Potential for Therapeutic Alteration of the Underlying Biology of Epilepsy
Abstract
1. Introduction
2. Potential Harmful Effects of Recurrent Seizures on the Underlying Biology of Epilepsy
3. Evidence for Potential Therapeutic Alteration of the Underlying Biology of Epilepsy
3.1. Preclinical Evidence
3.2. Clinical Evidence
3.2.1. Nonpharmacological Therapies
3.2.2. Pharmacological Therapies
Daily Treatments
Intermittent Treatments
- Diazepam Nasal Spray
Other Pharmacological Treatments
4. Discussion
Ongoing Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Epilepsy: A Public Health Imperative. 2019. Available online: https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative (accessed on 10 September 2024).
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshe, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Kalviainen, R. Progressive myoclonus epilepsies. Semin. Neurol. 2015, 35, 293–299. [Google Scholar] [CrossRef]
- Jiruska, P.; Freestone, D.; Gnatkovsky, V.; Wang, Y. An update on the seizures beget seizures theory. Epilepsia 2023, 64 (Suppl. S3), S13–S24. [Google Scholar] [CrossRef]
- Kalilani, L.; Sun, X.; Pelgrims, B.; Noack-Rink, M.; Villanueva, V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 2018, 59, 2179–2193. [Google Scholar] [CrossRef]
- Stern, J.M.; Sankar, R.; Sperling, M. (Eds.) Medication-Resistant Epilepsy Diagnosis and Treatment; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Rao, V.R. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: Current status and future prospects. Expert Rev. Med. Devices 2021, 18, 1093–1105. [Google Scholar] [CrossRef]
- Bromfield, E.B.; Cavazos, J.E.; Sirven, J.I. (Eds.) An Introduction to Epilepsy; American Epilepsy Society: West Hartford, CT, USA, 2006. [Google Scholar]
- Naylor, D.E. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023, 8 (Suppl. S1), S35–S65. [Google Scholar] [CrossRef]
- Kapur, J.; Long, L.; Dixon-Salazar, T. Consequences: Bench to home. Epilepsia 2022, 63 (Suppl. S1), S14–S24. [Google Scholar] [CrossRef]
- Walker, M.C. Pathophysiology of status epilepticus. Neurosci. Lett. 2018, 667, 84–91. [Google Scholar] [CrossRef]
- Lehnertz, K.; Brohl, T.; Wrede, R.V. Epileptic-network-based prediction and control of seizures in humans. Neurobiol. Dis. 2023, 181, 106098. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.S.; Warren, A.E.; Jackson, G.D.; Abbott, D.F. Conceptualizing Lennox-Gastaut syndrome as a secondary network epilepsy. Front. Neurol. 2014, 5, 225. [Google Scholar] [CrossRef]
- Paganoni, S.; Macklin, E.A.; Hendrix, S.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 2020, 383, 919–930. [Google Scholar] [CrossRef]
- Andrews, J.A.; Jackson, C.E.; Heiman-Patterson, T.D.; Bettica, P.; Brooks, B.R.; Pioro, E.P. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.E.; Lalli, S.; Monsurro, M.R.; Sagnelli, A.; Taiello, A.C.; Reggiori, B.; La Bella, V.; Tedeschi, G.; Albanese, A. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2016, 23, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Watt, J.A.; Isaranuwatchai, W.; Grossman, L.; Straus, S.E. Disease-modifying drugs for Alzheimer disease: Implications for people in Canada. CMAJ 2023, 195, E1446–E1448. [Google Scholar] [CrossRef]
- Cummings, J.L.; Osse, A.M.L.; Kinney, J.W. Alzheimer’s disease: Novel targets and investigational drugs for disease modification. Drugs 2023, 83, 1387–1408. [Google Scholar] [CrossRef]
- Olejnik, P.; Roszkowska, Z.; Adamus, S.; Kasarello, K. Multiple sclerosis: A narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol. Rep. 2024, 76, 926–943. [Google Scholar] [CrossRef] [PubMed]
- McFarthing, K.; Buff, S.; Rafaloff, G.; Pitzer, K.; Fiske, B.; Navangul, A.; Beissert, K.; Pilcicka, A.; Fuest, R.; Wyse, R.K.; et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 2024 update. J. Park. Dis. 2024, 14, 899–912. [Google Scholar] [CrossRef]
- Spain, R.I.; Cameron, M.H.; Bourdette, D. Recent developments in multiple sclerosis therapeutics. BMC Med. 2009, 7, 74. [Google Scholar] [CrossRef]
- Bayer AG. BETAFERON (Interferon beta-1b); Summary of Product Characteristics; Bayer AG: Berlin, Germany, 2006. [Google Scholar]
- Bayer HealthCare Pharmaceuticals Inc. BETASERON (Interferon beta-1b); Full Prescribing Information; Bayer HealthCare Pharmaceuticals Inc.: Whippany, NJ, USA, 2023. [Google Scholar]
- Rae-Grant, A.; Day, G.S.; Marrie, R.A.; Rabinstein, A.; Cree, B.A.C.; Gronseth, G.S.; Haboubi, M.; Halper, J.; Hosey, J.P.; Jones, D.E.; et al. Comprehensive systematic review summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 789–800. [Google Scholar] [CrossRef]
- Fox, R.J.; Bar-Or, A.; Traboulsee, A.; Oreja-Guevara, C.; Giovannoni, G.; Vermersch, P.; Syed, S.; Li, Y.; Vargas, W.S.; Turner, T.J.; et al. Tolebrutinib in nonrelapsing secondary progressive multiple sclerosis. N. Engl. J. Med. 2025, 392, 1883–1892. [Google Scholar] [CrossRef]
- French, J.A.; Bebin, M.; Dichter, M.A.; Engel, J., Jr.; Hartman, A.L.; Jozwiak, S.; Klein, P.; McNamara, J., Sr.; Twyman, R.; Vespa, P. Antiepileptogenesis and disease modification: Clinical and regulatory issues. Epilepsia Open 2021, 6, 483–492. [Google Scholar] [CrossRef]
- Rauh, R.; Schulze-Bonhage, A.; Metternich, B. Assessment of anxiety in patients with epilepsy: A literature review. Front. Neurol. 2022, 13, 836321. [Google Scholar] [CrossRef]
- Klein, P.; Carrazana, E.; Glauser, T.; Herman, B.P.; Penovich, P.; Rabinowicz, A.L.; Sutula, T.P. Do seizures damage the brain?-Cumulative effects of seizures and epilepsy: A 2025 perspective. Epilepsy Curr. 2025. [Google Scholar] [CrossRef]
- Galovic, M.; van Dooren, V.Q.H.; Postma, T.S.; Vos, S.B.; Caciagli, L.; Borzi, G.; Cueva Rosillo, J.; Vuong, K.A.; de Tisi, J.; Nachev, P.; et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 2019, 76, 1230–1239. [Google Scholar] [CrossRef]
