Antimicrobial Resistance of Non-Fermenting Gram-Negative Bacilli in a Multidisciplinary Hospital in Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Analysis
2.3. Selected Microorganisms, Sample Types, and Inclusion/Exclusion Criteria
2.4. Bacterial Identification and Antibiograms
2.5. Calculation of the Multiple Antibiotic Resistance Index
2.6. Statistical Analysis
3. Results
3.1. General Overview
3.2. Pseudomonas Aeruginosa and Pseudomonas spp.
3.3. Acinetobacter Baumannii and Acinetobacter spp.
3.4. Stenotrophomonas Maltophilia
3.5. Statistical Analysis of Longitudinal Trends in the MAR Index
4. Discussion
4.1. Pseudomonas spp.
4.2. Acinetobacter spp.
4.3. Stenotrophomonas Maltophilia
4.4. The One Health Approach and Antimicrobial Stewardship Strategies
4.5. Key Findings, Clinical Implications, and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggieri, F.; Compagne, N.; Antraygues, K.; Eveque, M.; Flipo, M.; Willand, N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur. J. Med. Chem. 2023, 256, 115413. [Google Scholar] [CrossRef]
- Hodea, F.-V.; Lazarescu, A.-L.; Grosu-Bularda, A.; Cretu, A.; Teodoreanou, R.N.; Lascar, I.; Hariga, C.S. Antimicrobial Resistance of ESKAPE Pathogens in Major Burns Patients—One-Year Retrospective Study. Farmacia 2023, 71, 549–555. [Google Scholar] [CrossRef]
- Keenan, K.; Kiffer, C.R.V.; Carmo, É.V.S.; Corrêa, J.S.; de Abreu, A.L.; Massuda, A.; Gales, A.C.; Colombo, A.L. Antimicrobial resistance burden estimates from the bottom-up: Research priorities for estimating the impact of antimicrobial resistance in Brazil. IJID Reg. 2025, 14, 100558. [Google Scholar] [CrossRef]
- Iluț, P.A.; Păpara, C.; Danescu, S.; Candrea, E.; Baican, C.; Vaida, Ș.; Baican, A. Antibiotic Susceptibility and Resistance of Bacterial Pathogens in Chronic Leg Ulcers: A Retrospective Cohort Study. Farmacia 2023, 71, 38–43. [Google Scholar] [CrossRef]
- Naylor, N.R.; Hasso-Agopsowicz, M.; Kim, C.; Ma, Y.; Frost, I.; Abbas, K.; Aguilar, G.; Fuller, N.; Robotham, J.V.; Jit, M. The global economic burden of antibiotic-resistant infections and the potential impact of bacterial vaccines: A modelling study. BMJ Glob. Health 2025, 10, e016249. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS). Available online: https://www.who.int/initiatives/glass#:~:text=GLASS (accessed on 20 July 2025).
- Apetroaei, M.-M.; Adam-Dima, I.-E.; Belc, N.; Roming, F.-I.; Constantinescu, F.; Duță, D.; Macri, A.; Udeanu, D.-I. Integrating Nutraceuticals in the One Health Framework: A Path to Holistic Health Solutions. Farmacia 2024, 72, 719–729. [Google Scholar] [CrossRef]
- Zhou, Y.; Frutos, R.; Bennis, I.; Wakimoto, M.D. One Health governance: Theory, practice and ethics. Sci. One Health 2024, 3, 100089. [Google Scholar] [CrossRef]
- Thakur, J.S.; Rana, A.; Kaur, R.; Paika, R.; Konreddy, S.; Wiktorowicz, M. Situational analysis of human and agricultural health practice: One Health and antibiotic use in an indigenous village in rural Punjab, India. One Health 2025, 20, 100946. [Google Scholar] [CrossRef] [PubMed]
- Wernli, D.; Harbarth, S.; Levrat, N.; Pittet, D. A ‘whole of United Nations approach’ to tackle antimicrobial resistance? A mapping of the mandate and activities of international organisations. BMJ Glob. Health 2022, 7, e008181. [Google Scholar] [CrossRef] [PubMed]
- Aboushady, A.T.; Manigart, O.; Sow, A.; Fuller, W.; Ouedraogo, A.-S.; Ebruke, C.; Babin, F.-X.; Gahimbare, L.; Sombié, I.; Stelling, J. Surveillance of Antimicrobial Resistance in the ECOWAS Region: Setting the Scene for Critical Interventions Needed. Antibiotics 2024, 13, 627. [Google Scholar] [CrossRef]
