Non-Pharmacological Treatment Methods of Lennox–Gastaut Syndrome—Review of the Literature
Abstract
1. Introduction
2. Review Method
3. Surgical Therapies
3.1. Resective Surgery
3.2. Corpus Callosotomy
3.2.1. Open Surgical Corpus Callosotomy Methods
3.2.2. Minimally Invasive Corpus Callosotomy Methods
3.3. Neuromodulation Therapies
3.3.1. Vagus Nerve Stimulation
3.3.2. Deep Brain Stimulation
3.3.3. Responsive Neurostimulation
4. Ketogenic Dietary Therapies (KDTs)
4.1. Classic Ketogenic Diet
4.2. Medium Chain Triglyceride Diet
4.3. Modified Atkins Diet
4.4. Low Glycemic Index Treatment
5. Comparison of Available Treatment Options
5.1. Corpus Callosotomy and Vagus Nerve Stimulation
5.2. Corpus Callosotomy and Ketogenic Dietary Therapies
5.3. Open Corpus Callosotomy and Stereotactic Laser Ablation Corpus Callosotomy
5.4. Vagus Nerve Stimulation, Deep Brain Stimulation, and Responsive Neurostimulation
5.5. Data from RCTs on Anterior Corpus Callosotomy, Deep Brain Stimulation, and Antiseizure Medications in Drop Seizure Control
5.6. The Proposed LGS Treatment Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-SENSE | 5-SENSE score calculator |
AAN | American Academy of Neurology |
ALT | Alanine aminotransferase |
ANT | Anterior nucleus of the thalamus |
ASMs | Antiseizure medications |
BUN | Blood urea nitrogen |
CC | Corpus callosotomy |
cKD | Classic ketogenic diet |
CMT | Centromedian nucleus of the thalamus |
CNS | Central nervous system |
CPS | Complex partial seizures |
DBS | Deep brain stimulation |
dDTF | Direct directed transfer function |
DFD | Drug-free diet |
DQ | Developmental quotient |
DRE | Drug-resistant epilepsy |
EEG | Electroencephalography |
ESTEL | Electrical stimulation of thalamus for epilepsy of Lennox–Gastaut phenotype |
FDA | Food and Drug Administration |
FIRES | Febrile infection related epilepsy syndrome |
GGE | Genetic generalized epilepsy |
GI | Glycemic index |
GLUT-1 | Glucose transporter 1 |
GPFA | Generalized paroxysmal fast activity |
GSSW | Generalized slow spike-and-wave |
GTCS | Generalized tonic-clonic seizures |
HIE | Hypoxic ischemic encephalopathy |
icEEG | Intracranial electroencephalography monitoring |
IQ | Intelligence quotient |
IQR | Interquartile range |
KDT | Ketogenic dietary therapy |
LCT | Long chain triglycerides |
LGIT | Low glycemic index treatment |
LGS | Lennox–Gastaut syndrome |
LITT | Laser interstitial thermal therapy |
MAD | Modified Atkins diet |
MCT | Medium chain triglyceride (or medium chain triglyceride diet) |
MEG | Magnetoencephalography |
MQ | Memory quotient |
MRI | Magnetic resonance imaging |
MSNPE | Myoclonic status in non-progressive encephalopathy |
MST | Multiple subpial transection |
MVAR | Multivariate autoregressive modeling |
NHBI | Neonatal hypoglycemic brain injury |
PET | Positron emission tomography |
QOL | Quality of life |
RCT | Randomized controlled trial |
RDC | Rapid duty cycle |
RNS | Responsive neurostimulation |
SEEG | Stereoencephalography |
SLACC | Stereotactic laser anterior corpus callosotomy |
SLCC | Stereotactic laser corpus callosotomy |
SLPCC | Stereotactic laser posterior corpus callosotomy |
SPECT | Single-photon emission computed tomography |
SQ | Social quotient |
SRS | Stereotactic radiosurgery |
tCO2 | Total carbon dioxide |
taVNS | Transauricular vagus nerve stimulation |
tcVNS | Transcervical vagus nerve stimulation |
VNS | Vagus nerve stimulation |
References
- Asadi-Pooya, A.A. Lennox-Gastaut Syndrome: A Comprehensive Review. Neurol. Sci. 2018, 39, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Epilepsy Syndromes in Children—UpToDate. Available online: https://www.uptodate.com/contents/epilepsy-syndromes-in-children?source=history_widget (accessed on 2 April 2025).
- Jahngir, M.U.; Ahmad, M.Q.; Jahangir, M. Lennox-Gastaut Syndrome: In a Nutshell. Cureus 2018, 10, e3134. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Baek, M.S.; Lee, Y.M. Lennox-Gastaut Syndrome in Mitochondrial Disease. Yonsei Med. J. 2019, 60, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Na, J.H.; Kim, H.D.; Lee, Y.M. Effective and Safe Diet Therapies for Lennox-Gastaut Syndrome with Mitochondrial Dysfunction. Ther. Adv. Neurol. Disord. 2020, 13, 1756286419897813. [Google Scholar] [CrossRef]
- Sharawat, I.K.; Panda, P.K.P.; Sihag, R.K.; Panda, P.K.P.; Dawman, L. Efficacy and Safety of Corpus Callosotomy and Ketogenic Diet in Children with Lennox Gastaut Syndrome: A Systematic Review and Meta-Analysis. Child’s Nerv. Syst. 2021, 37, 2557–2566. [Google Scholar] [CrossRef]
- Mastrangelo, M. Lennox-Gastaut Syndrome: A State of the Art Review. Neuropediatrics 2017, 48, 143–151. [Google Scholar] [CrossRef]
- Katagiri, M.; Iida, K.; Kagawa, K.; Hashizume, A.; Ishikawa, N.; Hanaya, R.; Arita, K.; Kurisu, K. Combined Surgical Intervention with Vagus Nerve Stimulation Following Corpus Callosotomy in Patients with Lennox-Gastaut Syndrome. Acta Neurochir. 2016, 158, 1005–1012. [Google Scholar] [CrossRef]
- Surgical Treatment of Epilepsy in Adults—UpToDate. Available online: https://www.uptodate.com/contents/surgical-treatment-of-epilepsy-in-adults?searchControl=TOP_PULLDOWN&source=USER_INPUT&searchType=PLAIN_TEXT (accessed on 24 December 2024).