- Kalviainen, R.; Salmenpera, T.; Partanen, K.; Vainio, P.; Riekkinen, P.; Pitkanen, A. Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 1998, 50, 1377–1382. [Google Scholar] [CrossRef]
- Caciagli, L.; Bernasconi, A.; Wiebe, S.; Koepp, M.J.; Bernasconi, N.; Bernhardt, B.C. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain? Neurology 2017, 89, 506–516. [Google Scholar] [CrossRef]
- Tasch, E.; Cendes, F.; Li, L.M.; Dubeau, F.; Andermann, F.; Arnold, D.L. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann. Neurol. 1999, 45, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Orsini, A.; Valetto, A.; Bertini, V.; Esposito, M.; Carli, N.; Minassian, B.A.; Bonuccelli, A.; Peroni, D.; Michelucci, R.; Striano, P. The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019, 71, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Sampaio, L. Brain magnetic resonance in status epilepticus: A focused review. Seizure 2016, 38, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Vespa, P.M.; McArthur, D.L.; Xu, Y.; Eliseo, M.; Etchepare, M.; Dinov, I.; Alger, J.; Glenn, T.P.; Hovda, D. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology 2010, 75, 792–798. [Google Scholar] [CrossRef]
- Kesselmayer, R.F.; Morel, G.M.; Bordenavem, J.M.; Jones, J.; Hermann, B. Epilepsy and cognition. In The Comorbidities of Epilepsy; Mula, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 245–272. [Google Scholar]
- Ihnen, S.K.Z.; Alperin, S.; Capal, J.K.; Cohen, A.L.; Peters, J.M.; Bebin, E.M.; Northrup, H.A.; Sahin, M.; Krueger, D.A.; Group, T.S. Accumulated seizure burden predicts neurodevelopmental outcome at 36 months of age in patients with tuberous sclerosis complex. Epilepsia 2025, 66, 117–133. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Elger, C.E. Chronic temporal lobe epilepsy: A neurodevelopmental or progressively dementing disease? Brain 2009, 132, 2822–2830. [Google Scholar] [CrossRef]
- Trinka, E.; Rainer, L.J.; Granbichler, C.A.; Zimmermann, G.; Leitinger, M. Mortality, and life expectancy in epilepsy and status epilepticus—Current trends and future aspects. Front Epidemiol 2023, 3, 1081757. [Google Scholar] [CrossRef]
- Ryvlin, P.; Nashef, L.; Lhatoo, S.D.; Bateman, L.M.; Bird, J.; Bleasel, A.; Boon, P.; Crespel, A.; Dworetzky, B.A.; Hogenhaven, H.; et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): A retrospective study. Lancet Neurol. 2013, 12, 966–977. [Google Scholar] [CrossRef]
- Hesdorffer, D.C.; Tomson, T.; Benn, E.; Sander, J.W.; Nilsson, L.; Langan, Y.; Walczak, T.S.; Beghi, E.; Brodie, M.J.; Hauser, A.; et al. Combined analysis of risk factors for SUDEP. Epilepsia 2011, 52, 1150–1159. [Google Scholar] [CrossRef]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.A.; Wang, Z.J.; Chang, E.; Powers, A.; Copher, R.; Cherepanov, D.; Broder, M.S. Healthcare utilization and costs in adults with stable and uncontrolled epilepsy. Epilepsy Behav. 2014, 31, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Loscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef] [PubMed]
- Siebenbrodt, K.; Willems, L.M.; von Podewils, F.; Mross, P.M.; Struber, M.; Langenbruch, L.; Bierhansl, L.; Gorny, I.; Schulz, J.; Gaida, B.; et al. Determinants of quality of life in adults with epilepsy: A multicenter, cross-sectional study from Germany. Neurol Res Pr. 2023, 5, 41. [Google Scholar] [CrossRef]
- Conway, L.; Smith, M.L.; Ferro, M.A.; Speechley, K.N.; Connoly, M.B.; Snead, O.C.; Widjaja, E.; Team, P.S. Correlates of health-related quality of life in children with drug resistant epilepsy. Epilepsia 2016, 57, 1256–1264. [Google Scholar] [CrossRef]
- Ridsdale, L.; Wojewodka, G.; Robinson, E.; Landau, S.; Noble, A.; Taylor, S.; Richardson, M.; Baker, G.; Goldstein, L.H.; Team, S. Characteristics associated with quality of life among people with drug-resistant epilepsy. J. Neurol. 2017, 264, 1174–1184. [Google Scholar] [CrossRef]
- Strzelczyk, A.; Aledo-Serrano, A.; Coppola, A.; Didelot, A.; Bates, E.; Sainz-Fuertes, R.; Lawthom, C. The impact of epilepsy on quality of life: Findings from a European survey. Epilepsy Behav. 2023, 142, 109179. [Google Scholar] [CrossRef]
- Yogarajah, M.; Mula, M. Social cognition, psychiatric comorbidities, and quality of life in adults with epilepsy. Epilepsy Behav. 2019, 100, 106321. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Mbilinyi, R.H.; Ramakrishnan, S. Efficacy of the FDA-approved cannabidiol on the development and persistence of temporal lobe epilepsy and complex focal onset seizures. Exp. Neurol. 2023, 359, 114240. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Wang, Q.; van Luijtelaar, G.; Sun, M. The effects of lamotrigine and ethosuximide on seizure frequency, neuronal loss, and astrogliosis in a model of temporal-lobe epilepsy. Brain Res. 2019, 1712, 1–6. [Google Scholar] [CrossRef]
- Iori, V.; Iyer, A.M.; Ravizza, T.; Beltrame, L.; Paracchini, L.; Marchini, S.; Cerovic, M.; Hill, C.; Ferrari, M.; Zucchetti, M.; et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol. Dis. 2017, 99, 12–23. [Google Scholar] [CrossRef]
- Langer, M.; Brandt, C.; Zellinger, C.; Loscher, W. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 2011, 61, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Barker-Haliski, M.; Knox, K.; Zierath, D.; Koneval, Z.; Metcalf, C.; Wilcox, K.S.; White, H.S. Development of an antiepileptogenesis drug screening platform: Effects of everolimus and phenobarbital. Epilepsia 2021, 62, 1677–1688. [Google Scholar] [CrossRef]
- Wasterlain, C.G.; Stohr, T.; Matagne, A. The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Res. 2011, 94, 10–17. [Google Scholar] [CrossRef]
