Short-Term Cyclosporin A Treatment Reduced Serum Neurofilament-Light Levels in Diffuse but Not Focal Traumatic Brain Injury in a Piglet Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Porcine Traumatic Brain Injury Models
2.3. Serum Sample Acquisition and Analysis
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Acute Serum Biomarker Levels for Untreated Traumatic Brain Injury Types
3.2. Effect of Acute Cyclosporin A Treatment on Serum Biomarkers
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
BBB | Blood–brain barrier |
CV | Coefficient of variance |
CT | Computed Tomography |
CCI | Controlled cortical impact |
CsA | Cyclosporin A |
CSF | Cerebrospinal fluid |
FDA | Food and Drug Administration |
GFAP | Glial fibrillary acidic protein |
IV | Intravenous |
LOD | Level of detection |
LLOQ | Lower limit of quantification |
mPTP | Mitochondrial permeability transition pore |
Nf-L | Neurofilament light |
RNR | Rapid non-impact rotation |
TBI | Traumatic Brain Injury |
UCH-L1 | Ubiquitin carboxyl-terminal hydrolase L1 |
ULOQ | Upper limit of quantification |
References
- Centers for Disease Control and Prevention (CDC). Nonfatal Traumatic Brain Injuries from Sports and Recreation Activities--United States, 2001–2005. MMWR Morb. Mortal. Wkly. Rep. 2007, 56, 733–737. [Google Scholar]
- Taylor, C.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths-United States, 2007 and 2013 Surveillance Summaries Centers for Disease Control and Prevention MMWR Editorial and Production Sta. Morb. Mortal. Wkly. Rep. 2017, 66, 1–16. [Google Scholar]
- Cheng, P.; Li, R.; Schwebel, D.C.; Zhu, M.; Hu, G. Traumatic Brain Injury Mortality among U.S. Children and Adolescents Ages 0–19 years, 1999–2017. J. Saf. Res. 2020, 72, 93–100. [Google Scholar] [CrossRef]
- Prisco, L.; Iscra, F.; Ganau, M.; Berlot, G. Early Predictive Factors on Mortality in Head Injured Patients: A Retrospective Analysis of 112 Traumatic Brain Injured Patients. J. Neurosurg. Sci. 2012, 56, 131–136. [Google Scholar]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.-R. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transpl. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef] [PubMed]
- Stocchetti, N.; Carbonara, M.; Citerio, G.; Ercole, A.; Skrifvars, M.B.; Smielewski, P.; Zoerle, T.; Menon, D.K. Traumatic Brain Injury 1 Severe Traumatic Brain Injury: Targeted Management in the Intensive Care Unit. Lancet Neurol. 2017, 16, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.P. Moderate and Severe Traumatic Brain Injury. Continuum 2021, 27, 1278–1300. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Nie, M.; Huang, J.; Tian, Y.; Wang, D.; Zhang, J.; Jiang, R. Pharmacotherapy for Mild Traumatic Brain Injury: An Overview of the Current Treatment Options. Expert. Opin. Pharmacother. 2022, 23, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Grgac, I.; Herzer, G.; Voelckel, W.G.; Secades, J.J.; Trimmel, H. Neuroprotective and Neuroregenerative Drugs after Severe Traumatic Brain Injury: A Narrative Review from a Clinical Perspective. Wien. Klin. Wochenschr. 2024, 136, 662–673. [Google Scholar] [CrossRef]
- Papa, L.; Brophy, G.M.; Welch, R.D.; Lewis, L.M.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.A.; Haeussler, C.A.; Mendez Giordano, D.I.; et al. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients with and without Mild Traumatic Brain Injury. JAMA Neurol. 2016, 73, 551–560. [Google Scholar] [CrossRef]
- Food and Drug Administration. Evaluation of Automatic Class III Designation For Banyan Brain Trauma Indicator: Decision Memorandum; Food and Drug Administration: Silver Spring, MD, USA, 2018; pp. 1–32.