- van Kessel, S.A.M.; Wielders, C.C.H.; Schoffelen, A.F.; Verbon, A. Enhancing antimicrobial resistance surveillance and research: A systematic scoping review on the possibilities, yield and methods of data linkage studies. Antimicrob. Resist. Infect. Control 2025, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Country Visit to Romania to Discuss Antimicrobial Resistance Issues; ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- European Public Health Alliance. In the Red Zone: Antimicrobial Resistance in Romania; European Public Health Alliance: Brussels, Belgium, 2019. [Google Scholar]
- Blejan, I.E.; Diaconu, C.C.; Arsene, A.L.; Udeanu, D.I.; Ghica, M.; Drăgănescu, D.; Burcea Dragomiroiu, G.T.A.; Rădulescu, M.; Maltezou, H.C.; Tsatsakis, A.M. Antibiotic Resistance in Community-Acquired Pneumonia. A Romanian Perspective. Farmacia 2020, 68, 512–520. [Google Scholar] [CrossRef]
- Vlad, M.A.; Iancu, L.S.; Dorneanu, O.S.; Duhaniuc, A.; Pavel-Tanasa, M.; Tuchilus, C.G. Colistin Treatment Outcomes in Gram-Negative Bacterial Infections in the Northeast of Romania: A Decade of Change Through Pandemic Challenges. Antibiotics 2025, 14, 275. [Google Scholar] [CrossRef]
- Hogea, E.; Muntean, A.C.; Bratosin, F.; Bogdan, I.G.; Plavitu, O.; Fratutu, A.; Oancea, C.; Bica, M.C.; Muntean, D.; Hrubaru, I.; et al. Antibiotic Resistance Trends in Uropathogens during the COVID-19 Pandemic in Western Romania: A Cross-Sectional Study. Antibiotics 2024, 13, 512. [Google Scholar] [CrossRef]
- Vulcanescu, D.D.; Bagiu, I.C.; Avram, C.R.; Oprisoni, L.A.; Tanasescu, S.; Sorescu, T.; Susan, R.; Susan, M.; Sorop, V.B.; Diaconu, M.M.; et al. Bacterial Infections, Trends, and Resistance Patterns in the Time of the COVID-19 Pandemic in Romania—A Systematic Review. Antibiotics 2024, 13, 1219. [Google Scholar] [CrossRef]
- Luchian, N.; Eva, L.; Dabija, M.; Druguș, D.; Duceac (Covrig), M.; Mitrea, G.; Marcu, C.; Popescu, M.; Duceac, L. Health-associated infections in a hospital in the North-East region of Romania—A multidisciplinary approach. Rom. J. Oral Rehabil. 2023, 15, 219–229. [Google Scholar]
- Nabal Díaz, S.G.; Algara Robles, O.; García-Lechuz Moya, J.M. New definitions of susceptibility categories EUCAST 2019: Clinic application. Rev. Española Quimioter. 2022, 35, 84–88. [Google Scholar] [CrossRef]
- Fodor, A.; Abate, B.A.; Deák, P.; Fodor, L.; Gyenge, E.; Klein, M.G.; Koncz, Z.; Muvevi, J.; Ötvös, L.; Székely, G.; et al. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review. Pathogens 2020, 9, 522. [Google Scholar] [CrossRef]
- Lin, T.-L.; Chang, P.-H.; Liu, Y.-W.; Lai, W.-H.; Chen, Y.-J.; Chen, I.-L.; Li, W.-F.; Wang, C.-C.; Lee, I.-K. Gram-negative bacterial infections in surgical intensive care unit patients following abdominal surgery: High mortality associated with Stenotrophomonas maltophilia infection. Antimicrob. Resist. Infect. Control 2024, 13, 65. [Google Scholar] [CrossRef]
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Updates List of Drug-Resistant Bacteria Most Threatening to Human Health. 2024. Available online: https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health (accessed on 20 July 2025).
- Mir, R.; Salari, S.; Najimi, M.; Rashki, A. Determination of frequency, multiple antibiotic resistance index and resistotype of Salmonella spp. in chicken meat collected from southeast of Iran. Vet. Med. Sci. 2022, 8, 229–236. [Google Scholar] [CrossRef]
- Afunwa, R.A.; Ezeanyinka, J.; Afunwa, E.C.; Udeh, A.S.; Oli, A.N.; Unachukwu, M. Multiple Antibiotic Resistant Index of Gram-Negative Bacteria from Bird Droppings in Two Commercial Poultries in Enugu, Nigeria. Open J. Med. Microbiol. 2020, 10, 171–181. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R. Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Heinzen, E.; Sinnwell, J.; Atkinson, E.; Gunderson, T.; Dougherty, G.; Votruba, P.; Lennon, R.; Hanson, A.; Goergen, K.; Lundt, E.; et al. arsenal: An Arsenal of ‘R’ Functions for Large-Scale Statistical Summaries, R package version 3.6.3; The R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://CRAN.R-project.org/package=arsenal (accessed on 10 June 2025).