- Licko, T.; Seeger, N.; Zellinger, C.; Russmann, V.; Matagne, A.; Potschka, H. Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia 2013, 54, 1176–1185. [Google Scholar] [CrossRef]
- Dezsi, G.; Ozturk, E.; Stanic, D.; Powell, K.L.; Blumenfeld, H.; O’Brien, T.J.; Jones, N.C. Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 2013, 54, 635–643. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; Franco, V.; Marchiselli, R.; Perucca, E.; De Sarro, G.; Russo, E. Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia 2017, 58, 231–238. [Google Scholar] [CrossRef]
- Temkin, N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009, 50 (Suppl. S2), 10–13. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; De Fazio, P.; De Sarro, G.; Russo, E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br. J. Pharmacol. 2015, 172, 3177–3188. [Google Scholar] [CrossRef]
- Leo, A.; Citraro, R.; Amodio, N.; De Sarro, C.; Gallo Cantafio, M.E.; Constanti, A.; De Sarro, G.; Russo, E. Fingolimod exerts only temporary antiepileptogenic effects but longer-lasting positive effects on behavior in the WAG/Rij rat absence epilepsy model. Neurotherapeutics 2017, 14, 1134–1147. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Nesci, V.; Tallarico, M.; Amodio, N.; Gallo Cantafio, E.M.; De Sarro, G.; Constanti, A.; Russo, E.; Citraro, R. IL-6 receptor blockade by tocilizumab has anti-absence and anti-epileptogenic effects in the WAG/Rij rat model of absence epilepsy. Neurotherapeutics 2020, 17, 2004–2014. [Google Scholar] [CrossRef]
- Takahashi, K.; Eultgen, E.M.; Wang, S.H.; Rensing, N.R.; Nelvagal, H.R.; Dearborn, J.T.; Danos, O.; Buss, N.; Sands, M.S.; Wong, M.; et al. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J. Clin. Investig. 2023, 133, e165908. [Google Scholar] [CrossRef]
- Tanenhaus, A.; Stowe, T.; Young, A.; McLaughlin, J.; Aeran, R.; Lin, I.W.; Li, J.; Hosur, R.; Chen, M.; Leedy, J.; et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum. Gene Ther. 2022, 33, 579–597. [Google Scholar] [CrossRef] [PubMed]
- Dyomina, A.V.; Zubareva, O.E.; Smolensky, I.V.; Vasilev, D.S.; Zakharova, M.V.; Kovalenko, A.A.; Schwarz, A.P.; Ischenko, A.M.; Zaitsev, A.V. Anakinra reduces epileptogenesis, provides neuroprotection, and attenuates behavioral impairments in rats in the lithium-pilocarpine model of epilepsy. Pharmaceuticals 2020, 13, 340. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Xu, C.; Liu, K.; Wang, Y.; Chen, L.; Wu, X.; Gao, F.; Guo, Y.; Zhu, J.; et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain. Behav. Immun. 2017, 64, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Pitsch, J.; Kuehn, J.C.; Gnatkovsky, V.; Muller, J.A.; van Loo, K.M.J.; de Curtis, M.; Vatter, H.; Schoch, S.; Elger, C.E.; Becker, A.J. Anti-epileptogenic and anti-convulsive effects of fingolimod in experimental temporal lobe epilepsy. Mol. Neurobiol. 2019, 56, 1825–1840. [Google Scholar] [CrossRef]
- Chen, M.; Arumugam, T.V.; Leanage, G.; Tieng, Q.M.; Yadav, A.; Ullmann, J.F.; She, D.T.; Truong, V.; Ruitenberg, M.J.; Reutens, D.C. Disease-modifying effect of intravenous immunoglobulin in an experimental model of epilepsy. Sci. Rep. 2017, 7, 40528. [Google Scholar] [CrossRef]
- Jimenez-Pacheco, A.; Diaz-Hernandez, M.; Arribas-Blazquez, M.; Sanz-Rodriguez, A.; Olivos-Ore, L.A.; Artalejo, A.R.; Alves, M.; Letavic, M.; Miras-Portugal, M.T.; Conroy, R.M.; et al. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J. Neurosci. 2016, 36, 5920–5932. [Google Scholar] [CrossRef]
- Barker-Haliski, M.L.; Heck, T.D.; Dahle, E.J.; Vanegas, F.; Pruess, T.H.; Wilcox, K.S.; White, H.S. Acute treatment with minocycline, but not valproic acid, improves long-term behavioral outcomes in the Theiler’s virus model of temporal lobe epilepsy. Epilepsia 2016, 57, 1958–1967. [Google Scholar] [CrossRef]
- Wang, N.; Mi, X.; Gao, B.; Gu, J.; Wang, W.; Zhang, Y.; Wang, X. Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 2015, 287, 144–156. [Google Scholar] [CrossRef]
- Polascheck, N.; Bankstahl, M.; Loscher, W. The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp. Neurol. 2010, 224, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Gericke, B.; Brandt, C.; Theilmann, W.; Welzel, L.; Schidlitzki, A.; Twele, F.; Kaczmarek, E.; Anjum, M.; Hillmann, P.; Loscher, W. Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology 2020, 162, 107817. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Carlson, S.; Gregory-Flores, A.; Hinojo-Perez, A.; Olson, A.; Thippeswamy, T. Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy. Neurobiol. Dis. 2021, 156, 105410. [Google Scholar] [CrossRef] [PubMed]
- Puttachary, S.; Sharma, S.; Verma, S.; Yang, Y.; Putra, M.; Thippeswamy, A.; Luo, D.; Thippeswamy, T. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol. Dis. 2016, 93, 184–200. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, M.; Shi, C.; Wang, H.; Yao, L.; Liu, L.; Xie, C.; Pu, S.; LaChaud, G.; Shen, J.; et al. Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience 2015, 310, 362–371. [Google Scholar] [CrossRef]
- Sandouka, S.; Singh, P.K.; Saadi, A.; Taiwo, R.O.; Sheeni, Y.; Zhang, T.; Deeb, L.; Guignet, M.; White, S.H.; Shekh-Ahmad, T. Repurposing dimethyl fumarate as an antiepileptogenic and disease-modifying treatment for drug-resistant epilepsy. J. Transl. Med. 2023, 21, 796. [Google Scholar] [CrossRef]
- Bar-Klein, G.; Cacheaux, L.P.; Kamintsky, L.; Prager, O.; Weissberg, I.; Schoknecht, K.; Cheng, P.; Kim, S.Y.; Wood, L.; Heinemann, U.; et al. Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann. Neurol. 2014, 75, 864–875. [Google Scholar] [CrossRef]