- West, S.; Nevitt, S.J.; Cotton, J.; Gandhi, S.; Weston, J.; Sudan, A.; Ramirez, R.; Newton, R. Surgery for Epilepsy. Cochrane Database Syst. Rev. 2019, 2019. [Google Scholar] [CrossRef]
- Van Gompel, J.J.; Worrell, G.A.; Bell, M.L.; Patrick, T.A.; Cascino, G.D.; Raffel, C.; Marsh, W.R.; Meyer, F.B. Intracranial Electroencephalography with Subdural Grid Electrodes: Techniques, Complications, and Outcomes. Neurosurgery 2008, 63, 498–505. [Google Scholar] [CrossRef]
- Wellmer, J.; Von Der Groeben, F.; Klarmann, U.; Weber, C.; Elger, C.E.; Urbach, H.; Clusmann, H.; Von Lehe, M. Risks and Benefits of Invasive Epilepsy Surgery Workup with Implanted Subdural and Depth Electrodes. Epilepsia 2012, 53, 1322–1332. [Google Scholar] [CrossRef]
- Mullin, J.P.; Shriver, M.; Alomar, S.; Najm, I.; Bulacio, J.; Chauvel, P.; Gonzalez-Martinez, J. Is SEEG Safe? A Systematic Review and Meta-Analysis of Stereo-Electroencephalography-Related Complications. Epilepsia 2016, 57, 386–401. [Google Scholar] [CrossRef]
- Astner-Rohracher, A.; Zimmermann, G.; Avigdor, T.; Abdallah, C.; Barot, N.; Brázdil, M.; Doležalová, I.; Gotman, J.; Hall, J.A.; Ikeda, K.; et al. Development and Validation of the 5-SENSE Score to Predict Focality of the Seizure-Onset Zone as Assessed by Stereoelectroencephalography. JAMA Neurol. 2022, 79, 70–79. [Google Scholar] [CrossRef]
- Hur, Y.J.; Kim, H.D. Predictive Role of Brain Connectivity for Resective Surgery in Lennox–Gastaut Syndrome. Clin. Neurophysiol. 2016, 127, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Naik, S. Seizure-Type-Specific Treatment Responses in Lennox-Gastaut Syndrome: A Comprehensive Review of Pharmacological, Neuromodulatory, Dietary, and Surgical Therapies. Epilepsy Behav. 2025, 170, 110472. [Google Scholar] [CrossRef]
- Won Kang, J.; Eom, S.; Hong, W.; Kwon, H.E.; Park, S.; Ko, A.; Kang, H.-C.C.; Lee, J.S.; Lee, Y.-M.M.; Kim, D.S.; et al. Long-Term Outcome of Resective Epilepsy Surgery in Patients With Lennox-Gastaut Syndrome. Pediatrics 2018, 142, e20180449. [Google Scholar] [CrossRef]
- Liu, S.Y.; An, N.; Fang, X.; Singh, P.; Oommen, J.; Yin, Q.; Yang, M.H.; Liu, Y.; Liao, W.; Gao, C.Q.; et al. Surgical Treatment of Patients with Lennox-Gastaut Syndrome Phenotype. Sci. World J. 2012, 2012, 614263. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kang, H.C.; Lee, J.S.; Kim, S.H.; Kim, D.S.; Shim, K.W.; Lee, Y.H.; Kim, T.S.; Kim, H.D. Resective Pediatric Epilepsy Surgery in Lennox-Gastaut Syndrome. Pediatrics 2010, 125, e58–e66. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Liang, S.; Zhang, S.; Zhang, J.; Hu, X.; Yu, X. Resective Surgery Combined with Corpus Callosotomy for Children with Non-Focal Lesional Lennox-Gastaut Syndrome. Acta Neurochir. 2016, 158, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Na, J.H.; Jung, D.E.; Kang, H.J.; Kang, H.C.; Kim, H.D. Treatment Strategies for Lennox-Gastaut Syndrome: Outcomes of Multimodal Treatment Approaches. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221108012. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.D.; Lee, J.S.; Heo, K.; Kim, D.S.; Kang, H.C. Long-Term Prognosis of Patients with Lennox–Gastaut Syndrome in Recent Decades. Epilepsy Res. 2015, 110, 10–19. [Google Scholar] [CrossRef]
- Tripathi, M.; Maskara, P.; Rangan, V.S.; Mohindra, S.; De Salles, A.A.F.F.; Kumar, N. Radiosurgical Corpus Callosotomy: A Review of Literature. World Neurosurg. 2021, 145, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.X.; Satzer, D.; Issa, N.P.; Collins, J.; Wu, S.; Rose, S.; Henry, J.; Santos de Lima, F.; Nordli, D.; Warnke, P.C. Stereotactic Laser Anterior Corpus Callosotomy for Lennox-Gastaut Syndrome. Epilepsia 2020, 61, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhang, S.; Hu, X.; Zhang, Z.; Fu, X.; Jiang, H.; Xiaoman, Y. Anterior Corpus Callosotomy in School-Aged Children with Lennox-Gastaut Syndrome: A Prospective Study. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2014, 18, 670–676. [Google Scholar] [CrossRef]
- Barrit, S.; Park, E.H.; El Hadwe, S.; Madsen, J.R. Complete Corpus Callosotomy for Refractory Epilepsy in Children. World Neurosurg. 2022, 164, 69. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Li, A.; Jiang, H.; Meng, X.; Zhao, M.; Zhang, J.; Sun, Y. Anterior Corpus Callosotomy in Patients with Intractable Generalized Epilepsy and Mental Retardation. Stereotact. Funct. Neurosurg. 2010, 88, 246–252. [Google Scholar] [CrossRef]
- Rich, C.W.; Fasano, R.E.; Isbaine, F.; Saindane, A.M.; Qiu, D.; Curry, D.J.; Gross, R.E.; Willie, J.T. MRI-Guided Stereotactic Laser Corpus Callosotomy for Epilepsy: Distinct Methods and Outcomes. J. Neurosurg. 2021, 135, 770–782. [Google Scholar] [CrossRef]
- Smyth, M.D.; Vellimana, A.K.; Asano, E.; Sood, S. Corpus Callosotomy—Open and Endoscopic Surgical Techniques. Epilepsia 2017, 58, 73–79. [Google Scholar] [CrossRef]
- Thirunavu, V.; Du, R.; Wu, J.Y.; Berg, A.T.; Lam, S.K. The Role of Surgery in the Management of Lennox–Gastaut Syndrome: A Systematic Review and Meta-Analysis of the Clinical Evidence. Epilepsia 2021, 62, 888–907. [Google Scholar] [CrossRef]
- Kurwale, N.S.; Patil, S.B.; Jagtap, S.A.; Joshi, A.; Deshmukh, Y.; Nilegaonkar, S.; Bapat, D.; Chitnis, S.; Wadhwani, N. Surgical Outcomes for Medically Refractory Epilepsy Secondary to Posterior Cortex Ulegyria as Sequelae of Perinatal Insults. Epilepsy Res. 2021, 175, 106703. [Google Scholar] [CrossRef]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Lima, A.M.; Forster, C.R.; Baise, C.; Argentoni-Baldochi, M. Long-Term Outcome after Callosotomy or Vagus Nerve Stimulation in Consecutive Prospective Cohorts of Children with Lennox-Gastaut or Lennox-like Syndrome and Non-Specific MRI Findings. Seizure 2013, 22, 396–400. [Google Scholar] [CrossRef]