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible summary tables with the gtsummary package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Sjoberg, D. ggsankey: Make Sankey, Alluvial and Sankey Bump Plots in Ggplot, Development version; GitHub repository; Available online: https://github.com/davidsjoberg/ggsankey (accessed on 10 June 2025).
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Masterton, R. The Importance and Future of Antimicrobial Surveillance Studies. Clin. Infect. Dis. 2008, 47, S21–S31. [Google Scholar] [CrossRef]
- Critchley, I.A.; Karlowsky, J.A. Optimal use of antibiotic resistance surveillance systems. Clin. Microbiol. Infect. 2004, 10, 502–511. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Country Profiles for Antimicrobial Resistance and Healthcare-Associated Infections in Europe. 2023–2024; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2023. [Google Scholar]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Mărginean, A.; Dumitrana, A.-E.; Costin, S.L.; Cristea, C.; Bolboacă, S.D. Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania. Antibiotics 2025, 14, 64. [Google Scholar] [CrossRef]
- Saha, P.; Kabir, R.B.; Ahsan, C.R.; Yasmin, M. Multidrug resistance of Pseudomonas aeruginosa: Do virulence properties impact on resistance patterns? Front. Microbiol. 2025, 16, 1508941. [Google Scholar] [CrossRef]
- Nițescu, B.; Muntean, A.A.; Pavel, B.; Ionescu, L.-E.; Necșulescu, M.; Pițigoi, D.; Talapan, D.; Popa, M.I.; Aramă, V. Multimodal Research on Antibiotic Resistance of Pseudomonas aeruginosa Strains Isolated from Patients with Severe Burns in Romania. Farmacia 2024, 72, 397–404. [Google Scholar] [CrossRef]
- Hu, M.; Chua, S.L. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025, 13, 913. [Google Scholar] [CrossRef]
- Rusu, A.; Petca, A.; Mareș, C.; Petca, R.-C.; Popescu, R.-I.; Negoiță, S.; Dănău, R.-A.; Chibelean, C.B.; Jinga, V. Urinary Tract Infections in a Romanian Population: Antimicrobial Resistance of Uropathogens—A Multiregional Study. Farmacia 2023, 71, 165–173. [Google Scholar] [CrossRef]
- Araya, S.; Gebreyohannes, Z.; Tadlo, G.; Gessew, G.T.; Negesso, A.E. Epidemiology and Multidrug Resistance of Pseudomonas aeruginosa and Acinetobacter baumanni Isolated from Clinical Samples in Ethiopia. Infect. Drug Resist. 2023, 16, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Sathe, N.; Beech, P.; Croft, L.; Suphioglu, C.; Kapat, A.; Athan, E. Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect. Med. 2023, 2, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Rajkumari, N.; John, N.; Mathur, P.; Misra, M. Antimicrobial resistance in Pseudomonas sp. causing infections in trauma patients: A 6 year experience from a south asian country. J. Glob. Infect. Dis. 2014, 6, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.-E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef]
- Medina-Polo, J.; Naber, K.G.; Bjerklund Johansen, T.E. Healthcare-associated urinary tract infections in urology. GMS Infect. Dis. 2021, 9, Doc05. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Hîncu, S.; Apetroaei, M.-M.; Negulescu, M.C.; Blidaru, A.; Ghica, M.; Udeanu, D.I. Implementation of an antibiotic restriction formulary and the impact on consumption in a Romanian hospital: A three-year retrospective study. Farmacia 2025, 73, 376–392. [Google Scholar] [CrossRef]