- Tchekalarova, J.D.; Ivanova, N.M.; Pechlivanova, D.M.; Atanasova, D.; Lazarov, N.; Kortenska, L.; Mitreva, R.; Lozanov, V.; Stoynev, A. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol. Biochem. Behav. 2014, 127, 27–36. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, T.; Chen, C.; Xia, N.; Yao, Y.; Ding, J.; Xu, P.; Li, S.; Sun, Z.; Dong, X.; et al. Miconazole exerts disease-modifying effects during epilepsy by suppressing neuroinflammation via NF-kappaB pathway and iNOS production. Neurobiol. Dis. 2022, 172, 105823. [Google Scholar] [CrossRef]
- Shekh-Ahmad, T.; Eckel, R.; Dayalan Naidu, S.; Higgins, M.; Yamamoto, M.; Dinkova-Kostova, A.T.; Kovac, S.; Abramov, A.Y.; Walker, M.C. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain 2018, 141, 1390–1403. [Google Scholar] [CrossRef]
- Brandt, C.; Glien, M.; Gastens, A.M.; Fedrowitz, M.; Bethmann, K.; Volk, H.A.; Potschka, H.; Loscher, W. Prophylactic treatment with levetiracetam after status epilepticus: Lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology 2007, 53, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Espinosa, P.M.; Anderson, A.; Harutyunyan, A.; Li, C.; Lee, J.; Braine, E.L.; Brady, R.D.; Sun, M.; Huang, C.; Barlow, C.K.; et al. Disease-modifying effects of sodium selenate in a model of drug-resistant, temporal lobe epilepsy. Elife 2023, 12, e78877. [Google Scholar] [CrossRef] [PubMed]
- Sandau, U.S.; Yahya, M.; Bigej, R.; Friedman, J.L.; Saleumvong, B.; Boison, D. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia 2019, 60, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Reschke, C.R.; Silva, L.F.A.; Norwood, B.A.; Senthilkumar, K.; Morris, G.; Sanz-Rodriguez, A.; Conroy, R.M.; Costard, L.; Neubert, V.; Bauer, S.; et al. Potent anti-seizure effects of locked nucleic acid antagomirs targeting miR-134 in multiple mouse and rat models of epilepsy. Mol. Ther. Nucleic Acids 2017, 6, 45–56. [Google Scholar] [CrossRef]
- Reschke, C.R.; Silva, L.F.A.; Vangoor, V.R.; Rosso, M.; David, B.; Cavanagh, B.L.; Connolly, N.M.C.; Brennan, G.P.; Sanz-Rodriguez, A.; Mooney, C.; et al. Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Mol. Ther. 2021, 29, 2041–2052. [Google Scholar] [CrossRef]
- Lentini, C.; d’Orange, M.; Marichal, N.; Trottmann, M.M.; Vignoles, R.; Foucault, L.; Verrier, C.; Massera, C.; Raineteau, O.; Conzelmann, K.K.; et al. Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell 2021, 28, 2104–2121.e2110. [Google Scholar] [CrossRef]
- Bittencourt, S.; Ferrazoli, E.; Valente, M.F.; Romariz, S.; Janisset, N.; Macedo, C.E.; Antonio, B.B.; Barros, V.; Mundim, M.; Porcionatto, M.; et al. Modification of the natural progression of epileptogenesis by means of biperiden in the pilocarpine model of epilepsy. Epilepsy Res. 2017, 138, 88–97. [Google Scholar] [CrossRef]
- Brandt, C.; Nozadze, M.; Heuchert, N.; Rattka, M.; Loscher, W. Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J. Neurosci. 2010, 30, 8602–8612. [Google Scholar] [CrossRef]
- Costard, L.S.; Neubert, V.; Veno, M.T.; Su, J.; Kjems, J.; Connolly, N.M.C.; Prehn, J.H.M.; Schratt, G.; Henshall, D.C.; Rosenow, F.; et al. Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimul. 2019, 12, 1390–1401. [Google Scholar] [CrossRef]
- Casalia, M.L.; Howard, M.A.; Baraban, S.C. Persistent seizure control in epileptic mice transplanted with gamma-aminobutyric acid progenitors. Ann. Neurol. 2017, 82, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Henderson, K.W.; Gupta, J.; Tagliatela, S.; Litvina, E.; Zheng, X.; Van Zandt, M.A.; Woods, N.; Grund, E.; Lin, D.; Royston, S.; et al. Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons. J. Neurosci. 2014, 34, 13492–13504. [Google Scholar] [CrossRef] [PubMed]
- Bershteyn, M.; Broer, S.; Parekh, M.; Maury, Y.; Havlicek, S.; Kriks, S.; Fuentealba, L.; Lee, S.; Zhou, R.; Subramanyam, G.; et al. Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell 2023, 30, 1331–1350.e1311. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, L.; Yang, F.; Meng, X.D.; Wu, C.; Ma, H.; Jiang, W. Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy. CNS Neurosci. Ther. 2014, 20, 905–915. [Google Scholar] [CrossRef]
- Meller, S.; Kaufer, C.; Gailus, B.; Brandt, C.; Loscher, W. Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol. Dis. 2021, 158, 105446. [Google Scholar] [CrossRef]
- Pereira, H.A.; Benassi, S.K.; Mello, L.E. Plastic changes and disease-modifying effects of scopolamine in the pilocarpine model of epilepsy in rats. Epilepsia 2005, 46 (Suppl. S5), 118–124. [Google Scholar] [CrossRef]
- Gol, M.; Costa, A.M.; Biagini, G.; Lucchi, C. Seizure progression is slowed by enhancing neurosteroid availability in the brain of epileptic rats. Epilepsia 2024, 65, e41–e46. [Google Scholar] [CrossRef]
- Casillas-Espinosa, P.M.; Shultz, S.R.; Braine, E.L.; Jones, N.C.; Snutch, T.P.; Powell, K.L.; O’Brien, T.J. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog. Neurobiol. 2019, 182, 101677. [Google Scholar] [CrossRef]
- Agostinho, A.S.; Mietzsch, M.; Zangrandi, L.; Kmiec, I.; Mutti, A.; Kraus, L.; Fidzinski, P.; Schneider, U.C.; Holtkamp, M.; Heilbronn, R.; et al. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol. Med. 2019, 11, e9963. [Google Scholar] [CrossRef]
- Russmann, V.; Seeger, N.; Zellinger, C.; Hadamitzky, M.; Pankratova, S.; Wendt, H.; Bock, E.; Berezin, V.; Potschka, H. The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model. Neurosci. Lett. 2013, 556, 170–175. [Google Scholar] [CrossRef]
- Paolone, G.; Falcicchia, C.; Lovisari, F.; Kokaia, M.; Bell, W.J.; Fradet, T.; Barbieri, M.; Wahlberg, L.U.; Emerich, D.F.; Simonato, M. Long-term, targeted delivery of GDNF from encapsulated cells is neuroprotective and reduces seizures in the pilocarpine model of epilepsy. J. Neurosci. 2019, 39, 2144–2156. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. A Study of Soticlestat as an Add-on Therapy in Children and Young Adults With Dravet Syndrome. 2021. Available online: https://clinicaltrials.gov/study/NCT04940624 (accessed on 30 January 2025).
