Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Posterior Root Muscle Reflexes to Determine Stimulation Intensity
2.4. Intervention
2.5. Biomechanical Measurement of Spasticity
2.6. Data Analysis
3. Results
3.1. Reflex Threshold
3.2. Response Amplitude at 1.2xRT (RA1.2xRT)
3.3. Slope Between RT and 1.2xRT
3.4. Area Under the Curve (AUCS1) Between RT and 1.2xRT
3.5. PPD at 1.2xRT
3.6. AUC Depression
3.7. Correlations Between Electrophysiologic and Biomechanical Measures
4. Discussion
4.1. Stimulation Intensity
4.2. Reflex Threshold Is Unaltered by TSS
4.3. Motoneuron Output at 1.2xReflex Threshold Does Not Change
4.4. Slope and AUC Changes Are Consistent with RA and RT
4.5. TSS Targets Mechanisms of Paired-Pulse Depression
4.6. PRM Reflex Indices Do Not Reflect Biomechanical Measures
4.7. Recommendations
4.8. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TSS | Transcutaneous spinal stimulation |
SCI | Spinal cord injury |
PRM | Posterior root-muscle |
SS-CONT | Single-site continuous |
SS-BURST | Single-site burst |
DS-CONT | Dual-site continuous |
RT | Reflex threshold |
AUC | Area under the curve |
PPD | Paired-pulse depression |
FDE | First drop excursion |
RA | Response amplitude |
EMG | Electromyography |
ESS | Epidural spinal stimulation |
References
- Nathan, P.W. Factors affecting spasticity. Int. Rehabil. Med. 1980, 2, 27–30. [Google Scholar] [CrossRef]
- McKay, W.B.; Sweatman, W.M.; Field-Fote, E.C. The experience of spasticity after spinal cord injury: Perceived characteristics and impact on daily life. Spinal Cord. 2018, 56, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Holtz, K.A.; Lipson, R.; Noonan, V.K.; Kwon, B.K.; Mills, P.B. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 2017, 98, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Elbasiouny, S.M.; Moroz, D.; Bakr, M.M.; Mushahwar, V.K. Management of spasticity after spinal cord injury: Current techniques and future directions. Neurorehabil. Neural Repair. 2010, 24, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Bos, R.; Sadlaoud, K.; Boulenguez, P.; Buttigieg, D.; Liabeuf, S.; Brocard, C.; Haase, G.; Bras, H.; Vinay, L. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc. Natl. Acad. Sci. USA 2013, 110, 348–353. [Google Scholar] [CrossRef]
- Chopek, J.W.; Sheppard, P.C.; Gardiner, K.; Gardiner, P.F. Serotonin receptor and KCC2 gene expression in lumbar flexor and extensor motoneurons posttransection with and without passive cycling. J. Neurophysiol. 2015, 113, 1369–1376. [Google Scholar] [CrossRef]
- D’Amico, J.M.; Li, Y.; Bennett, D.J.; Gorassini, M.A. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans. J. Neurophysiol. 2013, 109, 1485–1493. [Google Scholar] [CrossRef]
- D’Amico, J.M.; Murray, K.C.; Li, Y.; Chan, K.M.; Finlay, M.G.; Bennett, D.J.; Gorassini, M.A. Constitutively active 5-HT2/alpha1 receptors facilitate muscle spasms after human spinal cord injury. J. Neurophysiol. 2013, 109, 1473–1484. [Google Scholar] [CrossRef]
- Gackiere, F.; Vinay, L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front. Neural Circuits 2014, 8, 102. [Google Scholar] [CrossRef]
