Association of HTR1F with Prognosis, Tumor Immune Microenvironment, and Drug Sensitivity in Cancer: A Multi-Omics Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Patients’ Data from Datasets
2.2. Differential Analysis and Prognostic Analysis
2.3. Immune Cell Infiltration Analysis
2.4. Immunotherapy Prediction Analysis
2.5. Functional Enrichment Analysis
2.6. Correlation Analysis Between HTR1F Expression and Clinical Factors
2.7. Drug Sensitivity Analysis and Molecular Docking
2.8. Construction of the Protein–Protein Interaction (PPI) Network
2.9. Plasmid and Cell Lines
2.10. Cell Proliferation and Migration Function Assays
2.11. Western Blot
2.12. The Human Protein Atlas
2.13. Statistical Analysis
3. Results
3.1. HTR1F Expression and Survival Analysis in Pan-Cancer
3.2. Tumor Immune Microenvironment Analysis of HTR1F Across Different Cancers
3.3. Genetic Alteration Analysis
3.4. Potential Chemo Drugs Targeting HTR1F in Pan-Cancer
3.5. Clinical Correlation Analysis of HTR1F in Lung Squamous Cell Carcinoma
3.6. Potential Functional Analysis of HTR1F in LUSC Based on the TCGA Database
3.7. Effects of HTR1F on Cell Proliferation in LUSC
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCGA-ACC | Adrenocortical carcinoma |
TCGA-BLCA | Bladder urothelial carcinoma |
TCGA-BRCA | Breast invasive carcinoma |
TCGA-CESC | Cervical squamous cell carcinoma and endocervical adenocarcinoma |
TCGA-CHOL | Cholangiocarcinoma |
TCGA-COAD | Colon adenocarcinoma |
TCGA-COADREAD | Colon adenocarcinoma/rectum adenocarcinoma esophageal carcinoma |
TCGA-DLBC | Lymphoid neoplasm diffuse large B-cell lymphoma |
TCGA-ESCA | Esophageal carcinoma |
TCGA-GBM | Glioblastoma multiforme |
TCGA-GBMLGG | Glioma |
TCGA-HNSC | Head and neck squamous cell carcinoma |
TCGA-KICH | Kidney chromophobe |
TCGA-KIPAN | Pan-kidney cohort (KICH+KIRC+KIRP) |
TCGA-KIRC | Kidney renal clear cell carcinoma |
TCGA-KIRP | Kidney renal papillary cell carcinoma |
TCGA-LAML | Acute myeloid leukemia |
TCGA-LGG | Brain lower grade glioma |
TCGA-LIHC | Liver hepatocellular carcinoma |
TCGA-LUAD | Lung adenocarcinoma |
TCGA-LUSC | Lung squamous cell carcinoma |
TCGA-MESO | Mesothelioma |
TCGA-OV | Ovarian serous cystadenocarcinoma |
TCGA-PAAD | Pancreatic adenocarcinoma |
TCGA-PCPG | Pheochromocytoma and paraganglioma |
TCGA-PRAD | Prostate adenocarcinoma |
TCGA-READ | Rectum adenocarcinoma |
TCGA-SARC | Sarcoma |
TCGA-STAD | Stomach adenocarcinoma |
TCGA-SKCM | Skin cutaneous melanoma |
TCGA-STES | Stomach and esophageal carcinoma |
TCGA-TGCT | Testicular germ cell tumors |
TCGA-THCA | Thyroid carcinoma |
TCGA-THYM | Thymoma |
TCGA-UCEC | Uterine corpus endometrial carcinoma |
TCGA-UCS | Uterine carcinosarcoma |
TCGA-UVM | Uveal melanoma |
TARGET-OS | Osteosarcoma |
TARGET-ALL | Acute lymphoblastic leukemia |
TARGET-NB | Neuroblastoma |
TARGET-WT | High-risk Wilms tumor |
CI | Confidence interval. |
GSEA | Gene set enrichment analysis |
IC50 | Half-maximal inhibitory concentration |
DEGs | Differentially expressed genes |
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar]
- Borroto-Escuela, D.O.; Ambrogini, P.; Chruścicka, B.; Lindskog, M.; Crespo-Ramirez, M.; Hernández-Mondragón, J.C.; Perez de la Mora, M.; Schellekens, H.; Fuxe, K. The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. Int. J. Mol. Sci. 2021, 22, 1927. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Zhang, H.; Mao, C.; Zhou, X.E.; Cheng, X.; Simon, I.A.; Shen, D.D.; Yen, H.Y.; Robinson, C.V.; et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 2021, 592, 469–473. [Google Scholar] [CrossRef]