- Hawkins, N.A.; Jurado, M.; Thaxton, T.T.; Duarte, S.E.; Barse, L.; Tatsukawa, T.; Yamakawa, K.; Nishi, T.; Kondo, S.; Miyamoto, M.; et al. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor, reduces seizures and premature death in Dravet syndrome mice. Epilepsia 2021, 62, 2845–2857. [Google Scholar] [CrossRef]
- de Tisi, J.; Bell, G.S.; Peacock, J.L.; McEvoy, A.W.; Harkness, W.F.; Sander, J.W.; Duncan, J.S. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: A cohort study. Lancet 2011, 378, 1388–1395. [Google Scholar] [CrossRef]
- Bell, G.S.; de Tisi, J.; Gonzalez-Fraile, J.C.; Peacock, J.L.; McEvoy, A.W.; Harkness, W.F.J.; Foong, J.; Pope, R.A.; Diehl, B.; Sander, J.W.; et al. Factors affecting seizure outcome after epilepsy surgery: An observational series. J. Neurol. Neurosurg. Psychiatry 2017, 88, 933–940. [Google Scholar] [CrossRef]
- Alcala-Zermeno, J.L.; Romozzi, M.; Sperling, M.R. The effect of epilepsy surgery on tonic-clonic seizures. Epilepsia 2025, 66, 1048–1058. [Google Scholar] [CrossRef]
- Sperling, M.R.; Barshow, S.; Nei, M.; Asadi-Pooya, A.A. A reappraisal of mortality after epilepsy surgery. Neurology 2016, 86, 1938–1944. [Google Scholar] [CrossRef]
- Grayson, L.E.; Peters, J.M.; McPherson, T.; Krueger, D.A.; Sahin, M.; Wu, J.Y.; Northrup, H.A.; Porter, B.; Cutter, G.R.; O’Kelley, S.E.; et al. Pilot study of neurodevelopmental impact of early epilepsy surgery in tuberous sclerosis complex. Pediatr. Neurol. 2020, 109, 39–46. [Google Scholar] [CrossRef]
- Khambhati, A.N.; Shafi, A.; Rao, V.R.; Chang, E.F. Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Sci. Transl. Med. 2021, 13, eabf6588. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, V.; Sisterson, N.D.; Wozny, T.A.; Richardson, R.M. Association of closed-loop brain stimulation neurophysiological features with seizure control among patients with focal epilepsy. JAMA Neurol. 2019, 76, 800–808. [Google Scholar] [CrossRef]
- Touma, L.; Dansereau, B.; Chan, A.Y.; Jette, N.; Kwon, C.S.; Braun, K.P.J.; Friedman, D.; Jehi, L.; Rolston, J.D.; Vadera, S.; et al. Neurostimulation in people with drug-resistant epilepsy: Systematic review and meta-analysis from the ILAE Surgical Therapies Commission. Epilepsia 2022, 63, 1314–1329. [Google Scholar] [CrossRef]
- Devinsky, O.; Friedman, D.; Duckrow, R.B.; Fountain, N.B.; Gwinn, R.P.; Leiphart, J.W.; Murro, A.M.; Van Ness, P.C. Sudden unexpected death in epilepsy in patients treated with brain-responsive neurostimulation. Epilepsia 2018, 59, 555–561. [Google Scholar] [CrossRef]
- Nair, D.R.; Laxer, K.D.; Weber, P.B.; Murro, A.M.; Park, Y.D.; Barkley, G.L.; Smith, B.J.; Gwinn, R.P.; Doherty, M.J.; Noe, K.H.; et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020, 95, e1244–e1256. [Google Scholar] [CrossRef]
- Bergey, G.K.; Morrell, M.J.; Mizrahi, E.M.; Goldman, A.; King-Stephens, D.; Nair, D.; Srinivasan, S.; Jobst, B.; Gross, R.E.; Shields, D.C.; et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015, 84, 810–817. [Google Scholar] [CrossRef]
- Heck, C.N.; King-Stephens, D.; Massey, A.D.; Nair, D.R.; Jobst, B.C.; Barkley, G.L.; Salanova, V.; Cole, A.J.; Smith, M.C.; Gwinn, R.P.; et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: Final results of the RNS System pivotal trial. Epilepsia 2014, 55, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Salanova, V.; Witt, T.; Worth, R.; Henry, T.; Gross, R.; Oommen, K.; Osorio, I.; Nazzaro, J.; Labar, D.; et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010, 51, 899–908. [Google Scholar] [CrossRef]
- Salanova, V.; Witt, T.; Worth, R.; Henry, T.R.; Gross, R.E.; Nazzaro, J.M.; Labar, D.; Sperling, M.R.; Sharan, A.; Sandok, E.; et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 2015, 84, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Salanova, V.; Sperling, M.R.; Gross, R.E.; Irwin, C.P.; Vollhaber, J.A.; Giftakis, J.E.; Fisher, R.S.; SANTE Study Group. The SANTE study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021, 62, 1306–1317. [Google Scholar] [CrossRef]
- Skrehot, H.C.; Englot, D.J.; Haneef, Z. Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2023, 142, 109182. [Google Scholar] [CrossRef]
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 2020, 19, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Sperling, M.R.; Abou-Khalil, B.; Aboumatar, S.; Bhatia, P.; Biton, V.; Klein, P.; Krauss, G.L.; Vossler, D.G.; Wechsler, R.; Ferrari, L.; et al. Efficacy of cenobamate for uncontrolled focal seizures: Post hoc analysis of a phase 3, multicenter, open-label study. Epilepsia 2021, 62, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.D.; Mazurkiewicz-Beldzinska, M.; Chin, R.F.; Gil-Nagel, A.; Gunning, B.; Halford, J.J.; Mitchell, W.; Scott Perry, M.; Thiele, E.A.; Weinstock, A.; et al. Long-term safety and efficacy of add-on cannabidiol in patients with Lennox-Gastaut syndrome: Results of a long-term open-label extension trial. Epilepsia 2021, 62, 2228–2239. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Halford, J.J.; Miller, I.; Nabbout, R.; Sanchez-Carpintero, R.; Shiloh-Malawsky, Y.; Wong, M.; Zolnowska, M.; Checketts, D.; Dunayevich, E.; et al. Add-on cannabidiol in patients with Dravet syndrome: Results of a long-term open-label extension trial. Epilepsia 2021, 62, 2505–2517. [Google Scholar] [CrossRef]
- Cusmai, R.; Moavero, R.; Bombardieri, R.; Vigevano, F.; Curatolo, P. Long-term neurological outcome in children with early-onset epilepsy associated with tuberous sclerosis. Epilepsy Behav. 2011, 22, 735–739. [Google Scholar] [CrossRef]
- Jozwiak, S.; Kotulska, K.; Domanska-Pakiela, D.; Lojszczyk, B.; Syczewska, M.; Chmielewski, D.; Dunin-Wasowicz, D.; Kmiec, T.; Szymkiewicz-Dangel, J.; Kornacka, M.; et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2011, 15, 424–431. [Google Scholar] [CrossRef]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef]
- Bebin, E.M.; Peters, J.M.; Porter, B.E.; McPherson, T.O.; O’Kelley, S.; Sahin, M.; Taub, K.S.; Rajaraman, R.; Randle, S.C.; McClintock, W.M.; et al. Early treatment with vigabatrin does not decrease focal seizures or improve cognition in tuberous sclerosis complex: The PREVeNT trial. Ann. Neurol. 2023, 95, 15–26. [Google Scholar] [CrossRef]