- Murray, K.C.; Nakae, A.; Stephens, M.J.; Rank, M.; D’Amico, J.; Harvey, P.J.; Li, X.; Harris, R.L.; Ballou, E.W.; Anelli, R.; et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 2010, 16, 694–700. [Google Scholar] [CrossRef]
- Boulenguez, P.; Liabeuf, S.; Bos, R.; Bras, H.; Jean-Xavier, C.; Brocard, C.; Stil, A.; Darbon, P.; Cattaert, D.; Delpire, E.; et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat. Med. 2010, 16, 302–307. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Yu, B.; Zhang, Z.; Brommer, B.; Williams, P.R.; Liu, Y.; Hegarty, S.V.; Zhou, S.; Zhu, J.; et al. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell 2018, 174, 521–535.e13. [Google Scholar] [CrossRef]
- Liabeuf, S.; Stuhl-Gourmand, L.; Gackiere, F.; Mancuso, R.; Sanchez Brualla, I.; Marino, P.; Brocard, F.; Vinay, L. Prochlorperazine Increases KCC2 Function and Reduces Spasticity after Spinal Cord Injury. J. Neurotrauma 2017, 34, 3397–3406. [Google Scholar] [CrossRef]
- Mahadevan, V.; Woodin, M.A. Regulation of neuronal chloride homeostasis by neuromodulators. J. Physiol. 2016, 594, 2593–2605. [Google Scholar] [CrossRef] [PubMed]
- Caron, G.; Bilchak, J.N.; Cote, M.P. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats. J. Physiol. 2020, 598, 4621–4642. [Google Scholar] [CrossRef] [PubMed]
- Metz, K.; Matos, I.C.; Hari, K.; Bseis, O.; Afsharipour, B.; Lin, S.; Singla, R.; Fenrich, K.K.; Li, Y.; Bennett, D.J.; et al. Post-activation depression from primary afferent depolarization (PAD) produces extensor H-reflex suppression following flexor afferent conditioning. J. Physiol. 2023, 601, 1925–1956. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.C.; Birch, D.V.; Heckman, C.J.; Tysseling, V.M. The Involvement of Ca(V)1.3 Channels in Prolonged Root Reflexes and Its Potential as a Therapeutic Target in Spinal Cord Injury. Front. Neural Circuits 2021, 15, 642111. [Google Scholar] [CrossRef]
- Thaweerattanasinp, T.; Birch, D.; Jiang, M.C.; Tresch, M.C.; Bennett, D.J.; Heckman, C.J.; Tysseling, V.M. Bursting interneurons in the deep dorsal horn develop increased excitability and sensitivity to serotonin after chronic spinal injury. J. Neurophysiol. 2020, 123, 1657–1670. [Google Scholar] [CrossRef]
- Beverungen, H.; Klaszky, S.C.; Klaszky, M.; Cote, M.P. Rehabilitation Decreases Spasticity by Restoring Chloride Homeostasis through the Brain-Derived Neurotrophic Factor-KCC2 Pathway after Spinal Cord Injury. J. Neurotrauma 2020, 37, 846–859. [Google Scholar] [CrossRef]
- Boyce, V.S.; Park, J.; Gage, F.H.; Mendell, L.M. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur. J. Neurosci. 2012, 35, 221–232. [Google Scholar] [CrossRef]
- Cote, M.P.; Gandhi, S.; Zambrotta, M.; Houle, J.D. Exercise modulates chloride homeostasis after spinal cord injury. J. Neurosci. 2014, 34, 8976–8987. [Google Scholar] [CrossRef]
- Elbasiouny, S.M.; Mushahwar, V.K. Suppressing the excitability of spinal motoneurons by extracellularly applied electrical fields: Insights from computer simulations. J. Appl. Physiol. 2007, 103, 1824–1836. [Google Scholar] [CrossRef]
- Hou, J.; Nelson, R.; Nissim, N.; Parmer, R.; Thompson, F.J.; Bose, P. Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J. Neurotrauma 2014, 31, 1088–1106. [Google Scholar] [CrossRef]