- Moon, J.H.; Oh, C.M.; Kim, H. Serotonin in the regulation of systemic energy metabolism. J. Diabetes Investig. 2022, 13, 1639–1645. [Google Scholar] [CrossRef]
- Oh, C.M.; Park, S.; Kim, H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab. J. 2016, 40, 89–98. [Google Scholar] [CrossRef]
- Park, J.; Jeong, W.; Yun, C.; Kim, H.; Oh, C.M. Serotonergic Regulation of Hepatic Energy Metabolism. Endocrinol. Metab. 2021, 36, 1151–1160. [Google Scholar] [CrossRef]
- Adham, N.; Kao, H.T.; Schecter, L.E.; Bard, J.; Olsen, M.; Urquhart, D.; Durkin, M.; Hartig, P.R.; Weinshank, R.L.; Branchek, T.A. Cloning of another human serotonin receptor (5-HT1F): A fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc. Natl. Acad. Sci. USA 1993, 90, 408–412. [Google Scholar]
- Cohen, Z.; Bouchelet, I.; Olivier, A.; Villemure, J.G.; Ball, R.; Stanimirovic, D.B.; Hamel, E. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: Molecular and pharmacologic characterization. J. Cereb. Blood Flow. Metab. 1999, 19, 908–917. [Google Scholar] [CrossRef]
- Clemow, D.B.; Johnson, K.W.; Hochstetler, H.M.; Ossipov, M.H.; Hake, A.M.; Blumenfeld, A.M. Lasmiditan mechanism of action—Review of a selective 5-HT(1F) agonist. J. Headache Pain 2020, 21, 71. [Google Scholar] [CrossRef]
- Kuang, S.; Li, H.; Feng, J.; Xu, S.; Le, Y. Correlation of BRCA2 gene mutation and prognosis as well as variant genes in invasive urothelial carcinoma of the bladder. Cancer Biomark. 2019, 25, 203–212. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, N.; Fu, X.; Wang, W.; Liu, H.; McKay, M.J.; Dejkriengkraikul, P.; Nie, Y. Bioinformatic analysis of cancer-associated fibroblast related gene signature as a predictive model in clinical outcomes and immune characteristics of gastric cancer. Ann. Transl. Med. 2022, 10, 698. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Lu, J.; Yuan, D.; He, L.; Qin, P.; Tan, H.; Xu, L. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine 2021, 100, e25807. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- De Las Casas-Engel, M.; Corbí, A.L. Serotonin modulation of macrophage polarization: Inflammation and beyond. Adv. Exp. Med. Biol. 2014, 824, 89–115. [Google Scholar]
- Chan, Y.-L.; Lai, W.-C.; Chen, J.-S.; Tseng, J.T.-C.; Chuang, P.-C.; Jou, J.; Lee, C.-T.; Sun, H.S. TIAM2S Mediates Serotonin Homeostasis and Provokes a Pro-Inflammatory Immune Microenvironment Permissive for Colorectal Tumorigenesis. Cancers 2020, 12, 1844. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Wang, Z.; Wu, P.; Gong, W. 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3. Eur. J. Cancer 2019, 114, 8–24. [Google Scholar] [CrossRef]
- Schneider, M.A.; Heeb, L.; Beffinger, M.M.; Pantelyushin, S.; Linecker, M.; Roth, L.; Lehmann, K.; Ungethüm, U.; Kobold, S.; Graf, R.; et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci. Transl. Med. 2021, 13, eabc8188. [Google Scholar] [CrossRef]
- Xiao, L.; Li, X.; Fang, C.; Yu, J.; Chen, T. Neurotransmitters: Promising immune modulators in the tumor microenvironment. Front. Immunol. 2023, 14, 1118637. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [Google Scholar] [CrossRef]
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343, 84–87. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Gao, Y.; Peng, Y.; Dong, N.; Xie, Q.; Zhang, X.; Wu, Y.; Li, M.; Li, J.L. RN181 is a tumour suppressor in gastric cancer by regulation of the ERK/MAPK-cyclin D1/CDK4 pathway. J. Pathol. 2019, 248, 204–216. [Google Scholar] [CrossRef]
- Riera-Domingo, C.; Audigé, A.; Granja, S.; Cheng, W.C.; Ho, P.C.; Baltazar, F.; Stockmann, C.; Mazzone, M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol. Rev. 2020, 100, 1–102. [Google Scholar] [CrossRef]