- Misra, S.N.; Sperling, M.R.; Rao, V.R.; Peters, J.M.; Davis, C.; Carrazana, E.; Rabinowicz, A.L. Significant improvements in SEIzure interVAL (time between seizure clusters) across time in patients treated with diazepam nasal spray as intermittent rescue therapy for seizure clusters. Epilepsia 2022, 63, 2684–2693. [Google Scholar] [CrossRef]
- French, J.A.; Lawson, J.A.; Yapici, Z.; Ikeda, H.; Polster, T.; Nabbout, R.; Curatolo, P.; de Vries, P.J.; Dlugos, D.J.; Berkowitz, N.; et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016, 388, 2153–2163. [Google Scholar] [CrossRef]
- Peters, J.M.; Prohl, A.; Kapur, K.; Nath, A.; Scherrer, B.; Clancy, S.; Prabhu, S.P.; Sahin, M.; Franz, D.N.; Warfield, S.K.; et al. Longitudinal effects of everolimus on white matter diffusion in tuberous sclerosis complex. Pediatr. Neurol. 2019, 90, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Schiller, K.; Thomas, J.; Avigdor, T.; Mansilla, D.; Kortas, A.; Unterholzner, G.; Rauchenzauner, M.; Frauscher, B. Pulsatile corticoid therapy reduces interictal epileptic activity burden in children with genetic drug-resistant epilepsy. Epilepsia Open 2024, 9, 1265–1276. [Google Scholar] [CrossRef]
- SK Life Science, Inc. XCOPRI (Cenobamate Tablets); Full Prescribing Information; SK Life Science, Inc.: Paramus, NJ, USA, 2022. [Google Scholar]
- Klein, P.; Aboumatar, S.; Brandt, C.; Dong, F.; Krauss, G.L.; Mizne, S.; Sanchez-Alvarez, J.C.; Steinhoff, B.J.; Villanueva, V. Long-term efficacy and safety from an open-label extension of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 2022, 99, e989–e998. [Google Scholar] [CrossRef]
- Gilmartin, C.G.S.; Dowd, Z.; Parker, A.P.J.; Harijan, P. Interaction of cannabidiol with other antiseizure medications: A narrative review. Seizure 2021, 86, 189–196. [Google Scholar] [CrossRef]
- Ben-Menachem, E. Mechanism of action of vigabatrin: Correcting misperceptions. Acta Neurol. Scand. Suppl. 2011, 124, 5–15. [Google Scholar] [CrossRef]
- Becker, D.A.; Wheless, J.W.; Sirven, J.; Tatum, W.O.; Rabinowicz, A.L.; Carrazana, E. Treatment of seizure clusters in epilepsy: A narrative review on rescue therapies. Neurol. Ther. 2023, 12, 1439–1455. [Google Scholar] [CrossRef]
- Gidal, B.; Detyniecki, K. Rescue therapies for seizure clusters: Pharmacology and target of treatments. Epilepsia 2022, 63 (Suppl. S1), S34–S44. [Google Scholar] [CrossRef]
- Wheless, J.W.; Miller, I.; Hogan, R.E.; Dlugos, D.; Biton, V.; Cascino, G.D.; Sperling, M.R.; Liow, K.; Vazquez, B.; Segal, E.B.; et al. Final results from a phase 3, long-term, open-label, repeat-dose safety study of diazepam nasal spray for seizure clusters in patients with epilepsy. Epilepsia 2021, 62, 2485–2495. [Google Scholar] [CrossRef]
- Segal, E.B.; Wheless, J.W.; Zafar, M.; Shih, E.K.; Ngo, L.Y.; Carrazana, E.; Rabinowicz, A.L.; DIAZ Study Group. Pharmacokinetics and 180-day safety of diazepam nasal spray in pediatric patients with epilepsy aged 2-5 years. Epilepsia 2025. [Google Scholar] [CrossRef]
- Wheless, J.W.; Hogan, R.E.; Davis, C.S.; Carrazana, E.; Rabinowicz, A.L. Safety and effectiveness of diazepam nasal spray in male and female patients: Post hoc analysis of data from a phase 3 safety study. Epilepsia Open 2024, 9, 793–799. [Google Scholar] [CrossRef]
- Misra, S.N.; Sperling, M.R.; Rao, V.R.; Peters, J.M.; Penovich, P.; Wheless, J.; Hogan, R.E.; Davis, C.S.; Carrazana, E.; Rabinowicz, A.L. Analyses of patients who self-administered diazepam nasal spray for acute treatment of seizure clusters. Epilepsy Behav Rep 2024, 25, 100644. [Google Scholar] [CrossRef]
- Jarrar, R.; Stern, J.M.; Becker, D.A.; Davis, C.; Rabinowicz, A.L.; Carrazana, E. Treatment of prolonged seizure with diazepam nasal spray: A post hoc cohort analysis. In Proceedings of the American Epilepsy Society 2024 Annual Meeting, Los Angeles, CA, USA, 5–9 December 2024. [Google Scholar]
- Guignet, M.; White, H.S.; Misra, S.N.; Carrazana, E.; Rabinowicz, A.L. Development of a novel dosing paradigm to model diazepam rescue therapy in preclinical seizure and epilepsy models. Epilepsia Open 2024, 9, 1575–1581. [Google Scholar] [CrossRef]
- Baumer, F.M.; Peters, J.M.; Clancy, S.; Prohl, A.K.; Prabhu, S.P.; Scherrer, B.; Jansen, F.E.; Braun, K.P.J.; Sahin, M.; Stamm, A.; et al. Corpus callosum white matter diffusivity reflects cumulative neurological comorbidity in tuberous sclerosis complex. Cereb. Cortex 2018, 28, 3665–3672. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S.; Bumanglag, A.V. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2013, 69, 3–15. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. A First-in-Human (FIH) Study of Inhibitory Interneurons (NRTX- 1001) in Drug-Resistant Unilateral Mesial Temporal Lobe Epilepsy (MTLE). 2022. Available online: https://www.clinicaltrials.gov/study/NCT05135091 (accessed on 9 January 2025).
- Hixson, J.; Blum, D.; Banik, G.; Bershteyn, M.; Bulfone, A.; Feld, B.; Finefrock, H.; Fuenteabla, L.; Jung, J.H.; Kowal, T.; et al. First-in-human trial of NRTX-1001 gabaergic interneuron cell therapy for drug-resistant focal epilepsy—Updated Clinical Trial Results (P8-9.003). Neurology 2025, 104. [Google Scholar] [CrossRef]
- ClinicalTrials. WAYFINDER: A Clinical Study to Evaluate the Safety and Efficacy of ETX101, an AAV9-Delivered Gene Therapy in Children with SCN1A-Positive Dravet Syndrome. 2024. Available online: https://clinicaltrials.gov/study/NCT06112275 (accessed on 10 January 2025).
- ClinicalTrials. ENDEAVOR: A Clinical Study to Evaluate the Safety and Efficacy of ETX101, an AAV9-Delivered Gene Therapy in Infants and Children with SCN1A-Positive Dravet Syndrome. 2024. Available online: https://clinicaltrials.gov/study/NCT05419492 (accessed on 10 January 2025).
- ClinicalTrials. EXPEDITION: A Clinical Study to Evaluate the Safety and Efficacy of ETX101, an AAV9-Delivered Gene Therapy in Children with SCN1A-Positive Dravet Syndrome. 2024. Available online: https://clinicaltrials.gov/study/NCT06283212 (accessed on 10 January 2025).
- ClinicalTrials. A Multi-Center, Phase 1/2a, First-in-Human (Fih) Study Investigating the Safety, Tolerability, and Efficacy of Amt-260 in Adults with Unilateral Refractory Mesial Temporal Lobe Epilepsy (Mtle) Administered via Magnetic Resonance Imaging (MRI)-Guided Convection-Enhanced De-Livery (Ced). 2024. Available online: https://clinicaltrials.gov/study/NCT06063850 (accessed on 10 January 2025).