- Lee-Hotta, S.; Uchiyama, Y.; Kametaka, S. Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review. Neurochem. Int. 2019, 128, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Orioli, A.; Golaszewski, S.; Brigo, F.; Sebastianelli, L.; Holler, Y.; Frey, V.; Trinka, E. Passive cycling in neurorehabilitation after spinal cord injury: A review. J. Spinal Cord. Med. 2017, 40, 8–16. [Google Scholar] [CrossRef]
- Tashiro, S.; Shinozaki, M.; Mukaino, M.; Renault-Mihara, F.; Toyama, Y.; Liu, M.; Nakamura, M.; Okano, H. BDNF Induced by Treadmill Training Contributes to the Suppression of Spasticity and Allodynia After Spinal Cord Injury via Upregulation of KCC2. Neurorehabil. Neural Repair. 2015, 29, 677–689. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Binder, H.; Minassian, K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE 2018, 13, e0192013. [Google Scholar] [CrossRef] [PubMed]
- Estes, S.P.; Iddings, J.A.; Field-Fote, E.C. Priming Neural Circuits to Modulate Spinal Reflex Excitability. Front. Neurol. 2017, 8, 17. [Google Scholar] [CrossRef]
- Sandler, E.B.; Condon, K.; Field-Fote, E.C. Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury. J. Clin. Med. 2021, 10, 3267. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Danner, S.M.; Krenn, M.J.; Mayr, W.; Binder, H.; Minassian, K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J. Neurotrauma 2020, 37, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; McKay, W.B.; Tansey, K.E.; Mayr, W.; Kern, H.; Minassian, K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord. Med. 2014, 37, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals. Artif. Organs 2015, 39, E176–E186. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Freundl, B.; Lackner, P.; Hofstoetter, U.S. Transcutaneous spinal cord stimulation neuromodulates pre- and postsynaptic inhibition in the control of spinal spasticity. Cell Rep. Med. 2024, 5, 101805. [Google Scholar] [CrossRef] [PubMed]
- Angel, R.W.; Hofmann, W.W. The H reflex in normal, spastic, and rigid subjects. Arch. Neurol. 1963, 9, 591–596. [Google Scholar] [CrossRef]
- Boorman, G.I.; Lee, R.G.; Becker, W.J.; Windhorst, U.R. Impaired “natural reciprocal inhibition” in patients with spasticity due to incomplete spinal cord injury. Electroencephalogr. Clin. Neurophysiol. 1996, 101, 84–92. [Google Scholar] [CrossRef]
- Boorman, G.; Becker, W.J.; Morrice, B.L.; Lee, R.G. Modulation of the soleus H-reflex during pedalling in normal humans and in patients with spinal spasticity. J. Neurol. Neurosurg. Psychiatry 1992, 55, 1150–1156. [Google Scholar] [CrossRef]
- Crone, C.; Nielsen, J. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp. Brain Res. 1989, 78, 28–32. [Google Scholar] [CrossRef]
- Morita, H.; Crone, C.; Christenhuis, D.; Petersen, N.T.; Nielsen, J.B. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain 2001, 124, 826–837. [Google Scholar] [CrossRef]
- Schindler-Ivens, S.; Shields, R.K. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp. Brain Res. 2000, 133, 233–241. [Google Scholar] [CrossRef]