- Puccio, A.M.; Yue, J.K.; Korley, F.K.; Okonkwo, D.O.; Diaz-Arrastia, R.; Yuh, E.L.; Ferguson, A.R.; Mukherjee, P.; Wang, K.K.W.; Taylor, S.R.; et al. Diagnostic Utility of Glial Fibrillary Acidic Protein Beyond 12 Hours After Traumatic Brain Injury: A TRACK-TBI Study. J. Neurotrauma 2024, 41, 1353–1363. [Google Scholar] [CrossRef]
- Food and Drug Administration. K234143 510(k) Substantial Equivalence Determination Decision Summary: Assay Only Brain Trauma Assessment Test; Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Okonkwo, D.O.; Puffer, R.C.; Puccio, A.M.; Yuh, E.L.; Yue, J.K.; Diaz-Arrastia, R.; Korley, F.K.; Wang, K.K.W.; Sun, X.; Taylor, S.R.; et al. Point-of-Care Platform Blood Biomarker Testing of Glial Fibrillary Acidic Protein versus S100 Calcium-Binding Protein B for Prediction of Traumatic Brain Injuries: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. J. Neurotrauma 2020, 37, 2460–2467. [Google Scholar] [CrossRef]
- Papa, L.; Zonfrillo, M.R.; Ramirez, J.; Silvestri, S.; Giordano, P.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.; Mittal, M.K. Performance of Glial Fibrillary Acidic Protein in Detecting Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Head Trauma. Acad. Emerg. Med. 2015, 22, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Papa, L.; Mittal, M.K.; Ramirez, J.; Silvestri, S.; Giordano, P.; Braga, C.F.; Tan, C.N.; Ameli, N.J.; Lopez, M.A.; Haeussler, C.A.; et al. Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. J. Neurotrauma 2017, 34, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, W.T.; Spitz, G.; Xie, B.; Major, B.P.; Mutimer, S.; Giesler, L.P.; Bain, J.; Evans, L.J.; Duarte Martins, B.; Piantella, S.; et al. Biomarkers of Neurobiologic Recovery in Adults with Sport-Related Concussion. JAMA Netw. Open 2024, 7, E2415983. [Google Scholar] [CrossRef]
- Korley, F.K.; Jain, S.; Sun, X.; Puccio, A.M.; Yue, J.K.; Gardner, R.C.; Wang, K.K.W.; Okonkwo, D.O.; Yuh, E.L.; Mukherjee, P.; et al. Prognostic Value of Day-of-Injury Plasma GFAP and UCH-L1 Concentrations for Predicting Functional Recovery after Traumatic Brain Injury in Patients from the US TRACK-TBI Cohort: An Observational Cohort Study. Lancet Neurol. 2022, 21, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Helmrich, I.R.A.R.; Czeiter, E.; Amrein, K.; Büki, A.; Lingsma, H.F.; Menon, D.K.; Mondello, S.; Steyerberg, E.W.; von Steinbüchel, N.; Wang, K.K.W.; et al. Incremental Prognostic Value of Acute Serum Biomarkers for Functional Outcome after Traumatic Brain Injury (CENTER-TBI): An Observational Cohort Study. Lancet Neurol. 2022, 21, 792–802. [Google Scholar] [CrossRef]
- Browning, M.; Shear, D.A.; Bramlett, H.M.; Dixon, C.E.; Mondello, S.; Schmid, K.E.; Poloyac, S.M.; Dietrich, W.D.; Hayes, R.L.; Wang, K.K.W.; et al. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J. Neurotrauma 2016, 33, 581–594. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, T.; Mondello, S.; Akel, M.; Wong, A.T.; Kothari, I.M.; Lin, F.; Shear, D.A.; Gilsdorf, J.S.; Leung, L.Y.; et al. Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. J. Neurotrauma 2019, 36, 348–359. [Google Scholar] [CrossRef]
- Biesterveld, B.E.; Pumiglia, L.; Iancu, A.; Shamshad, A.A.; Remmer, H.A.; Siddiqui, A.Z.; O’Connell, R.L.; Wakam, G.K.; Kemp, M.T.; Williams, A.M.; et al. Valproic Acid Treatment Rescues Injured Tissues after Traumatic Brain Injury. J. Trauma Acute Care Surg. 2020, 89, 1156–1165. [Google Scholar] [CrossRef]