- Teshome, A.; Alemayehu, T.; Deriba, W.; Ayele, Y. Antibiotic Resistance Profile of Bacteria Isolated from Wastewater Systems in Eastern Ethiopia. J. Environ. Public Health 2020, 2020, 2796365. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Serapide, F. The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms 2025, 13, 829. [Google Scholar] [CrossRef]
- Foglia, F.; Ambrosino, A.; Bashir, S.; Finamore, E.; Zannella, C.; Donnarumma, G.; De Filippis, A.; Galdiero, M. Prevalence of Acinetobacter baumannii Multidrug Resistance in University Hospital Environment. Antibiotics 2025, 14, 490. [Google Scholar] [CrossRef]
- Černiauskienė, K.; Vitkauskienė, A. Multidrug-Resistant Acinetobacter baumannii: Risk Factors for Mortality in a Tertiary Care Teaching Hospital. Trop. Med. Infect. Dis. 2025, 10, 15. [Google Scholar] [CrossRef]
- Ayobami, O.; Willrich, N.; Suwono, B.; Eckmanns, T.; Markwart, R. The epidemiology of carbapenem-non-susceptible Acinetobacter species in Europe: Analysis of EARS-Net data from 2013 to 2017. Antimicrob. Resist. Infect. Control 2020, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Pour, N.K.; Dusane, D.H.; Dhakephalkar, P.K.; Zamin, F.R.; Zinjarde, S.S.; Chopade, B.A. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011, 62, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Dhanapal, B.; Risha, M.; Saikumar, C. Emerging Drug Resistance in Acinetobacter species: A Study on Isolation, Speciation, and Antimicrobial Susceptibility Patterns in a Tertiary Care Hospital. Biomed. Pharmacol. J. 2025, 18, 1591–1599. [Google Scholar] [CrossRef]
- Cruz-López, F.; Martínez-Meléndez, A.; Villarreal-Treviño, L.; Morfín-Otero, R.; Maldonado-Garza, H.; Garza-González, E. Contamination of healthcare environment by carbapenem-resistant Acinetobacter baumannii. Am. J. Med. Sci. 2022, 364, 685–694. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Belay, W.Y.; Getachew, M.; Tegegne, B.A.; Teffera, Z.H.; Dagne, A.; Zeleke, T.K.; Abebe, R.B.; Gedif, A.A.; Fenta, A.; Yirdaw, G.; et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Front. Pharmacol. 2024, 15, 1444781. [Google Scholar] [CrossRef]
- Zeng, M.; Xia, J.; Zong, Z.; Shi, Y.; Ni, Y.; Hu, F.; Chen, Y.; Zhuo, C.; Hu, B.; Lv, X.; et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J. Microbiol. Immunol. Infect. 2023, 56, 653–671. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Vithlani, A.; Hassan, S.; Alqahtani, A.; Pugazhendhi, A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. iScience 2024, 27, 111367. [Google Scholar] [CrossRef] [PubMed]
- Sadyrbaeva-Dolgova, S.; García-Fumero, R.; Exposito-Ruiz, M.; Pasquau-Liaño, J.; Jiménez-Morales, A.; Hidalgo-Tenorio, C. Incidence of nephrotoxicity associated with intravenous colistimethate sodium administration for the treatment of multidrug-resistant gram-negative bacterial infections. Sci. Rep. 2022, 12, 15261. [Google Scholar] [CrossRef]
- Hîncu, S.; Apetroaei, M.-M.; Ștefan, G.; Fâcă, A.I.; Arsene, A.L.; Mahler, B.; Drăgănescu, D.; Tăerel, A.-E.; Stancu, E.; Hîncu, L.; et al. Drug–Drug Interactions in Nosocomial Infections: An Updated Review for Clinicians. Pharmaceutics 2024, 16, 1137. [Google Scholar] [CrossRef]
- Lee, J.; Lee, I.; Lee, K.-B.; Lee, S.S. Comparative effectiveness and safety of colistin-based versus high-dose ampicillin/sulbactam-based combination therapy for nosocomial pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2025, 69, e0188024. [Google Scholar] [CrossRef]
