
CCDC183 | 9q34.3 | −0.297 | 3.63 × 10−12 | EIF4EBP3 | 5q31.3 | −0.278 | 9.23 × 10−11 |
SGK2 | 20q13.12 | −0.294 | 6.30 × 10−12 | ACVR1B | 12q13.13 | −0.277 | 1.06 × 10−10 |
AP1M2 | 19p13.2 | −0.294 | 6.53 × 10−12 | TRABD2A | 2p11.2 | −0.276 | 1.30 × 10−10 |
PLEKHA6 | 1q32.1 | −0.292 | 8.76 × 10−12 | USH1C | 11p15.1 | −0.275 | 1.49 × 10−10 |
MYO7B | 2q14.3 | −0.292 | 9.00 × 10−12 | ERBB2 | 17q12 | −0.275 | 1.54 × 10−10 |
EPB41L4B | 9q31.3 | −0.292 | 9.03 × 10−12 | ZSWIM5 | 1p34.1 | −0.274 | 1.88 × 10−10 |
RBP4 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p Value | RBP4 (+) Correlated Gene | Cytoband | Spearman’s Correlation | p Value |
---|---|---|---|---|---|---|---|
COLEC11 | 2p25.3 | 0.369 | 2.19 × 10−18 | OTUD5 | Xp11.23 | 0.319 | 7.83 × 10−14 |
CDIPT | 16p11.2 | 0.368 | 2.95 × 10−18 | LSAMP | 3q13.31 | 0.319 | 8.05 × 10−14 |
DDAH2 | 6p21.33 | 0.367 | 3.61 × 10−18 | ZNF853 | 7p22.1 | 0.318 | 8.74 × 10−14 |
FZD8 | 10p11.21 | 0.360 | 1.61 × 10−17 | RNF32-DT | 7q36.3 | 0.317 | 1.06 × 10−13 |
RAMP2 | 17q21.2 | 0.358 | 2.61 × 10−17 | GLI1 | 12q13.3 | 0.317 | 1.08 × 10−13 |
ITGB5 | 3q21.2 | 0.355 | 5.04 × 10−17 | FBLN1 | 22q13.31 | 0.316 | 1.24 × 10−13 |
SLC29A3 | 10q22.1 | 0.353 | 8.12 × 10−17 | NFASC | 1q32.1 | 0.316 | 1.30 × 10−13 |
TGFB1I1 | 16p11.2 | 0.350 | 1.67 × 10−16 | TFEB | 6p21.1 | 0.315 | 1.54 × 10−13 |
TBC1D25 | Xp11.23 | 0.346 | 3.57 × 10−16 | GFRA3 | 5q31.2 | 0.314 | 1.78 × 10−13 |
APBB1 | 11p15.4 | 0.346 | 3.59 × 10−16 | USP11 | Xp11.3 | 0.314 | 1.81 × 10−13 |
TCF7L1 | 2p11.2 | 0.342 | 8.46 × 10−16 | TCEAL3 | Xq22.2 | 0.314 | 1.83 × 10−13 |
ELN | 7q11.23 | 0.339 | 1.45 × 10−15 | PDLIM4 | 5q31.1 | 0.314 | 1.95 × 10−13 |
MED29 | 19q13.2 | 0.339 | 1.50 × 10−15 | NACAD | 7p13 | 0.312 | 2.83 × 10−13 |
SALL4 | 20q13.2 | 0.333 | 5.08 × 10−15 | PODN | 1p32.3 | 0.312 | 2.89 × 10−13 |
CST3 | 20p11.21 | 0.333 | 5.10 × 10−15 | PLAT | 8p11.21 | 0.311 | 3.00 × 10−13 |
TSPY26P | 20q11.21 | 0.327 | 1.67 × 10−14 | USP27X | Xp11.23 | 0.311 | 3.23 × 10−13 |
HHIP | 4q31.21 | 0.326 | 2.08 × 10−14 | APBA1 | 9q21.12 | 0.310 | 3.87 × 10−13 |
RBFOX1 | 16p13.3 | 0.326 | 2.09 × 10−14 | NMUR1 | 2q37.1 | 0.309 | 4.76 × 10−13 |
LRRC32 | 11q13.5 | 0.325 | 2.38 × 10−14 | RUSC2 | 9p13.3 | 0.308 | 5.70 × 10−13 |
INMT | 7p14.3 | 0.323 | 3.18 × 10−14 | TAFA5 | 22q13.32 | 0.308 | 5.79 × 10−13 |
CPZ | 4p16.1 | 0.323 | 3.55 × 10−14 | SLC24A3 | 20p11.23 | 0.307 | 7.31 × 10−13 |
PTCH2 | 1p34.1 | 0.322 | 3.98 × 10−14 | BMERB1 | 16p13.11 | 0.306 | 7.47 × 10−13 |
FRZB | 2q32.1 | 0.322 | 4.22 × 10−14 | KIAA1755 | 20q11.23 | 0.306 | 8.41 × 10−13 |
TEAD3 | 6p21.31 | 0.319 | 6.87 × 10−14 | SCUBE3 | 6p21.3 | 0.306 | 8.70 × 10−13 |
TFE3 | Xp11.23 | 0.319 | 7.78 × 10−14 | ACTB | 7p22.1 | 0.305 | 8.97 × 10−13 |
RBP4 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p Value | RBP4 (−) Correlated Gene | Cytoband | Spearman’s Correlation | p Value |
---|---|---|---|---|---|---|---|
HSPA4L | 4q28.1 | −0.398 | 2.71 × 10−21 | MAP2K1 | 15q22.31 | −0.294 | 6.63 × 10−12 |