- Karlsson, M.; Yang, Z.; Chawla, S.; Delso, N.; Pukenas, B.; Elmér, E.; Hugerth, M.; Margulies, S.S.; Ehinger, J.; Hansson, M.J.; et al. Evaluation of Diffusion Tensor Imaging and Fluid Based Biomarkers in a Large Animal Trial of Cyclosporine in Focal Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1870–1878. [Google Scholar] [CrossRef]
- Duhaime, A.; Margulies, S.S.; Durham, S.R.; Orourke, M.M.; Golden, J.A.; Marwaha, S.; Raghupathi, R. Maturation-Dependent Response of the Piglet Brain to Scaled Cortical Impact. J. Neurosurg. 2000, 93, 455–462. [Google Scholar] [CrossRef]
- Friess, S.H.; Ichord, R.N.; Owens, K.; Ralston, J.; Rizol, R.; Overall, K.L.; Smith, C.; Helfaer, M.A.; Margulies, S.S. Neurobehavioral Functional Deficits Following Closed Head Injury in the Neonatal Pig. Exp. Neurol. 2007, 204, 234–243. [Google Scholar] [CrossRef]
- Raghupathi, R.; Margulies, S.S. Traumatic Axonal Injury after Closed Head Injury in the Neonatal Pig. J. Neurotrauma 2002, 19, 843–853. [Google Scholar] [CrossRef]
- Cullen, D.K.; Harris, J.P.; Browne, K.D.; Wolf, J.A.; Duda, J.E.; Meaney, D.F.; Margulies, S.S.; Smith, D.H. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration; Methods in Molecular Biology; Humana Press: New York, NJ, USA, 2016; Volume 1462, pp. 289–324. [Google Scholar]
- Kinder, H.A.; Baker, E.W.; West, F.D. The Pig as a Preclinical Traumatic Brain Injury Model: Current Models, Functional Outcome Measures, and Translational Detection Strategies. Neural Regen. Res. 2019, 14, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Margulies, S.S.; Kilbaugh, T.; Sullivan, S.; Smith, C.; Propert, K.; Byro, M.; Saliga, K.; Costine, B.A.; Duhaime, A.C. Establishing a Clinically Relevant Large Animal Model Platform for TBI Therapy Development: Using Cyclosporin a as a Case Study. Brain Pathol. 2015, 25, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Netzley, A.H.; Pelled, G. The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research. Biomedicines 2023, 11, 2165. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The New Neurometabolic Cascade of Concussion. Neurosurgery 2014, 75, S24–S33. [Google Scholar] [CrossRef]
- Lund, A.; Madsen, A.F.; Capion, T.; Jensen, H.R.; Forsse, A.; Hauerberg, J.; Sigurðsson, S.Þ.; Mathiesen, T.I.; Møller, K.; Olsen, M.H. Brain Hypoxia and Metabolic Crisis Are Common in Patients with Acute Brain Injury despite a Normal Intracranial Pressure. Sci. Rep. 2024, 14, 23828. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.L.; Soane, L.; Siegel, Z.T.; Fiskum, G. The Potential Role of Mitochondria in Pediatric Traumatic Brain Injury. Dev. Neurosci. 2006, 28, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.G.; Rabchevsky, A.G.; Waldmeier, P.C.; Springer, J.E. Mitochondrial Permeability Transition in CNS Trauma: Cause or Effect of Neuronal Cell Death? J. Neurosci. Res. 2005, 79, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.W. Immunobiology of Cyclosporin A—A Review. Aust. J. Exp. Biol. Med. Sci. 1983, 61, 147–172. [Google Scholar] [CrossRef]
- Broekemeierli, K.M.; Dempseyi, M.E.; Pfeifferlq, D.R. Cyclosporin A Is a Potent Inhibitor of the Inner Membrane Permeability Transition in Liver Mitochondria. J. Biol. Chem. 1989, 264, 7826–7830. [Google Scholar] [CrossRef]
- Broekemeier, K.M.; Pfeiffer, D.R. Inhibition of the Mitochondrial Permeability Transition by Cyclosporin A during Long Time Frame Experiments: Relationship between Pore Opening and the Activity of Mitochondrial Phospholipases. Biochemistry 1995, 34, 16440–16449. [Google Scholar] [CrossRef]
- Szabó, I.; Zoratti, M. The Giant Channel of the Inner Mitochondrial Membrane Is Inhibited by Cyclosporin A. J. Biol. Chem. 1991, 266, 3376–3379. [Google Scholar] [CrossRef]