- Stein, R.B.; Yang, J.F.; Belanger, M.; Pearson, K.G. Modification of reflexes in normal and abnormal movements. Prog. Brain Res. 1993, 97, 189–196. [Google Scholar]
- Yang, J.F.; Fung, J.; Edamura, M.; Blunt, R.; Stein, R.B.; Barbeau, H. H-reflex modulation during walking in spastic paretic subjects. Can. J. Neurol. Sci. 1991, 18, 443–452. [Google Scholar] [CrossRef]
- Minassian, K.; Persy, I.; Rattay, F.; Dimitrijevic, M.R.; Hofer, C.; Kern, H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007, 35, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.C.; Stein, R.B.; Roy, F.D. Post-activation depression in the human soleus muscle using peripheral nerve and transcutaneous spinal stimulation. Neurosci. Lett. 2015, 589, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; Freundl, B.; Binder, H.; Minassian, K. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord. PLoS ONE 2019, 14, e0227057. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Knikou, M. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS ONE 2019, 14, e0213696. [Google Scholar] [CrossRef]
- Tansey, K.E.; Farrell, B.J.; Bruce, J.A.; McKay, W.B. Soleus H and Lower Limb Posterior Root Muscle Reflexes During Stepping After Incomplete SCI. Front. Rehabil. Sci. 2022, 3, 789333. [Google Scholar] [CrossRef]
- Hope, J.M.; Koter, R.Z.; Estes, S.P.; Field-Fote, E.C. Disrupted Ankle Control and Spasticity in Persons With Spinal Cord Injury: The Association Between Neurophysiologic Measures and Function. A Scoping Review. Front. Neurol. 2020, 11, 166. [Google Scholar] [CrossRef]
- Abe, S.; Yokoi, Y.; Kozuka, N. Leg Cycling Leads to Improvement of Spasticity by Enhancement of Presynaptic Inhibition in Patients with Cerebral Palsy. Phys. Ther. Res. 2023, 26, 65–70. [Google Scholar] [CrossRef]
- Katz, R.T.; Rovai, G.P.; Brait, C.; Rymer, W.Z. Objective quantification of spastic hypertonia: Correlation with clinical findings. Arch. Phys. Med. Rehabil. 1992, 73, 339–347. [Google Scholar] [CrossRef]
- Massey, S.; Vanhoestenberghe, A.; Duffell, L. Neurophysiological and clinical outcome measures of the impact of electrical stimulation on spasticity in spinal cord injury: Systematic review and meta-analysis. Front. Rehabil. Sci. 2022, 3, 1058663. [Google Scholar] [CrossRef]
- Aberra, A.S.; Peterchev, A.V.; Grill, W.M. Biophysically realistic neuron models for simulation of cortical stimulation. J. Neural Eng. 2018, 15, 066023. [Google Scholar] [CrossRef]
- Gomes-Osman, J.; Tibbett, J.A.; Poe, B.P.; Field-Fote, E.C. Priming for Improved Hand Strength in Persons with Chronic Tetraplegia: A Comparison of Priming-Augmented Functional Task Practice, Priming Alone, and Conventional Exercise Training. Front. Neurol. 2016, 7, 242. [Google Scholar] [CrossRef]
- Perez, M.A.; Field-Fote, E.C.; Floeter, M.K. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 2014–2018. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Jaberzadeh, S.; Bastani, A.; Zoghi, M. Anodal transcranial pulsed current stimulation: A novel technique to enhance corticospinal excitability. Clin. Neurophysiol. 2014, 125, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Jaberzadeh, S.; Bastani, A.; Zoghi, M.; Morgan, P.; Fitzgerald, P.B. Anodal Transcranial Pulsed Current Stimulation: The Effects of Pulse Duration on Corticospinal Excitability. PLoS ONE 2015, 10, e0131779. [Google Scholar] [CrossRef]