- Lee, H.J.; Bergen, P.J.; Bulitta, J.B.; Tsuji, B.; Forrest, A.; Nation, R.L.; Li, J. Synergistic Activity of Colistin and Rifampin Combination against Multidrug-Resistant Acinetobacter baumannii in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother. 2013, 57, 3738–3745. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.A.; Stenström, T.A.; Okoh, A.I. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front. Microbiol. 2017, 8, 2276. [Google Scholar] [CrossRef]
- Kanderi, T.; Shrimanker, I.; Mansoora, Q.; Shah, K.; Yumen, A.; Komanduri, S. Stenotrophomonas maltophilia: An Emerging Pathogen of the Respiratory Tract. Am. J. Case Rep. 2020, 21, e921466. [Google Scholar] [CrossRef]
- Kanchanasuwan, S.; Rongmuang, J.; Siripaitoon, P.; Kositpantawong, N.; Charoenmak, B.; Hortiwakul, T.; Nwabor, O.F.; Chusri, S. Clinical Characteristics, Outcomes, and Risk Factors for Mortality in Patients with Stenotrophomonas maltophilia Bacteremia. J. Clin. Med. 2022, 11, 3085. [Google Scholar] [CrossRef]
- Carbonell, N.; Oltra, M.R.; Clari, M.Á. Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches. Antibiotics 2024, 13, 577. [Google Scholar] [CrossRef]
- Tanuma, M.; Sakurai, T.; Nakaminami, H.; Tanaka, M. Risk factors and clinical characteristics for Stenotrophomonas maltophilia infection in an acute care hospital in Japan: A single-center retrospective study. J. Pharm. Health Care Sci. 2025, 11, 24. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, J.; Yu, B.; Lee, W.K.; Choi, S.H.; Park, J.E.; Seo, H.; Yoo, S.S.; Lee, S.Y.; Cha, S.-I.; et al. Risk factors for mortality in intensive care unit patients with Stenotrophomonas maltophilia pneumonia in South Korea. Acute Crit. Care 2023, 38, 442–451. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Lin, C.-Y.; Lu, P.-L.; Lai, C.-C.; Chen, T.-C.; Chen, C.-Y.; Wu, D.-C.; Wang, T.-P.; Lin, C.-M.; Lin, W.-R.; et al. Stenotrophomonas maltophilia bloodstream infection: Comparison between community-onset and hospital-acquired infections. J. Microbiol. Immunol. Infect. 2014, 47, 28–35. [Google Scholar] [CrossRef]
- Cristina, M.L.; Sartini, M.; Ottria, G.; Schinca, E.; Adriano, G.; Innocenti, L.; Lattuada, M.; Tigano, S.; Usiglio, D.; Del Puente, F. Stenotrophomonas maltophilia Outbreak in an ICU: Investigation of Possible Routes of Transmission and Implementation of Infection Control Measures. Pathogens 2024, 13, 369. [Google Scholar] [CrossRef]
- Turnidge, J.; Gatermann, S.; Kahlmeter, G.; Cantón, R.; Wootton, M.; Giske, C.G. Rationale for contemporary antimicrobial treatment of Stenotrophomonas maltophilia: A narrative review. CMI Commun. 2025, 2, 105082. [Google Scholar] [CrossRef]
- Banar, M.; Sattari-Maraji, A.; Bayatinejad, G.; Ebrahimi, E.; Jabalameli, L.; Beigverdi, R.; Emaneini, M.; Jabalameli, F. Global prevalence and antibiotic resistance in clinical isolates of Stenotrophomonas maltophilia: A systematic review and meta-analysis. Front. Med. 2023, 10, 1163439. [Google Scholar] [CrossRef]
- Franklin, A.M.; Weller, D.L.; Durso, L.M.; Bagley, M.; Davis, B.C.; Frye, J.G.; Grim, C.J.; Ibekwe, A.M.; Jahne, M.A.; Keely, S.P.; et al. A one health approach for monitoring antimicrobial resistance: Developing a national freshwater pilot effort. Front. Water 2024, 6, 1359109. [Google Scholar] [CrossRef]
- Arnold, K.E.; Laing, G.; McMahon, B.J.; Fanning, S.; Stekel, D.J.; Pahl, O.; Coyne, L.; Latham, S.M.; McIntyre, K.M. The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. Lancet Planet. Health 2024, 8, e124–e133. [Google Scholar] [CrossRef]