- Sullivan, P.G.; Rabchevsky, A.G.; Hicks, R.R.; Gibson, T.R.; Fletcher-Turner, A.; Scheff, S.W. Dose-Response Curve and Optimal Dosing Regimen of Cyclosporin A after Traumatic Brain Injury in Rats. Neuroscience 2000, 101, 289–295. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Sharapov, V.A.; Ilzorkina, A.I.; Efimov, S.V.; Klochkov, V.V.; Gudkov, S.V.; Belosludtsev, K.N. Comparison of Structural Properties of Cyclosporin A and Its Analogue Alisporivir and Their Effects on Mitochondrial Bioenergetics and Membrane Behavior. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183972. [Google Scholar] [CrossRef]
- Hatton, J.; Rosbolt, B.; Empey, P.; Kryscio, R.; Young, B. Dosing and Safety of Cyclosporine in Patients with Severe Brain Injury: Clinical Article. J. Neurosurg. 2008, 109, 699–707. [Google Scholar] [CrossRef]
- Sullivan, P.G.; Thompson, M.; Scheff, S.W. Continuous Infusion of Cyclosporin A Postinjury Significantly Ameliorates Cortical Damage Following Traumatic Brain Injury. Exp. Neurol. 2000, 161, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Kelsen, J.; Karlsson, M.; Hansson, M.J.; Yang, Z.; Fischer, W.; Hugerth, M.; Nordström, C.H.; Åstrand, R.; Keep, M.F.; Kilbaugh, T.; et al. Copenhagen Head Injury Ciclosporin Study: A Phase IIa Safety, Pharmacokinetics, and Biomarker Study of Ciclosporin in Severe Traumatic Brain Injury Patients. J. Neurotrauma 2019, 36, 3253–3263. [Google Scholar] [CrossRef]
- Kilbaugh, T.J.; Bhandare, S.; Lorom, D.H.; Saraswati, M.; Robertson, C.L.; Margulies, S.S. Cyclosporin a Preserves Mitochondrial Function after Traumatic Brain Injury in the Immature Rat and Piglet. J. Neurotrauma 2011, 28, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Povlishock, J.T. An Intrathecal Bolus of Cyclosporin a before Injury Preserves Mitochondrial Integrity and Attenuates Axonal Disruption in Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 1999, 19, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Büki, A.; Siman, R.; Povlishock, J.T. Cyclosporin A Limits Calcium-Induced Axonal Damage Following Traumatic Brain Injury. Neuroreport 1999, 10, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Kochunov, P.; Sherman, P.M.; Rowland, L.M.; Wijtenburg, S.A.; Acheson, A.; Hong, L.E.; Sladky, J.; McGuire, S. Miniature Pig Magnetic Resonance Spectroscopy Model of Normal Adolescent Brain Development. J. Neurosci. Methods 2018, 308, 173–182. [Google Scholar] [CrossRef]
- Huber, C.; Thakore, A.; Oeur, A.; Margulies, S. Distinct Serum GFAP and Nf-L Time-Courses after Rapid Head Rotations. J. Neurotrauma 2024, 41, 1914–1928. [Google Scholar] [CrossRef]
- Mazzeo, A.T.; Brophy, G.M.; Gilman, C.B.; Alves, O.L.; Robles, J.R.; Hayes, R.L.; Povlishock, J.T.; Bullock, M.R. Safety and Tolerability of Cyclosporin a in Severe Traumatic Brain Injury Patients: Results from a Prospective Randomized Trial. J. Neurotrauma 2009, 26, 2195–2206. [Google Scholar] [CrossRef]
- Alessandri, B.; Rice, A.C.; Levasseur, J.; Deford, M.; Hamm, R.J.; Bullock, M.R. Cyclosporin A Improves Brain Tissue Oxygen Consumption and Learning/Memory Performance after Lateral Fluid Percussion Injury in Rats. J. Neurotrauma 2002, 19, 829–841. [Google Scholar] [CrossRef]
- Mbye, L.H.A.N.; Singh, I.N.; Carrico, K.M.; Saatman, K.E.; Hall, E.D. Comparative Neuroprotective Effects of Cyclosporin A and NIM811, a Nonimmunosuppressive Cyclosporin A Analog, Following Traumatic Brain Injury. J. Cereb. Blood Flow. Metab. 2009, 29, 87–97. [Google Scholar] [CrossRef]
- Duhaime, A.-C. Erratum. Functional Magnetic Resonance Imaging of the Primary Somatosensory Cortex in Piglets. J. Neurosurg. Pediatr. 2020, 26, 217. [Google Scholar] [CrossRef]