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Sixteenth EILAT Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022, 63, 2883–2910. [Google Scholar] [CrossRef]
- Parkerson, K.A.; Laux, L.; Cross, J.H.; Brunklaus, A.; Desurkar, A.; Schreiber, J.; Sullivan, J.; Phillips, S.; Lallas, M.; Devinsky, O.; et al. MONARCH and ADMIRAL interim analyses: Ongoing, open-label, phase 1/2a studies in US and UK investigating safety and drug exposure of STK-001, an antisense oligonucleotide (ASO), in children and adolescents with dravet syndrome (DS). Neurotherapeutics 2023, 20, 1244. [Google Scholar]
- Stoke Therapeutics. Stoke Therapeutics Announces Landmark New Data That Support the Potential for Stk-001 to Be the First Disease-Modifying Medicine for the Treatment of Patients with Dravet Syndrome. 2024. Available online: https://investor.stoketherapeutics.com/news-releases/news-release-details/stoke-therapeutics-announces-landmark-new-data-support-potential (accessed on 17 May 2025).
- ClinicalTrials.gov. A Double-Blind Study Evaluating the Efficacy, Safety, and Tolerability of Zorevunersen in Patients with Dravet Syndrome. 2025. Available online: https://clinicaltrials.gov/study/NCT06872125 (accessed on 17 May 2025).
- Loscher, W. Mammalian models of status epilepticus—Their value and limitations. Epilepsy Behav. 2024, 158, 109923. [Google Scholar] [CrossRef]
Therapy | Model | AE or DM | Outcomes | Author | Year | ||||
---|---|---|---|---|---|---|---|---|---|
Class | Name | Type | SRS | Behavioral Comorbidities | Pathology | ||||
Genetic Epilepsy | |||||||||
Antidepressant | Duloxetine | Small molecule | Absence epilepsy | DM | Improved | No change | NT | Citraro [60] | 2015 |
Anti-inflammatory | Fingolimod | Small molecule | Absence epilepsy | DM | Improved | Improved | NT | Leo [61] | 2017 |
Anti-inflammatory | Tocilizumab | Antibody | Absence epilepsy | DM | Improved | Improved | NT | Leo [62] | 2020 |
ASM | Perampanel | Small molecule | Absence epilepsy | DM | Improved | Improved | NT | Citraro [58] | 2017 |
ASM | Ethosuximide | Small molecule | Absence epilepsy | DM | Improved | Improved | NT | Dezsi [57] | 2013 |
Neuronal excitability | AAV9.hCLN2 | Gene therapy | CLN2 disease | DM | Improved | NT | Improved | Takahashi [63] | 2023 |
Neuronal excitability | AAV9-REGABA-eTFSCN | Gene therapy | Dravet syndrome | DM | Improved | NT | NT | Tanenhaus [64] | 2022 |
Acquired Epilepsy (TLE) | |||||||||
Anti-inflammatory | Anakinra | Small molecule | Post-SE | AE/DM | Improved | Improved | NT | Dyomina [65] | 2020 |
Anti-inflammatory | Anti-HMGB1 monoclonal antibody (anti-HMGB1 mAB) | Antibody | Post-SE | AE/DM | Improved | NT | NT | Zhao [66] | 2017 |
Anti-inflammatory | Everolimus | Small molecule | Post-SE | No effect | No change | NT | NT | Barker-Haliski [54] | 2021 |
Anti-inflammatory | Fingolimod | Small molecule | Post-SE | AE | Improved | NT | NT | Pitsch [67] | 2019 |
Anti-inflammatory | Intravenous immunoglobulin | Small molecule | Post-SE | AE/DM | Improved | NT | Improved | Chen [68] | 2017 |
Anti-inflammatory | JNJ-47965567 | Small molecule | Post-SE | DM? | Improved | NT | Improved | Jimenez-Pacheco [69] | 2016 |
Anti-inflammatory | MicroRNA-146a | Micro-RNA | Post-SE | DM | Improved | NT | NT | Iori [52] | 2017 |
Anti-inflammatory | Minocycline | Small molecule | Viral infection | DM | NT | Improved | NT | Barker-Haliski [70] | 2016 |
Anti-inflammatory | Minocycline | Small molecule | Post-SE | AE/DM | Improved | NT | Improved | Wang [71] | 2015 |
Anti-inflammatory | Parecoxib | Small molecule | Post-SE | No effect | No change | No change | NT | Polascheck [72] | 2010 |
Anti-inflammatory | PQR620, PQR530 | Small molecule | Post-SE | DM? | No change | Improved | NT | Gericke [73] | 2020 |
Anti-inflammatory | Saracatinib (AZD0530) | Small molecule | Post-SE | AE/DM | Improved | NT | Improved | Sharma [74] | 2021 |
Antioxidant | 1400W | Small molecule | Post-SE | AE/DM | Improved | NT | NT | Puttachary [75] | 2016 |
Antioxidant | Curcumin | Small molecule | Post-SE | DM | Improved | Improved | NT | Jiang [76] | 2015 |
Antioxidant | Dimethyl fumarate | Small molecule | Post-SE | AE/DM | Improved | Improved | Improved | Sandouka [77] | 2023 |
Antioxidant | Losartan | Small molecule | Post-TBI | AE | Improved | NT | NT | Bar-Klein [78] | 2014 |
Antioxidant | Losartan | Small molecule | Post-SE | AE/DM | Improved | Improved | NT | Tchekalarova [79] | 2014 |
Antioxidant | Miconazole | Small molecule | Post-SE | DM | Improved | NT | Improved | Gong [80] | 2022 |
Antioxidant | RTA408 | Small molecule | Post-SE | AE | Improved | NT | NT | Shekh-Ahmad [81] | 2018 |
ASM | Cannabidiol | Small molecule | Kindle | DM | Improved | NT | NT | Reddy [50] | 2023 |
ASM | Carbamazepine | Small molecule | Post-SE | No effect | No change | NT | NT | Iori [52] | 2017 |
ASM | Lacosamide | Small molecule | Post-SE | No effect | No change | NT | Improved | Licko [56] | 2013 |
ASM | Lacosamide | Small molecule | Post-SE | AE? | ? | NT | NT | Wasterlain [55] | 2011 |
ASM | Lamotrigine | Small molecule | Post-SE | AE | Improved | NT | Improved | Wang [51] | 2019 |
ASM | Levetiracetam | Small molecule | Post-SE | No effect | No change | No change | No change | Brandt [82] | 2007 |
ASM | Phenobarbital | Small molecule | Post-SE | No effect | No change | NT | NT | Barker-Haliski [54] | 2021 |
ASM | Valproate | Small molecule | Post-SE | No effect | No change | NT | Improved | Langer [53] | 2011 |
Diet/microbiome | Sodium selenate | Small molecule | Post-SE | AE | Improved | Improved | NT | Casilla-Espinosa [83] | 2023 |
Kinase inhibitor | 5-iodotubercidin | Small molecule | Post-SE | AE | Improved | NT | Improved | Sandau [84] | 2019 |
Neuronal Excitability | Antagomirs | ASO | Post-SE | AE | Improved | NT | NT | Reschke [85] | 2017 |
Neuronal excitability | Antagomirs | ASO | Post-SE | AE | Improved | NT | NT | Reschke [86] | 2021 |
Neuronal excitability | Ascl1 and Dlx2 reprogram reactive glia | Stem cell | Post-SE | DM | Improved | NT | NT | Lentini [87] | 2021 |
Neuronal excitability | Biperiden | Small molecule | Post-SE | AE | Improved | No change | NT | Bittencourt [88] | 2017 |