- Steinbrenner, M.; Kowski, A.B.; Holtkamp, M. Referral to Evaluation for Epilepsy Surgery: Reluctance by Epileptologists and Patients. Epilepsia 2019, 60, 211–219. [Google Scholar] [CrossRef]
- Karsy, M.; Patel, D.M.; Halvorson, K.; Mortimer, V.; Bollo, R.J. Anterior Two-Thirds Corpus Callosotomy via Stereotactic Laser Ablation. Neurosurg. Focus 2018, 44, V2. [Google Scholar] [CrossRef]
- Tao, J.X.; Issa, N.P.; Wu, S.; Rose, S.; Collins, J.; Warnke, P.C. Interstitial Stereotactic Laser Anterior Corpus Callosotomy: A Report of 2 Cases with Operative Technique and Effectiveness. Clin. Neurosurg. 2019, 85, E569–E574. [Google Scholar] [CrossRef]
- Awad, A.J.; Kaiser, K.N. Laser Ablation for Corpus Callosotomy: Systematic Review and Pooled Analysis. Seizure 2022, 96, 137–141. [Google Scholar] [CrossRef]
- Pendl, G.; Eder, H.G.; Schroettner, O.; Leber, K.A. Corpus Callosotomy with Radiosurgery. Neurosurgery 1999, 45, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Eder, H.G.; Feichtinger, M.; Pieper, T.; Kurschel, S.; Schroettner, O. Gamma Knife Radiosurgery for Callosotomy in Children with Drug-Resistant Epilepsy. Child’s Nerv. Syst. 2006, 22, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Sita, T.L.; Shlobin, N.A.; Gopalakrishnan, M.; Sucholeiki, R.; Régis, J.; Bandt, S.K. Completion Corpus Callosotomy with Stereotactic Radiosurgery for Drug-Resistant, Intractable Epilepsy. World Neurosurg. 2020, 143, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.E.; Atallah, E.; Galligan, K.; McDonnell, P.; Kennedy, B.C. Endoscopic Transventricular “inside-out” Corpus Callosotomy: Illustrative Case. J. Neurosurg. Case Lessons 2024, 8, 25–28. [Google Scholar] [CrossRef]
- Alanazi, G.M.; Alosaimi, T.F.; Alwadei, A.H.; Al-Otaibi, A.D.; Jad, L.A.; Al-Attas, A.A. Efficacy and Safety of Corpus Callosotomy versus Vagus Nerve Stimulation as Long-Term Adjunctive Therapies in Children with Lennox-Gastaut Syndrome: Experience of a Tertiary Care Center. Neurosci. J. 2022, 27, 59–64. [Google Scholar] [CrossRef]
- Reyhani, A.; Özkara, Ç. The Unchanging Face of Lennox-Gastaut Syndrome in Adulthood. Epilepsy Res. 2021, 172, 106575. [Google Scholar] [CrossRef]
- Warren, A.E.L.; Patel, A.D.; Helen Cross, J.; Clarke, D.F.; Dalic, L.J.; Grinspan, Z.M.; Conecker, G.; Knowles, J.K. Mobilizing a New Era in Lennox-Gastaut Syndrome Treatment and Prevention. Epilepsy Curr. 2025, 25, 236–243. [Google Scholar] [CrossRef]
- Gouveia, F.V.; Warsi, N.M.; Suresh, H.; Matin, R.; Ibrahim, G.M. Neurostimulation Treatments for Epilepsy: Deep Brain Stimulation, Responsive Neurostimulation and Vagus Nerve Stimulation. Neurotherapeutics 2024, 21, e00308. [Google Scholar] [CrossRef] [PubMed]
- Fields, M.C.; Eka, O.; Schreckinger, C.; Dugan, P.; Asaad, W.F.; Blum, A.S.; Bullinger, K.; Willie, J.T.; Burdette, D.E.; Anderson, C.; et al. A Multicenter Retrospective Study of Patients Treated in the Thalamus with Responsive Neurostimulation. Front. Neurol. 2023, 14, 1202631. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Silberstein, S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache J. Head Face Pain 2016, 56, 259–266. [Google Scholar] [CrossRef]
- Kayyali, H.; Abdelmoity, S.; Bansal, L.; Kaufman, C.; Smith, K.; Fecske, E.; Pawar, K.; Hall, A.; Gustafson, M.; Abdelmoity, A.; et al. The Efficacy and Safety of Rapid Cycling Vagus Nerve Stimulation in Children with Intractable Epilepsy. Pediatr. Neurol. 2020, 109, 35–38. [Google Scholar] [CrossRef]
- Fahoum, F.; Boffini, M.; Kann, L.; Faini, S.; Gordon, C.; Tzadok, M.; El Tahry, R. VNS Parameters for Clinical Response in Epilepsy. Brain Stimul. 2022, 15, 814–821. [Google Scholar] [CrossRef]
- Morris, G.L.; Gloss, D.; Buchhalter, J.; Mack, K.J.; Nickels, K.; Harden, C. Evidence-Based Guideline Update: Vagus Nerve Stimulation for the Treatment of Epilepsy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Epilepsy Curr. 2013, 13, 297. [Google Scholar] [CrossRef]
- Toffa, D.H.; Touma, L.; El Meskine, T.; Bouthillier, A.; Nguyen, D.K. Learnings from 30 Years of Reported Efficacy and Safety of Vagus Nerve Stimulation (VNS) for Epilepsy Treatment: A Critical Review. Seizure 2020, 83, 104–123. [Google Scholar] [CrossRef]
- Dibué, M.; Greco, T.; Spoor, J.K.H.; Tahir, Z.; Specchio, N.; Hänggi, D.; Steiger, H.; Kamp, M.A. Vagus Nerve Stimulation in Patients with Lennox-Gastaut Syndrome: A Meta-analysis. Acta Neurol. Scand. 2021, 143, 497–508. [Google Scholar] [CrossRef]
- Englot, D.J.; Chang, E.F.; Auguste, K.I. Vagus Nerve Stimulation for Epilepsy: A Meta-Analysis of Efficacy and Predictors of Response. J. Neurosurg. 2011, 115, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.H.; Auvin, S.; Falip, M.; Striano, P.; Arzimanoglou, A. Expert Opinion on the Management of Lennox-Gastaut Syndrome: Treatment Algorithms and Practical Considerations. Front. Neurol. 2017, 8, 505. [Google Scholar] [CrossRef]
- Suller Marti, A.; Mirsattari, S.M.; MacDougall, K.; Steven, D.A.; Parrent, A.; de Ribaupierre, S.; Andrade, A.; Diosy, D.; McLachlan, R.S.; Burneo, J.G. Vagus Nerve Stimulation in Patients with Therapy-Resistant Generalized Epilepsy. Epilepsy Behav. 2020, 111, 107253. [Google Scholar] [CrossRef]