- Wagner, F.B.; Mignardot, J.-B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Floyd, T.C.; Gorodnichev, R.M.; Moshonkina, T.R.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci. Lett. 2015, 609, 229–234. [Google Scholar] [CrossRef]
- Formento, E.; Minassian, K.; Wagner, F.; Mignardot, J.B.; Le Goff-Mignardot, C.G.; Rowald, A.; Bloch, J.; Micera, S.; Capogrosso, M.; Courtine, G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 2018, 21, 1728–1741. [Google Scholar] [CrossRef]
- Krenn, M.; Hofstoetter, U.S.; Danner, S.M.; Minassian, K.; Mayr, W. Multi-Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation. Artif. Organs 2015, 39, 834–840. [Google Scholar] [CrossRef]
- Roy, F.D.; Gibson, G.; Stein, R.B. Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp. Brain Res. 2012, 223, 281–289. [Google Scholar] [CrossRef]
- Fowler, E.G.; Nwigwe, A.I.; Ho, T.W. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev. Med. Child. Neurol. 2000, 42, 182–189. [Google Scholar] [CrossRef]
- Manella, K.J.; Roach, K.E.; Field-Fote, E.C. Temporal Indices of Ankle Clonus and Relationship to Electrophysiologic and Clinical Measures in Persons With Spinal Cord Injury. J. Neurol. Phys. Ther. 2017, 41, 229–238. [Google Scholar] [CrossRef]
- Koelman, J.H.; Bour, L.J.; Hilgevoord, A.A.; van Bruggen, G.J.; Ongerboer de Visser, B.W. Soleus H-reflex tests and clinical signs of the upper motor neuron syndrome. J. Neurol. Neurosurg. Psychiatry 1993, 56, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Zarkou, A.; Field-Fote, E.C. The influence of physiologic and atmospheric variables on spasticity after spinal cord injury. NeuroRehabilitation 2021, 48, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Estes, S.; Iddings, J.A.; Ray, S.; Kirk-Sanchez, N.J.; Field-Fote, E.C. Comparison of Single-Session Dose Response Effects of Whole Body Vibration on Spasticity and Walking Speed in Persons with Spinal Cord Injury. Neurother. J. Am. Soc. Exp. Neurother. 2018, 15, 684–696. [Google Scholar] [CrossRef]
- Crone, C.; Hultborn, H.; Mazières, L.; Morin, C.; Nielsen, J.; Pierrot-Deseilligny, E. Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: A study in man and the cat. Exp. Brain Res. 1990, 81, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice; F.A. Davis: Philadelphia, PA, USA, 2020. [Google Scholar]
- Dimitrijevic, M.R.; Faganel, J.; Sharkey, P.C.; Sherwood, A.M. Study of sensation and muscle twitch responses to spinal cord stimulation. Int. Rehabil. Med. 1980, 2, 76–81. [Google Scholar] [CrossRef]
- Katz, R.T.; Rymer, W.Z. Spastic hypertonia: Mechanisms and measurement. Arch. Phys. Med. Rehabil. 1989, 70, 144–155. [Google Scholar]
- Thatcher, K.L.; Nielsen, K.E.; Sandler, E.B.; Daliet, O.J.; Iddings, J.A.; Field-Fote, E.C. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. Res. Sq. 2025, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, J.E.; Godaux, E. Mechanism of the vibration paradox: Excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J. Physiol. 1978, 285, 197–207. [Google Scholar] [CrossRef]