- Tudor, L.; Pițuru, M.-T.; Gheorghe-Irimia, R.-A.; Șonea, C.; Ilie, L.-I.; Țăpăloagă, D. Unveiling Non-Choleric Vibrio Species in Crustaceans and Aquatic Snails: A Comprehensive Study in the South and Southeastern Romania’s Hydrographic System. Farmacia 2023, 71, 1254–1262. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; de la Fuente-Nunez, C.; et al. Antimicrobial resistance: A concise update. The Lancet Microbe 2025, 6, 100947. [Google Scholar] [CrossRef]
- Tudor, L.; Pıțuru, M.-T.; Gheorghe-Irimia, R.-A.; Șonea, C.; Ilie, L.-I.; Țăpăloagă, D. Optimizing Milk Production, Quality and Safety through Essential Oil Applications. Farmacia 2023, 71, 900–910. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, e0009-2017. [Google Scholar] [CrossRef]
- Chua, A.Q.; Verma, M.; Hsu, L.Y.; Legido-Quigley, H. An analysis of national action plans on antimicrobial resistance in Southeast Asia using a governance framework approach. Lancet Reg. Health West. Pac. 2021, 7, 100084. [Google Scholar] [CrossRef]
- Kakkar, A.K.; Shafiq, N.; Singh, G.; Ray, P.; Gautam, V.; Agarwal, R.; Muralidharan, J.; Arora, P. Antimicrobial Stewardship Programs in Resource Constrained Environments: Understanding and Addressing the Need of the Systems. Front. Public Health 2020, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Sheerah, H.A.; Algwizani, A.R.; Alghamdi, R.Q.; Almohammadi, E.L.; Al-Qunaibe, A.M.; Dada, H.M.; Algarni, H.S.; Tunkar, S.M.; Altamimi, A.M.; Almuzaini, Y.S.; et al. Strengthening global health security through antimicrobial resistance control: Insights from Saudi Arabia. J. Infect. Public Health 2025, 18, 102788. [Google Scholar] [CrossRef]
- Sadeq, A.A.; Hasan, S.S.; AbouKhater, N.; Conway, B.R.; Abdelsalam, A.E.; Shamseddine, J.M.; Babiker, Z.O.E.; Nsutebu, E.F.; Bond, S.E.; Aldeyab, M.A. Exploring Antimicrobial Stewardship Influential Interventions on Improving Antibiotic Utilization in Outpatient and Inpatient Settings: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 1306. [Google Scholar] [CrossRef]
- Neels, A.J.; Bloch, A.E.; Gwini, S.M.; Athan, E. The effectiveness of a simple antimicrobial stewardship intervention in general practice in Australia: A pilot study. BMC Infect. Dis. 2020, 20, 586. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K.; Srinivasan, A. Implementing a Strategy for Monitoring Inpatient Antimicrobial Use Among Hospitals in the United States. Clin. Infect. Dis. 2014, 58, 401–406. [Google Scholar] [CrossRef]
- Bankar, N.J.; Ugemuge, S.; Ambad, R.S.; Hawale, D.V.; Timilsina, D.R. Implementation of Antimicrobial Stewardship in the Healthcare Setting. Cureus 2022, 14, e26664. [Google Scholar] [CrossRef]
- Donà, D.; Barbieri, E.; Brigadoi, G.; Liberati, C.; Bosis, S.; Castagnola, E.; Colomba, C.; Galli, L.; Lancella, L.; Lo Vecchio, A.; et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics 2025, 14, 132. [Google Scholar] [CrossRef]
- Isaiah, D.O.; Otokunefor, K.; Agbagwa, O.E. Multiple antibiotic resistance indexing and molecular identification of Escherichia coli isolated from clinical and nonclinical sources in Port Harcourt Metropolis, Nigeria. Pan Afr. Med. J. 2025, 51, 11. [Google Scholar] [CrossRef]
- Perry, J.A.; Westman, E.L.; Wright, G.D. The antibiotic resistome: What’s new? Curr. Opin. Microbiol. 2014, 21, 45–50. [Google Scholar] [CrossRef]
- Ahmat, A.M.; Oumar, D.A.; Abdoullahi, H.O.; Hama, C.; Yandai, F.H.; Gamougam, K.; Tidjani, A.; Aly, S.; Ouchemi, C. Evaluation of Multi-antibiotic Resistance Index (MAR) and Molecular Characterization of Pseudomonas aeruginosa Isolated in Pathological Products from Chad. Microbiol. Res. J. Int. 2024, 34, 17–28. [Google Scholar] [CrossRef]