- Braakman, H.M.; Creemers, J.; Hilkman, D.M.; Klinkenberg, S.; Koudijs, S.M.; Debeij-van Hall, M.; Cornips, E.M. Improved Seizure Control and Regaining Cognitive Milestones after Vagus Nerve Stimulation Revision Surgery in Lennox–Gastaut Syndrome. Epilepsy Behav. Case Rep. 2018, 10, 111–113. [Google Scholar] [CrossRef]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Lima, A.M.; Forster, C.R.; Baise, C.; Argentoni-Baldochi, M. A Prospective Long-Term Study on the Outcome after Vagus Nerve Stimulation at Maximally Tolerated Current Intensity in a Cohort of Children with Refractory Secondary Generalized Epilepsy. Neuromodulation 2013, 16, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, J. An Observational Report of Worsening Seizures with Increase in Total Charge Delivered per Day by Vagus Nerve Stimulation in 4 Patients with Lennox-Gastaut Syndrome. Brain Stimul. 2016, 9, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoity, S.A.; Abdelmoity, A.A.A.; Riordan, S.M.; Kaufman, C.; Le Pichon, J.B.; Abdelmoity, A.A.A. The Efficacy and Tolerability of Auto-Stimulation-VNS in Children with Lennox-Gastaut Syndrome. Seizure 2021, 86, 168–174. [Google Scholar] [CrossRef]
- Kostov, K.; Kostov, H.; Taubøll, E. Long-Term Vagus Nerve Stimulation in the Treatment of Lennox-Gastaut Syndrome. Epilepsy Behav. 2009, 16, 321–324. [Google Scholar] [CrossRef]
- Frost, M.; Gates, J.; Helmers, S.L.; Wheless, J.W.; Levisohn, P.; Tardo, C.; Conry, J.A. Vagus Nerve Stimulation in Children with Refractory Seizures Associated with Lennox-Gastaut Syndrome. Epilepsia 2001, 42, 1148–1152. [Google Scholar] [CrossRef]
- Aldenkamp, A.P.; Majoie, H.J.M.; Berfelo, M.W.; Evers, S.M.A.A.; Kessels, A.G.H.; Renier, W.O.; Wilmink, J. Long-Term Effects of 24-Month Treatment with Vagus Nerve Stimulation on Behaviour in Children with Lennox–Gastaut Syndrome. Epilepsy Behav. 2002, 3, 475–479. [Google Scholar] [CrossRef]
- Cersósimo, R.O.; Bartuluchi, M.; Fortini, S.; Soraru, A.; Pomata, H.; Caraballo, R.H. Vagus Nerve Stimulation: Effectiveness and Tolerability in 64 Paediatric Patients with Refractory Epilepsies. Epileptic Disord. 2011, 13, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Orosz, I.; McCormick, D.; Zamponi, N.; Varadkar, S.; Feucht, M.; Parain, D.; Griens, R.; Vallée, L.; Boon, P.; Rittey, C.; et al. Vagus Nerve Stimulation for Drug-Resistant Epilepsy: A European Long-Term Study up to 24 Months in 347 Children. Epilepsia 2014, 55, 1576–1584. [Google Scholar] [CrossRef]
- Mathews, R.P.; Habibagahi, I.; Jafari Sharemi, H.; Challita, R.; Cha, S.; Babakhani, A. A Closed Loop Fully Automated Wireless Vagus Nerve Stimulation System. Sci. Rep. 2025, 15, 27856. [Google Scholar] [CrossRef]
- Warren, A.E.L.; Dalic, L.J.; Bulluss, K.J.; BAppSci, A.R.; Thevathasan, W.; Archer, J.S. The Optimal Target and Connectivity for Deep Brain Stimulation in Lennox–Gastaut Syndrome. Ann. Neurol. 2022, 92, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Sobstyl, M.; Konopko, M.; Wierzbicka, A.; Prokopienko, M.; Pietras, T.; Sipowicz, K. Deep Brain Stimulation of Anterior Nucleus and Centromedian Nucleus of Thalamus in Treatment for Drug-Resistant Epilepsy. Neurol. Neurochir. Pol. 2024, 58, 256–273. [Google Scholar] [CrossRef]
- Poulen, G.; Gélisse, P.; Crespel, A.; Chan-Seng, E.; Moser, P.O.; Coubes, P. Does Deep Brain Stimulation of the Anterior Nucleus of the Thalamus Represent the Future of Lennox–Gastaut Syndrome? J. Neurol. 2025, 272, 312. [Google Scholar] [CrossRef]
- Remore, L.G.; Omidbeigi, M.; Tsolaki, E.; Bari, A.A. Deep Brain Stimulation of Thalamic Nuclei for the Treatment of Drug-Resistant Epilepsy: Are We Confident with the Precise Surgical Target? Seizure 2023, 105, 22–28. [Google Scholar] [CrossRef]
- Dalic, L.J.; Warren, A.E.L.; Bulluss, K.J.; Thevathasan, W.; Roten, A.; Churilov, L.; Archer, J.S. DBS of Thalamic Centromedian Nucleus for Lennox–Gastaut Syndrome (ESTEL Trial). Ann. Neurol. 2022, 91, 253–267. [Google Scholar] [CrossRef]
- Dalic, L.J.; Warren, A.E.L.; Spiegel, C.; Thevathasan, W.; Roten, A.; Bulluss, K.J.; Archer, J.S. Paroxysmal Fast Activity Is a Biomarker of Treatment Response in Deep Brain Stimulation for Lennox–Gastaut Syndrome. Epilepsia 2022, 63, 3134–3147. [Google Scholar] [CrossRef]
- Velasco, A.L.; Velasco, F.; Jiménez, F.; Velasco, M.; Castro, G.; Carrillo-Ruiz, J.D.; Fanghänel, G.; Boleaga, B. Neuromodulation of the Centromedian Thalamic Nuclei in the Treatment of Generalized Seizures and the Improvement of the Quality of Life in Patients with Lennox-Gastaut Syndrome. Epilepsia 2006, 47, 1203–1212. [Google Scholar] [CrossRef]
- Samanta, D.; Jain, P.; Cunningham, J.; Arya, R. Comparative Efficacy of Neuromodulation Therapies in Lennox–Gastaut Syndrome: A Systematic Review and Meta-Analysis of Vagus Nerve Stimulation, Deep Brain Stimulation, and Responsive Neurostimulation. Epilepsia 2025. [Google Scholar] [CrossRef]
- Bonda, D.; Kelly, K.A.; Boop, S.; Feroze, A.H.; Randle, S.C.; Bindschadler, M.; Marashly, A.; Owens, J.; Lockrow, J.; Bozarth, X.; et al. Deep Brain Stimulation of Bilateral Centromedian Thalamic Nuclei in Pediatric Patients with Lennox-Gastaut Syndrome: An Institutional Experience. World Neurosurg. 2024, 185, e631–e639. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Z.; Xiao, W.; Wang, C.; Liang, R. Efficacy and Safety of Pharmacological and Non-Pharmacological Therapies in Lennox-Gastaut Syndrome: A Systematic Review and Network Meta-Analysis. Front. Pharmacol. 2025, 16, 1522543. [Google Scholar] [CrossRef]
- Neidhart, S.; Kohnen, O.; Stieglitz, L.; Imbach, L. Directional Deep Brain Stimulation of the Centromedian Thalamic Nucleus Reduces DBS-Induced Ataxia and Dysarthria in Lennox-Gastaut Syndrome: A Single Case Study. Clin. Neurophysiol. Pract. 2024, 9, 233–235. [Google Scholar] [CrossRef]
- Kwon, C.S.; Schupper, A.J.; Fields, M.C.; Marcuse, L.V.; La Vega-Talbott, M.; Panov, F.; Ghatan, S. Centromedian Thalamic Responsive Neurostimulation for Lennox-Gastaut Epilepsy and Autism. Ann. Clin. Transl. Neurol. 2020, 7, 2035–2040. [Google Scholar] [CrossRef]
- Morrell, M.J. Responsive Cortical Stimulation for the Treatment of Medically Intractable Partial Epilepsy. Neurology 2011, 77, 1295–1304. [Google Scholar] [CrossRef]