- Hajiaghamemar, M.; Seidi, M.; Margulies, S.S. Head Rotational Kinematics, Tissue Deformations, and Their Relationships to the Acute Traumatic Axonal Injury. J. Biomech. Eng. 2020, 142, 031006. [Google Scholar] [CrossRef]
- Papa, L.; Lewis, L.M.; Silvestri, S.; Falk, J.L.; Giordano, P.; Brophy, G.M.; Demery, J.A.; Liu, M.C.; Mo, J.; Akinyi, L.; et al. Serum Levels of Ubiquitin C-Terminal Hydrolase Distinguish Mild Traumatic Brain Injury from Trauma Controls and Are Elevated in Mild and Moderate Traumatic Brain Injury Patients with Intracranial Lesions and Neurosurgical Intervention. J. Trauma Acute Care Surg. 2012, 72, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.R.; Dodd, A.B.; Dodd, R.J.; Stephenson, D.D.; Ling, J.M.; Mehos, C.J.; Patton, D.A.; Robertson-Benta, C.R.; Gigliotti, A.P.; Vermillion, M.S.; et al. Head Kinematics, Blood Biomarkers and Histology in Large Animal Models of Traumatic Brain Injury and Hemorrhagic Shock. J. Neurotrauma 2023, 40, 2205–2216. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, K.K.W. Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Weber, M.T.; Xiao, R.; Cullen, D.K.; Meaney, D.F.; Stewart, W.; Smith, D.H. Mechanical Disruption of the Blood–Brain Barrier Following Experimental Concussion. Acta Neuropathol. 2018, 135, 711–726. [Google Scholar] [CrossRef]
- Schachtrup, C.; Ryu, J.K.; Helmrick, M.J.; Vagena, E.; Galanakis, D.K.; Degen, J.L.; Margolis, R.U.; Akassoglou, K. Fibrinogen Triggers Astrocyte Scar Formation by Promoting the Availability of Active TGF-β after Vascular Damage. J. Neurosci. 2010, 30, 5843–5854. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Gunnar Brolinson, P.; Büki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for Prediction of Absence of Intracranial Injuries on Head CT (ALERT-TBI): A Multicentre Observational Study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef]
- Papa, L.; McKinley, W.I.; Valadka, A.B.; Newman, Z.C.; Nordgren, R.K.; Pramuka, P.E.; Barbosa, C.E.; Brito, A.M.P.; Loss, L.J.; Tinoco-Garcia, L.; et al. Diagnostic Performance of GFAP, UCH-L1, and MAP-2 Within 30 and 60 Minutes of Traumatic Brain Injury. JAMA Netw. Open 2024, 7, e2431115. [Google Scholar] [CrossRef]
- Fainardi, E.; Chieregato, A.; Antonelli, V.; Fagioli, L.; Servadei, F.; Lobato, R.D. Time Course of CT Evolution in Traumatic Subarachnoid Haemorrhage: A Study of 141 Patients. Acta Neurochir. 2004, 146, 257–263. [Google Scholar] [CrossRef]
- Gardner, R.C.; Puccio, A.M.; Korley, F.K.; Wang, K.K.W.; Diaz-Arrastia, R.; Okonkwo, D.O.; Puffer, R.C.; Yuh, E.L.; Yue, J.K.; Sun, X.; et al. Effects of Age and Time since Injury on Traumatic Brain Injury Blood Biomarkers: A TRACK-TBI Study. Brain Commun. 2023, 5, fcac316. [Google Scholar] [CrossRef]
- Kalm, M.; Boström, M.; Sandelius, Å.; Eriksson, Y.; Ek, C.J.; Blennow, K.; Björk-Eriksson, T.; Zetterberg, H. Serum Concentrations of the Axonal Injury Marker Neurofilament Light Protein Are Not Influenced by Blood-Brain Barrier Permeability. Brain Res. 2017, 1668, 12–19. [Google Scholar] [CrossRef]
- Bergman, J.; Dring, A.; Zetterberg, H.; Blennow, K.; Norgren, N.; Gilthorpe, J.; Bergenheim, T.; Svenningsson, A. Neurofilament Light in CSF and Serum Is a Sensitive Marker for Axonal White Matter Injury in MS. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e271. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Leon, A.M.; Carabias, C.S.; Hilario, A.; Ramos, A.; Navarro-Main, B.; Paredes, I.; Munarriz, P.M.; Panero, I.; Fernández, C.E.; García-Pérez, D.; et al. Serum Assessment of Traumatic Axonal Injury: The Correlation of GFAP, t-Tau, UCH-L1, and NfL Levels with Diffusion Tensor Imaging Metrics and Its Prognosis Utility. J. Neurosurg. 