PPAT | 4q12 | −0.365 | 6.35 × 10−18 | INTS13 | 12p11.23 | −0.294 | 6.65 × 10−12 |
GUF1 | 4p12 | −0.346 | 3.50 × 10−16 | PDS5A | 4p14 | −0.293 | 7.66 × 10−12 |
LIAS | 4p14 | −0.336 | 2.47 × 10−15 | CCT8 | 21q21.3 | −0.293 | 7.69 × 10−12 |
RPRD1A | 18q12.2 | −0.325 | 2.40 × 10−14 | UBE3A | 15q11.2 | −0.290 | 1.33 × 10−11 |
CBR4 | 4q32.3 | −0.322 | 4.06 × 10−14 | TIMM21 | 18q22.3 | −0.289 | 1.46 × 10−11 |
POLR3G | 5q14.3 | −0.321 | 5.49 × 10−14 | TM7SF3 | 12p11.23 | −0.289 | 1.58 × 10−11 |
TMEM33 | 4p13 | −0.320 | 5.83 × 10−14 | MRPS27 | 5q13.2 | −0.289 | 1.59 × 10−11 |
SFXN1 | 5q35.2 | −0.316 | 1.21 × 10−13 | CDC7 | 1p22.1 | −0.287 | 2.17 × 10−11 |
ME2 | 18q21.2 | −0.316 | 1.38 × 10−13 | EXOSC9 | 4q27 | −0.286 | 2.38 × 10−11 |
OIP5-AS1 | 15q15.1 | −0.315 | 1.46 × 10−13 | MDH1 | 2p15 | −0.286 | 2.46 × 10−11 |
PAICS | 4q12 | −0.312 | 2.77 × 10−13 | TIPIN | 15q22.31 | −0.286 | 2.59 × 10−11 |
MREG | 2q35 | −0.311 | 3.18 × 10−13 | DNAJC16 | 1p36.21 | −0.285 | 2.86 × 10−11 |
C12ORF60 | 12p12.3 | −0.310 | 3.75 × 10−13 | PMS1 | 2q32.2 | −0.285 | 3.10 × 10−11 |
SLC35F2 | 11q22.3 | −0.307 | 7.12 × 10−13 | LARS1 | 5q32 | −0.283 | 3.89 × 10−11 |
CIAO2A | 15q22.31 | −0.306 | 8.36 × 10−13 | COPS2 | 15q21.1 | −0.283 | 4.23 × 10−11 |
GRSF1 | 4q13.3 | −0.305 | 9.43 × 10−13 | VRK2 | 2p16.1 | −0.282 | 4.68 × 10−11 |
CENPE | 4q24 | −0.303 | 1.35 × 10−12 | MTIF2 | 2p16.1 | −0.282 | 4.69 × 10−11 |
UBA6 | 4q13.2 | −0.302 | 1.54 × 10−12 | CDC27 | 17q21.32 | −0.282 | 4.70 × 10−11 |
FASTKD1 | 2q31.1 | −0.302 | 1.75 × 10−12 | NCAPG | 4p15.31 | −0.282 | 4.90 × 10−11 |
TFRC | 3q29 | −0.301 | 1.86 × 10−12 | RAD54B | 8q22.1 | −0.282 | 5.16 × 10−11 |
ETF1 | 5q31.2 | −0.296 | 4.50 × 10−12 | TMEM161B | 5q14.3 | −0.281 | 5.46 × 10−11 |
SKA1 | 18q21.1 | −0.296 | 4.70 × 10−12 | SELENOI | 2p23.3 | −0.281 | 5.91 × 10−11 |
CHAF1B | 21q22.12-q22.13 | −0.295 | 5.30 × 10−12 | SRRM1 | 1p36.11 | −0.280 | 6.30 × 10−11 |
NARS1 | 18q21.31 | −0.295 | 5.83 × 10−12 | TMX2 | 11q12.1 | −0.279 | 7.61 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żulicka, M.; Piątkowska, D.; Grzanka, D.; Bonowicz, K.; Jerka, D.; Gagat, M.; Antosik, P. The Prognostic Role of IL-6 and RBP4 in Colorectal Cancer. Biomedicines 2025, 13, 2257. https://doi.org/10.3390/biomedicines13092257
Żulicka M, Piątkowska D, Grzanka D, Bonowicz K, Jerka D, Gagat M, Antosik P. The Prognostic Role of IL-6 and RBP4 in Colorectal Cancer. Biomedicines. 2025; 13(9):2257. https://doi.org/10.3390/biomedicines13092257
Chicago/Turabian StyleŻulicka, Małgorzata, Daria Piątkowska, Dariusz Grzanka, Klaudia Bonowicz, Dominika Jerka, Maciej Gagat, and Paulina Antosik. 2025. "The Prognostic Role of IL-6 and RBP4 in Colorectal Cancer" Biomedicines 13, no. 9: 2257. https://doi.org/10.3390/biomedicines13092257
APA StyleŻulicka, M., Piątkowska, D., Grzanka, D., Bonowicz, K., Jerka, D., Gagat, M., & Antosik, P. (2025). The Prognostic Role of IL-6 and RBP4 in Colorectal Cancer. Biomedicines, 13(9), 2257. https://doi.org/10.3390/biomedicines13092257