- Ahn, S.; Edmonds, B.; Rajaraman, R.R.; Rao, L.M.; Hussain, S.A.; Matsumoto, J.H.; Sankar, R.; Salamon, N.; Fallah, A.; Nariai, H. Bilateral Centromedian Nucleus of Thalamus Responsive Neurostimulation for Pediatric-Onset Drug-Resistant Epilepsy. Epilepsia 2024, 65, e131–e140. [Google Scholar] [CrossRef] [PubMed]
- Roa, J.A.; Abramova, M.; Fields, M.; La Vega-Talbott, M.; Yoo, J.; Marcuse, L.; Wolf, S.; McGoldrick, P.; Ghatan, S.; Panov, F. Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy. Front. Hum. Neurosci. 2022, 16, 926337. [Google Scholar] [CrossRef] [PubMed]
- Beaudreault, C.P.; Spirollari, E.; Naftchi, A.F.; Sukul, V.; Das, A.; Vazquez, S.; Wolf, S.M.; McGoldrick, P.E.; Muh, C.R. Safety of Vagus Nerve Stimulation and Responsive Neurostimulation Used in Combination for Multifocal and Generalized Onset Epilepsy in Pediatric Patients. J. Neurosurg. Pediatr. 2023, 31, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Beaudreault, C.P.; Muh, C.R.; Naftchi, A.; Spirollari, E.; Das, A.; Vazquez, S.; Sukul, V.V.; Overby, P.J.; Tobias, M.E.; McGoldrick, P.E.; et al. Responsive Neurostimulation Targeting the Anterior, Centromedian and Pulvinar Thalamic Nuclei and the Detection of Electrographic Seizures in Pediatric and Young Adult Patients. Front. Hum. Neurosci. 2022, 16, 876204. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Villano, G.; Dell’isola, G.; Verrotti, A.; Striano, P. Neuromodulation as a Treatment Strategy in Lennox-Gastaut Syndrome: Evidence and Future Directions. Expert Rev. Neurother. 2025, 25, 501–504. [Google Scholar] [CrossRef]
- Zuckerman, D.A.; Beaudreault, C.P.; Muh, C.R.; McGoldrick, P.E.; Wolf, S.M. Myasthenia Gravis in a Pediatric Patient with Lennox-Gastaut Syndrome Following Responsive Neurostimulation Device Implantation: Illustrative Case. J. Neurosurg. Case Lessons 2023, 6, 23–27. [Google Scholar] [CrossRef]
- Heck, C.N.; King-Stephens, D.; Massey, A.D.; Nair, D.R.; Jobst, B.C.; Barkley, G.L.; Salanova, V.; Cole, A.J.; Smith, M.C.; Gwinn, R.P.; et al. Two-Year Seizure Reduction in Adults with Medically Intractable Partial Onset Epilepsy Treated with Responsive Neurostimulation: Final Results of the RNS System Pivotal Trial. Epilepsia 2014, 55, 432–441. [Google Scholar] [CrossRef]
- Caraballo, R.H.; Fortini, S.; Fresler, S.; Armeno, M.; Ariela, A.; Cresta, A.; Mestre, G.; Escobal, N. Ketogenic Diet in Patients with Lennox-Gastaut Syndrome. Seizure 2014, 23, 751–755. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, H.; Fan, Y.Y.; Zhang, J.M.; Liu, X.Y.; Fang, X.Y.; Yang, F.H.; Cao, Q.J.; Qi, Y. Ketogenic Diet Effects on 52 Children with Pharmacoresistant Epileptic Encephalopathy: A Clinical Prospective Study. Brain Behav. 2018, 8, e00973. [Google Scholar] [CrossRef]
- Shah, L.M.; Turner, Z.; Bessone, S.K.; Winesett, S.P.; Stanfield, A.; Kossoff, E.H. How Often Is Antiseizure Drug-Free Ketogenic Diet Therapy Achieved? Epilepsy Behav. 2019, 93, 29–31. [Google Scholar] [CrossRef]
- Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal Clinical Management of Children Receiving Dietary Therapies for Epilepsy: Updated Recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 2018, 3, 175–192. [Google Scholar] [CrossRef]
- Ułamek-Kozioł, M.; Czuczwar, S.J.; Pluta, R.; Januszewski, S. Ketogenic Diet and Epilepsy. Nutrients 2019, 11, 2510. [Google Scholar] [CrossRef] [PubMed]
- Wheless, J.W. History of the Ketogenic Diet. Epilepsia 2008, 49, 3–5. [Google Scholar] [CrossRef]
- Verrotti, A.; Iapadre, G.; Di Francesco, L.; Zagaroli, L.; Farello, G. Diet in the Treatment of Epilepsy: What We Know so Far. Nutrients 2020, 12, 2645. [Google Scholar] [CrossRef] [PubMed]
- What Is a Ketogenic Diet? Keto Diet Facts, Research, and Variations. Available online: https://charliefoundation.org/diet-plans/ (accessed on 7 May 2023).
- Zhang, Y.; Wang, Y.; Zhou, Y.; Zhang, L.; Yu, L.; Zhou, S. Therapeutic Effects of the Ketogenic Diet in Children with Lennox-Gastaut Syndrome. Epilepsy Res. 2016, 128, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, E.; Weissman, B.; Kyllonen, K. Use of Parenteral Medium-Chain Triglyceride Emulsion for Maintaining Seizure Control in a 5-Year-Old Girl with Intractable Diarrhea. J. Parenter. Enter. Nutr. 1990, 14, 543–545. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, P.; Gulati, S.; Sankhyan, N.; Agarwala, A. Use of the Modified Atkins Diet in Lennox Gastaut Syndrome. J. Child Neurol. 2015, 30, 576–579. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, H.C.; Lee, E.J.; Lee, J.S.; Kim, H.D. Low Glycemic Index Treatment in Patients with Drug-Resistant Epilepsy. Brain Dev. 2017, 39, 687–692. [Google Scholar] [CrossRef]
- Samanta, D. Management of Lennox-Gastaut Syndrome Beyond Childhood: A Comprehensive Review; Academic Press Inc.: Cambridge, MA, USA, 2021; Volume 114. [Google Scholar]
- Ferreira Soares, D.; Pires de Aguiar, P.H. Callosotomy vs Vagus Nerve Stimulation in the Treatment of Lennox-Gastaut Syndrome: A Systematic Review With Meta-Analysis. Neuromodulation 2023, 26, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Lancman, G.; Virk, M.; Shao, H.; Mazumdar, M.; Greenfield, J.P.; Weinstein, S.; Schwartz, T.H. Vagus Nerve Stimulation vs. Corpus Callosotomy in the Treatment of Lennox-Gastaut Syndrome: A Meta-Analysis. Seizure 2013, 22, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Abel, T.J.; Remick, M.; Welch, W.C.; Smith, K.J. One-Year Cost-Effectiveness of Callosotomy vs Vagus Nerve Stimulation for Drug-Resistant Seizures in Lennox-Gastaut Syndrome: A Decision Analytic Model. Epilepsia Open 2022, 7, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Merenzon, M.A.; O’Malley, G.; Terry, F.; Sarwar, S.; Sturgill, D.; Ali, M.; Clocchiatti-Tuozzo, S.; Lehner, K.; Obaid, S.; Patel, N.V.; et al. Stereotactic Laser Ablation vs Open Corpus Callosotomy: A Systematic Review and Meta-Analysis of Individual Patient Data. Oper. Neurosurg. 2025. [Google Scholar] [CrossRef]