- Kuck, A.; Stegeman, D.F.; van der Kooij, H.; van Asseldonk, E.H.F. Changes in H-Reflex Recruitment After Trans-Spinal Direct Current Stimulation With Multiple Electrode Configurations. Front. Neurosci. 2018, 12, 151. [Google Scholar] [CrossRef]
- Kitago, T.; Mazzocchio, R.; Liuzzi, G.; Cohen, L.G. Modulation of H-reflex excitability by tetanic stimulation. Clin. Neurophysiol. 2004, 115, 858–861. [Google Scholar] [CrossRef]
- Davey, N.J.; Smith, H.C.; Savic, G.; Maskill, D.W.; Ellaway, P.H.; Frankel, H.L. Comparison of input-output patterns in the corticospinal system of normal subjects and incomplete spinal cord injured patients. Exp. Brain Res. 1999, 127, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Dipani, A.; Leodori, G.; Popa, T.; Kassavetis, P.; Hallett, M.; Thirugnanasambandam, N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci. 2022, 12, 1401. [Google Scholar] [CrossRef]
- Sfreddo, H.J.; Wecht, J.R.; Alsalman, O.A.; Wu, Y.K.; Harel, N.Y. Duration and reliability of the silent period in individuals with spinal cord injury. Spinal Cord. 2021, 59, 885–893. [Google Scholar] [CrossRef]
- Hardy, S.G.P.; Spalding, T.B.; Liu, H.; Nick, T.G.; Pearson, R.H.; Hayes, A.V.; Stokic, D.S. The Effect of Transcutaneous Electrical Stimulation on Spinal Motor Neuron Excitability in People Without Known Neuromuscular Diseases: The Roles of Stimulus Intensity and Location. Phys. Ther. 2002, 82, 354–363. [Google Scholar] [CrossRef]
- Knikou, M. The H-reflex as a probe: Pathways and pitfalls. J. Neurosci. Methods 2008, 171, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.; Lester, S.; LaPierre, D.; Gabriel, D.A. Reliability of a new measure of H-reflex excitability. Clin. Neurophysiol. 2004, 115, 116–123. [Google Scholar] [CrossRef]
- Bandaru, S.P.; Liu, S.; Waxman, S.G.; Tan, A.M. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J. Neurophysiol. 2015, 113, 1598–1615. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Dy, C.J.; Gurley, K.M.; Smith, V.L.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J. Appl. Physiol. 2015, 118, 1364–1374. [Google Scholar] [CrossRef]
- Grey, M.J.; Klinge, K.; Crone, C.; Lorentzen, J.; Biering-Sørensen, F.; Ravnborg, M.; Nielsen, J.B. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp. Brain Res. 2008, 185, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Field-Fote, E.C.; Brown, K.M.; Lindley, S.D. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury. Neurosci. Lett. 2006, 410, 37–41. [Google Scholar] [CrossRef] [PubMed]
- McNeil, C.J.; Butler, J.E.; Taylor, J.L.; Gandevia, S.C. Testing the excitability of human motoneurons. Front. Hum. Neurosci. 2013, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Finn, H.T.; Bye, E.A.; Elphick, T.G.; Boswell-Ruys, C.L.; Gandevia, S.C.; Butler, J.E.; Heroux, M.E. Transcutaneous spinal stimulation in people with and without spinal cord injury: Effect of electrode placement and trains of stimulation on threshold intensity. Physiol. Rep. 2023, 11, e15692. [Google Scholar] [CrossRef]