Neuronal excitability | Bumetanide | Small molecule | Post-SE | No effect | No change | NT | NT | Brandt [89] | 2010 |
Neuronal excitability | Deep brain stimulation | Brain stimulation | Post-SE | DM | Improved | NT | NT | Costard [90] | 2019 |
Neuronal excitability | Embryonic medial ganglionic eminence progenitor cells | Stem cell | Post-SE | DM | Improved | Improved | NT | Casalia [91] | 2017 |
Neuronal excitability | Hippocampal grafts | Stem cell | Post-SE | DM | Improved | NT | Improved | Henderson [92] | 2014 |
Neuronal excitability | Human embryonic stem cell line | Stem cell | Post-SE | DM | Improved | NT | Improved | Bershteyn [93] | 2023 |
Neuronal excitability | NS1209 | Small molecule | Post-SE | AE | No change | NT | Improved | Langer [53] | 2011 |
Neuronal excitability | RHC80267 | Small molecule | Post-SE | AE | Improved | Improved | NT | Ma [94] | 2014 |
Neuronal excitability | Scopolamine | Small molecule | Post-SE | AE | Improved | Improved | NT | Meller [95] | 2021 |
Neuronal excitability | Scopolamine | Small molecule | Post-SE | AE | Improved | NT | NT | Pereira [96] | 2005 |
Neuronal excitability | Trilostane | Small molecule | Post-SE | DM | Improved | NT | NT | Gol [97] | 2024 |
Neuronal excitability | Z944 | Small molecule | Post-SE | DM | Improved | NT | NT | Casilla-Espinosa [98] | 2019 |
Neurotrophic | AAV-pDyn | Gene therapy | Post-SE | DM | Improved | Improved | NT | Agostinho [99] | 2019 |
Neurotrophic | Cintrofin | Small molecule | Post-SE | DM? | No change | Improved | NT | Russmann [100] | 2013 |
Neurotrophic | Glial cell line-derived neurotrophic factor | Small molecule | Post-SE | DM | Improved | Improved | NT | Paolone [101] | 2019 |
Therapy | Epilepsy | Key Findings | Author | Year | Study Type | |
---|---|---|---|---|---|---|
Class | Name | |||||
ASM | Cenobamate | Focal | ● Median percent change from baseline in seizure frequency during 18-week treatment period was 55% with cenobamate vs. 24% with placebo | Krauss [120] | 2020 | RCT |
ASM | Cenobamate | Focal | ● Seizure freedom during consecutive 6-month intervals increased from 25% (months 3–9) to 44% (months 27–33) with cenobamate | Sperling [121] | 2021 | OL |
ASM | Cannabidiol | DEE (LGS) | ● Median percent reduction in total seizures increased from 48% (weeks 1–12) to 65% (weeks 145–156) with cannabidiol oral solution | Patel [122] | 2021 | OLE |
ASM | Cannabidiol | DEE (DS) | ● Median percent reduction in total seizures increased from 49% (weeks 1–12) to 78% (weeks 145–156) with cannabidiol oral solution | Scheffer [123] | 2021 | OLE |
ASM | Vigabatrin | DEE (TSC) | ● 65% of children with TSC treated within 1 week of seizure onset achieved seizure freedom compared with 24% who had delayed treatment (3 weeks or later after seizure onset) | Cusmai [124] | 2011 | Retrospective, Cohort |
ASM | Vigabatrin | DEE (TSC) | ● Children with TSC and early treatment (within 1 week of epileptiform discharges) had lower rates of intellectual disability (14% vs. 48%), polytherapy (21% vs. 55%), and DRE (7% vs. 42%) than those with standard treatment (within 1 week of seizure onset) | Jozwiak [125] | 2011 | Prospective, Cohort |
ASM | Vigabatrin | DEE (TSC) | ● Children with TSC treated before detection of epileptiform activity had lower odds (OR, 95% CI) of clinical seizures (0.21, 0.04–0.9), infantile spasms (0, 0–0.33), and DRE (0.23, 0.06–0.83) compared with treatment after electrographic or clinical seizures ● No treatment differences in cognitive scores or incidence of neurodevelopmental delay | Kotulska [126] | 2021 | RCT |
ASM | Vigabatrin | DEE (TSC) | ● Children treated with vigabatrin at first detection of epileptiform EEG had similar rates of seizures or DRE compared with placebo ● Vigabatrin delayed the onset and decreased the prevalence of infantile spasms ● No treatment differences in cognitive or behavioral outcomes | Bebin [127] | 2023 | RCT |
ISM | Diazepam nasal spray | Focal or generalized epilepsy | ● Mean interval between seizure clusters (SEIVAL) increased from 13.9 days (Period 1, days 1–90) to 26.8 days (Period 4, days 271–360) | Misra [128] | 2022 | OL |
Anti-inflammatory | Everolimus | DEE (TSC) | ● Proportion of patients with ≥50% reduction in seizure frequency was greater in low-dose (28.2%) and high-dose (40.0%) everolimus groups than in placebo (15.1%) ● Median percent change in seizure frequency was 14.9%, 29.3%, and 39.6% in placebo, low-dose, and high-dose everolimus groups, resp. | French [129] | 2016 | RCT |
Anti-inflammatory | Everolimus | DEE (TSC) | ● White matter changes associated with TSC were modified with everolimus | Peters [130] | 2019 | OL/OLE |
Anti-inflammatory | Dexamethasone | DRE | ● IEA burden was reduced after dexamethasone treatment compared with baseline ● Sleep physiology and QOL improved | Schiller [131] | 2024 | Retrospective, cohort |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperling, M.R.; Peters, J.M.; Wu, Q.; Guignet, M.; White, H.S.; Shih, E.K.; Ngo, L.Y.; Carrazana, E.; Rabinowicz, A.L. Potential for Therapeutic Alteration of the Underlying Biology of Epilepsy. Biomedicines 2025, 13, 2258. https://doi.org/10.3390/biomedicines13092258
Sperling MR, Peters JM, Wu Q, Guignet M, White HS, Shih EK, Ngo LY, Carrazana E, Rabinowicz AL. Potential for Therapeutic Alteration of the Underlying Biology of Epilepsy. Biomedicines. 2025; 13(9):2258. https://doi.org/10.3390/biomedicines13092258
Chicago/Turabian StyleSperling, Michael R., Jurriaan M. Peters, Qian Wu, Michelle Guignet, H. Steve White, Evelyn K. Shih, Leock Y. Ngo, Enrique Carrazana, and Adrian L. Rabinowicz. 2025. "Potential for Therapeutic Alteration of the Underlying Biology of Epilepsy" Biomedicines 13, no. 9: 2258. https://doi.org/10.3390/biomedicines13092258
APA StyleSperling, M. R., Peters, J. M., Wu, Q., Guignet, M., White, H. S., Shih, E. K., Ngo, L. Y., Carrazana, E., & Rabinowicz, A. L. (2025). Potential for Therapeutic Alteration of the Underlying Biology of Epilepsy. Biomedicines, 13(9), 2258. https://doi.org/10.3390/biomedicines13092258