- Auvin, S.; Arzimanoglou, A.; Falip, M.; Striano, P.; Cross, J.H. Refining Management Strategies for Lennox–Gastaut Syndrome: Updated Algorithms and Practical Approaches. Epilepsia Open 2024, 10, 85–106. [Google Scholar] [CrossRef]
Surgical Method | Age at Surgery | LGS Patients, n | Time of Assessment/Duration of Follow-Up | Engel Class, % | Comments | Reference, Study Type | |||
---|---|---|---|---|---|---|---|---|---|
IV | III | II | I | ||||||
Resective surgery overall | 9.3 ± 4.4 years, mean ± SD | 90 | 6.1 ± 2.2 years | 33.3 | 7.8 | 8.9 | 50.0 | Adverse effect: minor bleeding | Kang et al. [17], (R) |
Hemispherectomy | N/A | 21 | N/A | 14.3 | 9.5 | 4.8 | 71.4 | ||
Single lobe resection | N/A | 18 | N/A | 44.4 | 5.6 | 11.1 | 38.9 | ||
Multilobar resection | N/A | 51 | N/A | 37.3 | 7.8 | 9.8 | 45.1 | ||
Surgery overall | 11.5 years | 18 | mean of 5.4, range 1–9 years | 11.1 | 22.2 | 27.8 | 38.9 | Adverse effects: fever (less than one week), acute disconnection syndrome, partial aphasia, contralateral partial hemiplegia (each less than 3 weeks), and contralateral hemianopia. | Liu et al. [18], (R) |
Single lobe resection | N/A | 2 | 8 years *, mean (7 and 9 years) | 0.0 * | 0.0 * | 0.0 * | 100.0 * | ||
Lesionectomy + MST | N/A | 1 | 7 years | 0.0 * | 100.0 * | 0.0 * | 0.0 * | ||
Multilobar resection + MST | N/A | 11 | 4.36 years *, mean (range 1–8) | 9.1 * | 18.2 * | 27.3 * | 45.5 * | ||
Multilobar resection + MST + CC | N/A | 4 | 6.75 years *, mean (range 5–9) | 25.0 * | 25.0 * | 50.0 * | 0.0 * | ||
Resective surgery overall | 7.8 ± 3.7 years, mean ± SD | 27 | 33.1 ± 20.3 months | 18.5 | 7.4 | 14.8 | 59.3 | Adverse effects: hemianopia, hemiplegia, minor infarction around the motor cortex with subsequent weakness of the contralateral upper extremity (all recovered within 6 months), and postoperative with subsequent hematomas (absorbed spontaneously). | Lee et al. [19], (R) |
Single lobe resection | 7.7 years, mean | 11 | N/A | 36.4 | 9.1 | 9.1 | 45.5 | ||
Multilobar resection | 8.3 years, mean | 10 | N/A | 10.0 | 10.0 | 20.0 | 60.0 | ||
Hemispherectomy | 7.5 years, mean | 6 | N/A | 0.0 | 0.0 | 16.7 | 83.3 | ||
Exclusively resective surgery | 9.70 ± 3.66 years | 20 | 1st year | 15.0 * | 5.0 * | 15.0 | 65.0 | First prospective study concerning the effects of resective surgery combined with CC among LGS pediatric patients without focal lesions showed on brain MRI. Adverse effects: urinary incontinence, hemiplegia, aphasia, and apraxia (among the whole study population). All subsided within 3 weeks. | Ding et al. [20], (P) |
20 | 3rd year | N/A ** | N/A ** | N/A ** | 55.0 | ||||
16 | 5th year | 10.0 * | 20.0 * | 10.0 * | 40.0 * | ||||
Resective surgery + anterior CC | 9.48 ± 3.88 years | 23 | 1st year | 4.3 * | 8.7 * | 13.0 | 73.9 | ||
23 | 3rd year | 8.7 * | 8.7 * | 17.4 | 65.2 | ||||
17 | 5th year | 13.0 * | 4.3 * | 13.0 * | 43.5 * | ||||
Single lobe resection | N/A | 27 | 1st year | N/A | N/A | N/A | 40.7 *** | - | Na et al. [21], (R) |
5th year | N/A | N/A | N/A | 11.1 *** | |||||
Multilobar resection | N/A | 60 | 1st year | N/A | N/A | N/A | 53.3 *** | ||
5th year | N/A | N/A | N/A | 16.7 *** | |||||
Hemispherectomy | N/A | 25 | 1st year | N/A | N/A | N/A | 52.0 *** | ||
5th year | N/A | N/A | N/A | 24.0 *** | |||||
Resective surgery overall | 17.3 ± 4.4 years, mean | 15 | 5.3 ± 2.3 years | N/A | N/A | 46.7 * | 20.0 * | One patient (Engel II) achieved Engel I class after another resective surgery (included as Engel II). | Kim et al. [22], (R) |
Surgical Method | Age at Surgery | LGS Patients, n | Time of Assessment/Duration of Follow-Up | Responders, % | Seizure-Free Status | Comments | Reference, Study Type |
---|---|---|---|---|---|---|---|
CC and subsequent VNS | 1–28, and 3–30 years, respectively | 10 | 12th month after VNS | 60.0 a | 20.0 | Adverse effects: CC—acute disconnection syndrome (stranguria and mutism that resolved 3–7 days after surgery); VNS—transient hoarseness, coughing. | Katagiri et al. [8], (R) |
CC | N/A | 100 | 1st year | N/A | 24.0 | - | Na et al. [21], (R) |
5th years | N/A | 11.0 | |||||
CC | 16.3 ± 5.3 years, mean | 17 | At the last available follow-up (mean of 6.1 ± 3.9 years) | 52.9 *a | 5.9 * | Five patients achieving ≥90% seizure reduction were free of GTCS and drop attacks. | Kim et al. [22], (R) |
SLACC | 33 years, median | 10 | mean of 19 months, range 6–40 months | 80.0 a | 20.0 | Adverse effects: asymptomatic intracerebral hemorrhage, hypersomnia, and aggressiveness development. | Tao et al. [24], (R) |
Anterior CC | 9.48 ± 2.21 years | 23 | 1st year | 87.0 a | 17.4 | Adverse effects: urinary incontinence, aphasia, apraxia (all transient). | Liang et al. [25], (P) |
23 | 2nd year | 69.6 *a | 13.0 | ||||
23 | 5th year | 65.2 *a | 8.7 | ||||
SLACC | 35.2 years *, mean | 6 | 1st year | 83.3 *d | 33.3 * | Severe intraparenchymal hemorrhage resulting in the procedure’s cessation in one case (included in the table). Lacking data regarding one of the seizure types could lower the overall response rate (2 patients). Adverse effects: severe intraparenchymal hemorrhage; transient: leg weakness, hemiparesis, incontinence, dysarthria, SMA syndrome; persistent: dysarthria, hemiparesis, and incontinence. | Rich et al. [28], (R) |
33.3 years *, mean | 7 | N/A *** | 71.4 *d | 14.3 * | - | ||
SLPCC | 23.7 years *, mean | 3 | 1st year | 33.3 *d | 33.3 * | Lacking data regarding one of the seizure types could lower the overall response rate (2 patients). Adverse effect: persistent agraphia. | |
3 | N/A *** | 66.7 *d | 0.0 * | - | |||