- Moore, N.J.; Bhumbra, G.S.; Foster, J.D.; Beato, M. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord. J. Neurosci. 2015, 35, 13673–13686. [Google Scholar] [CrossRef]
- Mazzocchio, R.; Rossi, A. Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Brain 1997, 120, 991–1003. [Google Scholar]
- Jilge, B.; Minassian, K.; Rattay, F.; Dimitrijevic, M.R. Frequency-dependent selection of alternative spinal pathways with common periodic sensory input. Biol. Cybern. 2004, 91, 359–376. [Google Scholar] [CrossRef]
- Kiernan, M.C.; Mogyoros, I.; Hales, J.P.; Gracies, J.M.; Burke, D. Excitability changes in human cutaneous afferents induced by prolonged repetitive axonal activity. J. Physiol. 1997, 500, 255–264. [Google Scholar] [CrossRef]
- Chelnokov, A.A.; Roshchina, L.V.; Gladchenko, D.A.; Pivovarova, E.A.; Piskunov, I.V.; Gorodnichev, R.M. The Effect of Transcutaneous Electrical Spinal Cord Stimulation on the Functional Activity of Spinal Inhibition in the System of Synergistic Muscles of the Lower Leg in Humans. Hum. Physiol. 2022, 48, 121–133. [Google Scholar] [CrossRef]
- Takano, K.; Yamaguchi, T.; Kikuma, K.; Okuyama, K.; Katagiri, N.; Sato, T.; Tanabe, S.; Kondo, K.; Fujiwara, T. Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals. Exp. Brain Res. 2024, 242, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Gladchenko, D.A.; Roshchina, L.V.; Bogdanov, S.M.; Chelnokov, A.A. Effect of Transcutaneous Electrical Spinal Cord Stimulation on the Functional Activity of Reciprocal and Presynaptic Inhibition in Healthy Subjects. Russ. Open Med. J. 2022, 11, e0302. [Google Scholar] [CrossRef]
- Manella, K.J.; Field-Fote, E.C. Modulatory effects of locomotor training on extensor spasticity in individuals with motor-incomplete spinal cord injury. Restor. Neurol. Neurosci. 2013, 31, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Ness, L.L.; Field-Fote, E.C. Whole-body vibration improves walking function in individuals with spinal cord injury: A pilot study. Gait Posture 2009, 30, 436–440. [Google Scholar] [CrossRef]
- Ness, L.L.; Field-Fote, E.C. Effect of whole-body vibration on quadriceps spasticity in individuals with spastic hypertonia due to spinal cord injury. Restor. Neurol. Neurosci. 2009, 27, 621–631. [Google Scholar] [CrossRef]
Participant ID | Gender | Age (Years) | Time Since Injury | Self-Reported AIS Grade | Self-Reported Level of Injury | Antispastic Medications |
---|---|---|---|---|---|---|
1 | M | 54 | 34 years, 2 months | C | C5 | None |
2 | M | 29 | 6 years, 7 months | B | T4 | Baclofen |
3 | F | 62 | 7 years, 7 months | D | C7 | Pregabalin |
4 | M | 57 | 4 years, 3 months | D | C5 | Gabapentin, Baclofen |
5 | M | 40 | 1 year, 1 month | C | C5 | Baclofen, Gabapentin, Cyclobenzaprine |
6 | M | 47 | 11 years, 8 months | C | T10 | None |
9 | M | 38 | 4 months | A | T3 | None |
10 | M | 48 | 23 years, 9 months | C | C6 | Baclofen |
11 | M | 45 | 3 years, 3 months | D | C4 | Gabapentin |
13 | F | 44 | 29 years, 8 months | B | T4 | Baclofen, Tizanidine |
14 | M | 69 | 10 years, 10 months | C | C5 | None |
15 | M | 53 | 23 years, 4 months | A | T4 | None |
16 | F | 66 | 19 years, 3 months | D | T4 | Baclofen, Pregabalin |