- Uhl, M.; Fagerberg, L.; Hallstr, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A. Proteomics. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar]
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Ou Yang, T.H.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A.; et al. The Immune Landscape of Cancer. Immunity 2018, 48, 812–830 e814. [Google Scholar] [CrossRef]
- Lei, X.; Lei, Y.; Li, J.K.; Du, W.X.; Li, R.G.; Yang, J.; Li, J.; Li, F.; Tan, H.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020, 470, 126–133. [Google Scholar] [CrossRef]
- Zhou, P.; Hu, H.; Lu, Y.; Xiao, J.; Wang, Y.; Xun, Y.; Xu, J.; Liu, C.; Wang, S.; Hu, J. Cancer stem/progenitor signatures refine the classification of clear cell renal cell carcinoma with stratified prognosis and decreased immunotherapy efficacy. Mol. Ther. Oncolytics 2022, 27, 167–181. [Google Scholar] [CrossRef]
- Principe, N.; Kidman, J.; Goh, S.; Tilsed, C.M.; Fisher, S.A.; Fear, V.S.; Forbes, C.A.; Zemek, R.M.; Chopra, A.; Watson, M.; et al. Tumor Infiltrating Effector Memory Antigen-Specific CD8(+) T Cells Predict Response to Immune Checkpoint Therapy. Front. Immunol. 2020, 11, 584423. [Google Scholar] [CrossRef]
- Corgnac, S.; Boutet, M.; Kfoury, M.; Naltet, C.; Mami-Chouaib, F. The Emerging Role of CD8(+) Tissue Resident Memory T (T(RM)) Cells in Antitumor Immunity: A Unique Functional Contribution of the CD103 Integrin. Front. Immunol. 2018, 9, 1904. [Google Scholar] [CrossRef]
- Engelhard, V.H.; Rodriguez, A.B.; Mauldin, I.S.; Woods, A.N.; Peske, J.D.; Slingluff, C.L., Jr. Immune Cell Infiltration and Tertiary Lymphoid Structures as Determinants of Antitumor Immunity. J. Immunol. 2018, 200, 432–442. [Google Scholar] [CrossRef]
- Shu, C.; Wang, C.; Chen, S.; Huang, X.; Cui, J.; Li, W.; Xu, B. ERR-activated GPR35 promotes immune infiltration level of macrophages in gastric cancer tissues. Cell Death Discov. 2022, 8, 444. [Google Scholar] [CrossRef]
- Huntington, N.D.; Cursons, J.; Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 2020, 20, 437–454. [Google Scholar] [CrossRef]
- Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol. 2018, 29, 71–83. [Google Scholar] [CrossRef]
- Wu, P.; Heins, Z.J.; Muller, J.T.; Katsnelson, L.; de Bruijn, I.; Abeshouse, A.A.; Schultz, N.; Fenyö, D.; Gao, J. Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal. Mol. Cell. Proteom. 2019, 18, 1893–1898. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, Z.; Ye, D.; Li, Q.; Wen, Y.; Ma, S.; Zheng, B.; Chen, L.; Yao, Y. Association of HTR1F with Prognosis, Tumor Immune Microenvironment, and Drug Sensitivity in Cancer: A Multi-Omics Perspective. Biomedicines 2025, 13, 2238. https://doi.org/10.3390/biomedicines13092238
Gao Y, Zhang Z, Ye D, Li Q, Wen Y, Ma S, Zheng B, Chen L, Yao Y. Association of HTR1F with Prognosis, Tumor Immune Microenvironment, and Drug Sensitivity in Cancer: A Multi-Omics Perspective. Biomedicines. 2025; 13(9):2238. https://doi.org/10.3390/biomedicines13092238
Chicago/Turabian StyleGao, Yanjun, Ziyue Zhang, Dafu Ye, Qingqing Li, Yingmei Wen, Shaowen Ma, Bo Zheng, Lei Chen, and Yi Yao. 2025. "Association of HTR1F with Prognosis, Tumor Immune Microenvironment, and Drug Sensitivity in Cancer: A Multi-Omics Perspective" Biomedicines 13, no. 9: 2238. https://doi.org/10.3390/biomedicines13092238
APA StyleGao, Y., Zhang, Z., Ye, D., Li, Q., Wen, Y., Ma, S., Zheng, B., Chen, L., & Yao, Y. (2025). Association of HTR1F with Prognosis, Tumor Immune Microenvironment, and Drug Sensitivity in Cancer: A Multi-Omics Perspective. Biomedicines, 13(9), 2238. https://doi.org/10.3390/biomedicines13092238