Total CC | 10.5 ± 5.3 years, mean ± SD | 18 | mean of 29.2 ± 12.4 months, range 12–54 months | N/A | 10.0 | After CC, the patients achieved “average 60–70% reduction in all seizure types” with a complete cessation of drop attacks. Adverse effects: disconnection syndrome-like symptoms (“confusion, increased response time latency and apathy”; the symptoms “improved to pre-surgical level by the time of discharge”. | Kurwale et al. [31], (R) |
Anterior half CC | 11.2 ± 3.02 years ** | 15 + 9 LGS-like | 2nd year | N/A for all seizure types collectively | 10.0 | Responders regarding a specific seizure type: 90.0% in atonic, 20.0% in tonic, 10.0% in myoclonic, 93.0% in atypical absence, and 40.0% in GTCS. Adverse effects: acute disconnection syndrome (apathy, urinary incontinence, non-dominant hemineglect lasting up to 3 weeks). | Cukiert et al. [32], (P) |
SRS CC (genu, first third of the truncus) | 22 years | 1 | 18th month | 100.0 *a | 0.0 * | First literature reports of SRS CC. Adverse effect: transient headache. | Pendl et al. [37], (R) |
SRS CC (anterior) | 28 years | 1 | 18th month | 100.0 *a | 0.0 * | ||
SRS CC (1/3 anterior) | 14 years | 1 | N/A | 0.0 *a | 0.0 * | The patient experienced aggressive behavior alleviation, while seizure status became unaffected. No adverse effects reported | Eder et al. [38], (R) |
SRS CC (posterior, completion) | 20 years | 1 | 8th month | N/A | N/A | Open 2/3 ACC prior to SRS CC procedure. The patient achieved marked improvement in seizure frequency and quality, he became ambulatory and free of atonic seizures. No adverse effects reported. | Sachdev et al. [39], (R) |
Transventricular total CC | 5 years | 1 | 1st month | 100% *a | 100% * | Adverse effect: pseudomeningocele. | Baumgartner et al. [40], (R) |
1 | 2.5th year | N/A | N/A | ||||
Surgical CC | 9.6 ± 1.1 years, mean | 5 | mean of 15.2 ± 3.6 months | 60.0 c | 0.0 | Adverse effect: cerebrospinal fluid leakage. | Alanazi et al. [41], (R) |
Focal resective surgery followed by CC | N/A | 1 | N/A | 0.0 *a | 0.0 * | The study comprised 20 adult LGS patients, of whom two were administered surgical procedures. No seizure benefits were observed among the two surgical patients. | Reyhani et al. [42], (R) |
CC | N/A | 1 | N/A | 0.0 *a | 0.0 * | - |
Age at Surgery | LGS Patients, n | Time of Assessment/Duration of Follow-Up | Responders, % | Seizure-Free Status, % | Comments | Reference, Study Type |
---|---|---|---|---|---|---|
VNS | ||||||
N/A | 35 | 1st year | N/A | 14.3 | - | Na et al. [21], (R) |
5th year | N/A | 2.9 | ||||
18.1 ± 4.9 years, mean | 14 | mean 5.4 ± 2.2 years | N/A | 7.1 * | - | Kim et al. [22], (R) |
8.6 ± 3.2 years ***, mean | 12 + 8 LGS-like | 2nd year | N/A for all seizure types collectively | 0.0 | Responders regarding a specific seizure type e: 20.0% in atonic, 40.0% in tonic, 63.6% in myoclonic, 80.0% in atypical absence, and 46.2% in GTCS. Adverse effects: hoarseness in one patient. | Cukiert et al. [32], (P) |
11.7 ± 3.3 years, mean | 4 | 24.5 ± 16.5 months | 50.0 *a | 0.0 | Adverse effect: swallowing difficulty in one patient. | Alanazi et al. [41], (R) |
N/A | 10 | N/A | 50.0 *a | 0.0 | The study comprised 20 adult LGS patients, of whom 10 were administered VNS | Reyhani et al. [42], (R) |
23.0 years (IQR 14.5–29.5), median | 29 | median 66 months (IQR 42.5–126.5) | 41.4 *a | 0.0 | VNS was turned off in 7 patients due to the lack of efficacy. Adverse effects: cough, sore throat, and hoarseness (moderate and reversible). | Suller Marti et al. [54], (R) |
8.4 years (5.0–12.0), mean | 14 + 10 LGS-like | mean 32 months (24–53) | 83.3 *b | N/A | “Honeymoon effect” in 58.3% of the patients; one withdrawal due to parkinsonian symptoms; one case of persistent hoarseness. Adverse effects: seizure frequency worsening (transient). | Cukiert et al. [56], (P) |
20.8 months, mean | 26 | ≤1st month | 38.5 *c | 11.5 * | A total of 71 patients enrolled in the study. Adverse effects: dysphonia, paresthesia, and shortness of breath (well tolerated, resolved after 24 months). | Abdelmoity et al. [58], (R) |
32 | 3rd month | 43.8 *c | 9.4 * | |||
44 | 6th month | 54.5 *c | 11.4 * | |||
37 | 12th month | 67.6 *c | 10.8 * | |||
24 | 18th month | 66.7 *c | 20.8 * | |||
23 | 24th month | 65.2 *c | 17.4 * | |||
13.0 years (4.0–52.0), median | 30 | median 52 months (17–123 months) | 66.7 *a | 3.3 * | The adverse effects occurred in 20 patients, typically after the increase in the output current. Five patients (16.7%) withdrew from VNS therapy either due to adverse events or lack of clinical benefit. Adverse effects: drooling, voice alteration; one case of vocal cord paralysis (disappeared with device’s switch-off and forced the device explanation). | Kostov et al. [59], (R) |
13.0 years (5.0–27.0), median | 46 | 1st month | 43.5 *a | 0.0 | Declining number of patients was due to data-collection cutoff point. Adverse effects: voice alteration, hoarseness, and coughing (resolved after stimulation adjustment). | Frost et al. [60], (R) |
43 | 3rd month | 55.8 *a | N/A | |||
24 | 6th month | 58.3 *a | N/A | |||
11.2 years (6.3–18.8), mean | 17 | 24th month | 23.5 *c | N/A | One patient excluded due to VNS equipment failure and one patient withdrew consent (thus 17 patients were eventually analyzed). | Aldenkamp et al. [61], (P) |
13.0 years (5.0–19.5), mean | 46 | mean 30 months (12–108) | 65.2 */87.0 *a*** | 0.0 | Adverse effects: hoarseness and coughing, change in vocal timbre. | Cersósimo et al. [62], (R) |
N/A | 123 | 6th month | 28.5 *d | N/A | Adverse effects: device-related (lead’s damage, device change, device removal, infection, and lead issues) and dysphonia. | Orosz et al. [63], (R) |
146 | 12th month | 32.9 *d | ||||
87 | 24th month | 39.1 *d | ||||
DBS | ||||||