17 | F | 30 | 4 months | C | T8 | Baclofen |
19 | F | 45 | 4 months | D | C1 | Gabapentin |
20 | M | 50 | 3 years, 1 month | D | C3 | None |
21 | M | 20 | 3 months | A | C6 | Baclofen |
Whole Group | SS-CONT | SS-BURST | DS-CONT | |||||
---|---|---|---|---|---|---|---|---|
RT (mA) | 55.2 ± 23.4 | 55.2 ± 23.9 | 56.3 ± 23.7 | 56.4 ± 24.3 | 55.6 ± 25.6 | 55.4 ± 26.4 | 53.3 ± 22.5 | 53.3 ± 22.1 |
RA1.2xRT (mV) | 1.4 ± 1.1 | 1.6 ± 1.7 | 1.4 ± 0.8 | 1.6 ± 1.9 | 1.7 ± 1.8 | 1.9 ± 2.2 | 1.2 ±0.6 | 1.1 ± 0.5 |
Slope (mV/mA) | 0.16 ± 0.17 | 0.12 ± 0.12 | 0.15 ± 0.12 | 0.13 ± 0.16 | 0.21 ± 0.26 | 0.10 ± 0.06 | 0.13 ± 0.12 | 0.12 ± 0.08 |
AUCS1 (mV·mA) | 7.0 ± 4.8 | 9.3 ± 12.0 | 7.4 ± 4.3 | 9.3 ± 10.0 | 7.6 ± 7.0 | 12.5 ± 18.3 | 6.1 ± 2.3 | 6.1 ± 3.2 |
PPD1.2xRT (%) | 97.3 ± 2.7 | 94.8 ± 5.1 | 97.8 ± 1.9 | 94.1 ± 5.9 | 97.3 ± 2.7 | 94.2 ± 5.6 | 96.7 ± 3.5 | 96.0 ± 3.5 |
AUCdep (%) | 96.3 ± 3.4 | 92.3 ± 9.6 | 96.9 ± 2.4 | 92.3 ± 8.4 | 96.0 ± 4.6 | 89.4 ± 14.3 | 95.8 ± 3.1 | 95.1 ± 3.1 |
Whole Group | SS-CONT | SS-BURST | DS-CONT | |
---|---|---|---|---|
∆ RT (mA) | −0.05 ± 5.7 | 0.06 ± 5.8 | −0.21 ± 7.1 | 0.00 ± 4.0 |
(−0.01) | (0.01) | (−0.03) | (0.00) | |
n = 42 | n = 16 | n = 14 | n = 12 | |
∆ RA1.2xRT (mV) | 0.14 ± 1.2 | 0.24 ± 1.7 | 0.21 ± 0.7 | −0.05 ± 0.8 |
(0.11) | (0.14) | (0.31) | (−0.07) | |
n = 35 | n = 14 | n = 10 | n = 11 | |
∆ Slope (mV/mA) | −0.04 ± 0.2 | −0.01 ± 0.02 | −0.11 ± 0.26 | −0.02 ± 0.11 |
(−0.23) | (−0.10) | (−0.42) | (−0.14) | |
n = 35 | n = 14 | n = 10 | n = 11 | |
∆ AUCS1 (mV·mA) | 2.3 ± 9.0 | 1.9 ± 9.6 | 4.9 ± 11.6 | 0.05 ± 3.8 |
(0.25) | (0.20) | (0.42) | (0.01) | |
n = 35 | n = 14 | n = 10 | n = 11 | |
∆ PPD1.2xRT (%) | −2.5 ± 5.4 * | −3.7 ± 5.7 * | −3.0 ± 6.2 | −0.7 ± 4.3 |
(−0.47) | (−0.65) | (−0.48) | (−0.16) | |
n = 35 | n = 14 | n = 10 | n = 11 | |
∆ AUCdep (%) | −4.0 ± 10.0 * | −4.6 ± 8.0 * | −6.5 ± 15.2 | −0.7 ± 4.0 |
(−0.40) | (−0.58) | (−0.43) | (−0.17) | |
n = 35 | n = 14 | n = 10 | n = 11 |
RT (mA) | RA1.2xRT (mV) | Slope (mV/mA) | AUCS1 (mV·mA) | PPD1.2xRT (%) | AUCdep (%) | |
---|---|---|---|---|---|---|
FDE (°) | 0.05 | −0.21 | −0.24 | −0.12 | −0.21 | −0.12 |
n = 42 | n = 36 | n = 36 | n = 36 | n = 36 | n = 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandler, E.B.; Iddings, J.A.; Minassian, K.; Field-Fote, E.C. Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury. Biomedicines 2025, 13, 2195. https://doi.org/10.3390/biomedicines13092195
Sandler EB, Iddings JA, Minassian K, Field-Fote EC. Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury. Biomedicines. 2025; 13(9):2195. https://doi.org/10.3390/biomedicines13092195
Chicago/Turabian StyleSandler, Evan B., Jennifer Ann Iddings, Karen Minassian, and Edelle C. Field-Fote. 2025. "Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury" Biomedicines 13, no. 9: 2195. https://doi.org/10.3390/biomedicines13092195
APA StyleSandler, E. B., Iddings, J. A., Minassian, K., & Field-Fote, E. C. (2025). Transcutaneous Spinal Stimulation Modulates Spinal Reflex Circuit Excitability in Persons with Spinal Cord Injury. Biomedicines, 13(9), 2195. https://doi.org/10.3390/biomedicines13092195