- Adejobi, A.; Ojo, O.; Alaka, O.; Odetoyin, B.; Onipede, A. Antibiotic resistance pattern of Pseudomonas spp. from patients in a tertiary hospital in South-West Nigeria. GERMS 2021, 11, 238–245. [Google Scholar] [CrossRef]
- Agbo, M.C.; Ezeonu, I.M.; Ike, A.C.; Ugwu, C.C. MULTIDRUG-RESISTANCE PATTERNS AND DETECTION OF PstS GENE IN CLINICAL ISOLATES OF PSEUDOMONAS AERUGINOSA FROM NSUKKA, SOUTHEAST NIGERIA. Asian J. Pharm. Clin. Res. 2020, 13, 115–119. [Google Scholar] [CrossRef]
- Kipsang, F.; Munyiva, J.; Menza, N.; Musyoki, A. Carbapenem-resistant Acinetobacter baumannii infections: Antimicrobial resistance patterns and risk factors for acquisition in a Kenyan intensive care unit. IJID Reg. 2023, 9, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Anane, A.Y.; Apalata, T.; Vasaikar, S.; Okuthe, G.E.; Songca, S. Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa. Braz. J. Infect. Dis. 2019, 23, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, F.M.; Akinlade, E.A.; Yusuf-Omoloye, N.A.; Ajigbewu, O.H.; Dare, A.P.; Wahab, A.A.; Oyedara, O.O.; Isiaka, H.S.; Usamat, A.O. Carbapenem-resistance in Acinetobacter baumannii: Prevalence, antibiotic resistance profile and carbapenemase genes in clinical and hospital environmental strains. BMC Infect. Dis. 2025, 25, 786. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Sun, H.; Xu, Y.; Xu, X. Antimicrobial susceptibility and genetic characteristics of multi-drug resistant Acinetobacter baumannii isolates in Northwest China. Front. Microbiol. 2024, 15, 1293725. [Google Scholar] [CrossRef] [PubMed]
- Elufisan, T.O.; Cristina Rodriguez-Luna, I.; Oyedara, O.O.; Sanchez-Varela, A.; Bocanegra García, V.; Oluyide, B.O.; Flores-Treviño, S.; Angel Villalobos López, M.; Guo, X. Antimicrobial susceptibility pattern of Stenotrophomonas species isolated from Mexico. Afr. Health Sci. 2020, 20, 168–181. [Google Scholar] [CrossRef]
- Ture, Z.; Güner, R.; Alp, E. Antimicrobial stewardship in the intensive care unit. J. Intensive Med. 2023, 3, 244–253. [Google Scholar] [CrossRef]
- Ablakimova, N.; Rachina, S.; Smagulova, G.; Vlasenko, A.; Mussina, A.; Zhylkybekova, A.; Yessenzhulova, A.; Koshmaganbetova, G.K.; Iztleuov, Y. Impact of complex interventions on antibacterial therapy and etiological diagnostics in community-acquired pneumonia: A 12-month pre- and post-intervention study. Front. Pharmacol. 2025, 16, 1627858. [Google Scholar] [CrossRef]
- Giovannenze, F.; Del Vecchio, P.; Frondizi, F.; Rando, E.; Leanza, G.M.; Gross, M.M.; Frater, A.; Magrini, E.; Liguoro, B.; Sangiorgi, F.; et al. Effect of an educational antimicrobial stewardship programme on antibiotic prescriptions’ appropriateness in three medical units of a large university hospital: An interrupted time series analysis. J. Hosp. Infect. 2025, 162, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef] [PubMed]











| Characteristic | N = 1189 1 |
|---|---|
| Year | |
| 2021 | 363 (31%) |
| 2022 | 256 (22%) |
| 2023 | 287 (24%) |
| 2024 | 283 (24%) |
| Hospital department | |
| ICU | 172 (14%) |
| General Surgery | 141 (12%) |
| Gastroenterology | 87 (7.3%) |
| Haematology | 142 (12%) |
| Internal Medicine | 79 (6.6%) |
| Nephrology | 63 (5.3%) |
| Neurology | 226 (19%) |
| Paediatrics | 50 (4.2%) |
| Bone Marrow Transplantation | 27 (2.3%) |
| Renal Transplant | 25 (2.1%) |
| Urology | 177 (15%) |
| Hospitalisation type | |
| Continuous hospitalisation | 277 (23%) |
| Day hospitalisation | 912 (77%) |