26 years, mean | 3 | mean 3.8 years | 100 *a | 33.3 * | ANT DBS was used in all three patients. | Poulen et al. [67] (R) |
24.4 ± 6.92 years | 10 | 3rd month | 50.0 a/89.0 f | 0.0 | RCT.. Stimulation target—CMT. Adverse effects: transient drowsiness in 60% of the patients (postoperative), transient ipsilateral hand/face/lip paresthesia (stimulation-related). | Dalic et al. [69] (P) |
13.2 years, mean | 13 | 18th month | 92.3 a | 15.3 | CMT DBS was used in all 13 patients. Adverse effects: two cases of skin erosions and one case of rupture of electrode lead and connector cable—all requiring electrode explanation. | Velasco et al. [71] (R) |
14 years, mean | 6 | 16.3 months, mean | 66.7 *g | 16.7 * | CMT DBS was used in all six patients. | Bonda et al. [73] (R) |
RNS | ||||||
16 years | 1 | 26 months | 100 *a | 0 * | 18 months after RNS placement, the right fronto-polar lead was replaced by the right CMT depth electrode. | Kwon et al. [76], (R) |
12 years | 1 | 1 year | 100 *a | 0 * | After RNS placement, the patient was able to walk independently. | |
12.2 years | 10 | At the last available follow-up (N/A) | 60 h | 10 * | - | Ahn et al. [78] (R) |
15.5 years | 4 | At the last available follow-up (24.8 months, mean) | 75 *a | 0 * | - | Roa et al. [79], (R) |
16.3 years (RNS), 11.5 years (VNS) | 4 | 3.1 years (RNS, mean), 7.8 years (VNS, mean) | 100 *a | 0 * | All patients were treated with RNS and VNS concomitantly. | Beaudreault et al. [80] (R) |
17 years | 1 | N/A | 100 *a | 0 * | - | Zuckerman et al. [83] (R) |
Parameter | Classic Ketogenic Diet 4:1# | Medium Chain Triglyceride Diet 1.9:1# | Modified Atkins Diet 0.8:1# | Low Glycemic Index Treatment 2:3# |
---|---|---|---|---|
% of daily calories intake from fat | 90% [88,92] | 50% from MCT + 21% from LCT [92] | 65% [92] | 60% [92] |
% of daily calories intake from carbohydrates | 4% [92] | 10% [92] | 3–6% [92] | 12% (2), with a preference of GI < 50 [88] |
% of daily calories intake from protein | 6% [92] | 19% [92] | 29–32% [92] | 28% [92] |
Requirement for hospitalization | Usually yes [88] | Usually yes [88] | No [88] | No [88] |
KDT Protocol | Age at Initiation of Diet Therapy | LGS Patients, n | Time of Assessment/Duration of Follow-Up | Responders, % | Seizure-Free Status, % | Comments | Reference, Study Type |
---|---|---|---|---|---|---|---|
cKD = 18 (4:1# = 16, 3:1# = 2); MAD = 2 | 4.6 years, median | 20 | 3rd month | 25.0 *a | 0.0 * | The study concerned LGS connected to mitochondrial disease. Four patients initially treated with cKD 4:1 switched to cKD 3:1 during the study. Adverse effects: poor oral intake, vomiting, diarrhea, and metabolic acidosis (no life-threatening events). | Na et al. [5], (R) |
13 | 6th month | 45.0 *a | 5.0 * | ||||
9 | 9th month | 35 *a | 10.0 * | ||||
9 | 12th month | 35 *a | 10.0 * | ||||
8 | 24th month | 35 *a | 10.0 * | ||||
KDT, not specified | 11.5 ± 4.9 years, mean | 19 | N/A | 31.6 *d | 26.3 * | - | Kim et al. [22], (R) |
6 | After KDT discontinuation, N/A | 26.3 *d | 0.0 * | ||||
6 | N/A ** | 26.3 *d | 5.3 * | One of the patients regained seizure free-status after lobectomy (included in ≥50% seizure reduction status, but not in seizure-free status), another one regained seizure-free status due to continued MAD administration (included in ≥50% seizure reduction status and in seizure-free status). | |||
201 (cKD = 169, MAD = 27, LGIT = 5) | N/A | 201 | 1st year | N/A | 26.4 | - | Na et al. [21], (R) |
N/A | 5th year | N/A | 7.5 | ||||
KDT, not specified | N/A | 2 | At least 1 year, N/A ** | 0.0 a | 0.0 | The study comprised 20 adult LGS patients, of whom 2 were administered KDTs. One of the patients achieved a 40% seizure reduction, with no seizure reduction in the second patient. | Reyhani et al. [42], (R) |
MAD | N/A | 7 | 4th week | 28.6 b | 14.3 | Adverse effects in the whole studied population (n = 52): digestive symptoms, asymptomatic hypoglycemia, significant sleep increase, and abnormal liver function. | Wu et al. [86], (P) |
7 | 12th week | 42.9 b | 14.3 | ||||
2 | 24th week | 14.3 *b | 14.3 * | ||||
cKD 4:1# | 4.4 ± 3.2, mean ± SD | 47 | 1st month | 36.2 *a | 4.3 | Adverse effects: hyperlipidemia, gastrointestinal, fatigue, and drowsiness. | Zhang et al. [93], (R) |
47 | 3rd month | 49.0 *a | 4.3 | ||||
40 | 6th month | 44.7 *a | 8.5 * | ||||
MAD | 4.5 years, median | 25 | 3rd month | 48.0 c | 8.0 | Adverse effects: constipation, vomiting, and anorexia. | Sharma et al. [95], (R) |
11 | 6th month | 44.0 c | 12.0 | ||||
9 | 12th month | 36.0 c | 12.0 | ||||
LGIT | N/A | 12 | 12th month | 75.0 a | 0.0 | Adverse effects in the whole study population (n = 36): hypercholesterolemia, reduced tCO2, increased ALT, increased lipase and amylase, increased BUN, and increased blood creatinine. | Kim et al. [96], (R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda, P.; Granat, M.; Czuczwar, S.J.; Miziak, B. Non-Pharmacological Treatment Methods of Lennox–Gastaut Syndrome—Review of the Literature. Biomedicines 2025, 13, 2247. https://doi.org/10.3390/biomedicines13092247
Duda P, Granat M, Czuczwar SJ, Miziak B. Non-Pharmacological Treatment Methods of Lennox–Gastaut Syndrome—Review of the Literature. Biomedicines. 2025; 13(9):2247. https://doi.org/10.3390/biomedicines13092247
Chicago/Turabian StyleDuda, Piotr, Michał Granat, Stanisław J. Czuczwar, and Barbara Miziak. 2025. "Non-Pharmacological Treatment Methods of Lennox–Gastaut Syndrome—Review of the Literature" Biomedicines 13, no. 9: 2247. https://doi.org/10.3390/biomedicines13092247
APA StyleDuda, P., Granat, M., Czuczwar, S. J., & Miziak, B. (2025). Non-Pharmacological Treatment Methods of Lennox–Gastaut Syndrome—Review of the Literature. Biomedicines, 13(9), 2247. https://doi.org/10.3390/biomedicines13092247