| Biological sample | |
| Blood culture | 296 (25%) |
| Bronchial secretions | 451 (38%) |
| Sputum | 47 (4%) |
| Urine culture | 395 (33%) |
| Microorganism | |
| Acinetobacter baumannii | 279 (23%) |
| Acinetobacter spp. | 216 (18%) |
| Pseudomonas aeruginosa | 460 (39%) |
| Pseudomonas spp. | 93 (7.8%) |
| Stenotrophomonas maltophilia | 141 (12%) |
| Variables | N | 2021 N = 363 1 | 2022 N = 256 1 | 2023 N = 287 1 | 2024 N = 283 1 | p-Value 2 |
|---|---|---|---|---|---|---|
| Hospital department | 1189 | <0.001 | ||||
| ICU | 0 (0%) | 0 (0%) | 54 (19%) | 118 (42%) | ||
| General Surgery | 54 (15%) | 51 (20%) | 27 (9.4%) | 9 (3.2%) | ||
| Gastroenterology | 29 (8.0%) | 23 (9.0%) | 18 (6.3%) | 17 (6.0%) | ||
| Haematology | 53 (15%) | 20 (7.8%) | 46 (16%) | 23 (8.1%) | ||
| Internal Medicine | 31 (8.5%) | 18 (7.0%) | 13 (4.5%) | 17 (6.0%) | ||
| Nephrology | 13 (3.6%) | 16 (6.3%) | 19 (6.6%) | 15 (5.3%) | ||
| Neurology | 105 (29%) | 69 (27%) | 27 (9.4%) | 25 (8.8%) | ||
| Paediatrics | 15 (4.1%) | 13 (5.1%) | 8 (2.8%) | 14 (4.9%) | ||
| Bone Marrow Transplantation | 5 (1.4%) | 2 (0.8%) | 7 (2.4%) | 13 (4.6%) | ||
| Renal Transplant | 4 (1.1%) | 1 (0.4%) | 10 (3.5%) | 10 (3.5%) | ||
| Urology | 54 (15%) | 43 (17%) | 58 (20%) | 22 (7.8%) | ||
| Hospitalisation type | 1189 | <0.001 | ||||
| Continuous hospitalisation | 112 (31%) | 54 (21%) | 54 (19%) | 57 (20%) | ||
| Day hospitalisation | 251 (69%) | 202 (79%) | 233 (81%) | 226 (80%) | ||
| Biological sample | 1189 | |||||
| Blood culture | 48 (13%) | 64 (25%) | 84 (29%) | 100 (35%) | ||
| Bronchial secretions | 180 (50%) | 100 (39%) | 81 (28%) | 90 (32%) | ||
| Sputum | 13 (3.6%) | 7 (2.7%) | 14 (4.9%) | 13 (4.6%) | ||
| Urine culture | 122 (34%) | 85 (33%) | 108 (38%) | 80 (28%) | ||
| Microorganism | 1189 | <0.001 | ||||
| Acinetobacter baumannii | 35 (9.6%) | 40 (16%) | 117 (41%) | 87 (31%) | ||
| Acinetobacter spp. | 146 (40%) | 66 (26%) | 0 (0%) | 4 (1.4%) | ||
| Pseudomonas aeruginosa | 125 (34%) | 118 (46%) | 104 (36%) | 113 (40%) | ||
| Pseudomonas spp. | 19 (5.2%) | 0 (0%) | 29 (10%) | 45 (16%) | ||
| Stenotrophomonas maltophilia | 38 (10%) | 32 (13%) | 37 (13%) | 34 (12%) | ||
| MARI | 1154 | 0.85 (0.63, 0.92) | 0.77 (0.25, 0.92) | 0.00 (0.00, 0.90) | 0.45 (0.00, 0.80) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apetroaei, M.-M.; Negulescu, M.C.; Hîncu, S.; Tăerel, A.; Ghica, M.; Arsene, A.L.; Udeanu, D.I. Antimicrobial Resistance of Non-Fermenting Gram-Negative Bacilli in a Multidisciplinary Hospital in Romania. Biomedicines 2025, 13, 2255. https://doi.org/10.3390/biomedicines13092255
Apetroaei M-M, Negulescu MC, Hîncu S, Tăerel A, Ghica M, Arsene AL, Udeanu DI. Antimicrobial Resistance of Non-Fermenting Gram-Negative Bacilli in a Multidisciplinary Hospital in Romania. Biomedicines. 2025; 13(9):2255. https://doi.org/10.3390/biomedicines13092255
Chicago/Turabian StyleApetroaei, Miruna-Maria, Mihaela Cristina Negulescu, Sorina Hîncu, Adriana Tăerel, Manuela Ghica, Andreea Letiția Arsene, and Denisa Ioana Udeanu. 2025. "Antimicrobial Resistance of Non-Fermenting Gram-Negative Bacilli in a Multidisciplinary Hospital in Romania" Biomedicines 13, no. 9: 2255. https://doi.org/10.3390/biomedicines13092255
APA StyleApetroaei, M.-M., Negulescu, M. C., Hîncu, S., Tăerel, A., Ghica, M., Arsene, A. L., & Udeanu, D. I. (2025). Antimicrobial Resistance of Non-Fermenting Gram-Negative Bacilli in a Multidisciplinary Hospital in Romania. Biomedicines, 13(9), 2255. https://doi.org/10.3390/biomedicines13092255