2023, 138, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as Biomarkers in Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Tiedt, S.; Duering, M.; Barro, C.; Kaya, A.G.; Boeck, J.; Bode, F.J.; Klein, M.; Dorn, F.; Gesierich, B.; Kellert, L.; et al. Serum Neurofilament Light: A Biomarker of Neuroaxonal Injury after Ischemic Stroke. Neurology 2018, 91, e1338–e1347. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.S.; Hefti, M.M.; Mazandi, V.M.; Issadore, D.A.; Meaney, D.F.; Schneider, A.L.C.; Diaz-Arrastia, R.; Kilbaugh, T.J. Plasma Neurofilament Light and Glial Fibrillary Acidic Protein Levels over Thirty Days in a Porcine Model of Traumatic Brain Injury. J. Neurotrauma 2022, 39, 935–943. [Google Scholar] [CrossRef]
- Shahim, P.; Politis, A.; Van Der Merwe, A.; Moore, B.; Chou, Y.Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; Gill, J.M.; Brody, D.L.; et al. Neurofilament Light as a Biomarker in Traumatic Brain Injury. Neurology 2020, 95, E610–E622. [Google Scholar] [CrossRef]
- Wang, K.K.W.; Barton, D.J.; McQuillan, L.E.; Kobeissy, F.; Cai, G.; Xu, H.; Yang, Z.; Trifilio, E.; Williamson, J.B.; Rubenstein, R.; et al. Parallel Cerebrospinal Fluid and Serum Temporal Profile Assessment of Axonal Injury Biomarkers Neurofilament-Light Chain and Phosphorylated Neurofilament-Heavy Chain: Associations With Patient Outcome in Moderate-Severe Traumatic Brain Injury. J. Neurotrauma 2024, 41, 1609–1627. [Google Scholar] [CrossRef]
- Kaaber, I.A.; Lesbo, M.; Wichmann, T.O.; Olsen, D.A.; Rasmussen, M.M.; Brink, O.; Borris, L.C.; Hviid, C.V.B. Admission Levels of Serum Biomarkers Have Additive and Cumulative Prognostic Value in Traumatic Brain Injury. Sci. Rep. 2024, 14, 14139. [Google Scholar] [CrossRef]
- Bishop, P.; Rocca, D.; Henley, J.M. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1): Structure, Distribution and Roles in Brain Function and Dysfunction. Biochem. J. 2016, 473, 2453–2462. [Google Scholar] [CrossRef]
- Weeks, D.; Sullivan, S.; Kilbaugh, T.; Smith, C.; Margulies, S.S. Influences of Developmental Age on the Resolution of Diffuse Traumatic Intracranial Hemorrhage and Axonal Injury. J. Neurotrauma 2014, 31, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Gabbita, S.P.; Scheff, S.W.; Menard, R.M.; Roberts, K.; Fugaccia, I.; Zemlan, F.P. Cleaved-Tau: A Biomarker of Neuronal Damage after Traumatic Brain Injury. J. Neurotrauma 2005, 22, 83–94. [Google Scholar] [CrossRef]
- Lulic, D.; Burns, J.; Bae, E.C.; Van Loveren, H.; Borlongan, C.V. A Review of Laboratory and Clinical Data Supporting the Safety and Efficacy of Cyclosporin a in Traumatic Brain Injury. Neurosurgery 2011, 68, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, O.; Wood, L.B.; Margulies, S.S. Cyclosporine A Accelerates Neurorecovery Transcriptional Trajectory in a Swine Model of Diffuse Traumatic Brain Injury. Int. J. Mol. Sci. 2025, 26, 3531. [Google Scholar] [CrossRef] [PubMed]
Injury Type | Treatment | Group | Timepoint | |||
---|---|---|---|---|---|---|
Type | (mg/kg) | n | Pre | 1 h | 1 Day * | |
Sham | N/A | N/A | 10 | 10 | 8 | 10 |
CCI | Saline | N/A | 13 | 12 | 7 | 13 |
CsA | 10 | 10 | 10 | 5 | 10 | |
20 | 9 | 9 | 4 | 9 | ||
40 | 9 | 9 | 4 | 9 | ||
60 | 8 | 8 | 4 | 8 | ||
RNR | Saline | N/A | 39 | 39 | 24 | 37 |
CsA | 10 | 29 | 29 | 0 | 29 | |
20 | 28 | 28 | 15 | 28 | ||
40 | 27 | 27 | 0 | 27 | ||
60 | 28 | 28 | 0 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, C.M.; Thakore, A.D.; Oeur, A.; Margulies, S.S. Short-Term Cyclosporin A Treatment Reduced Serum Neurofilament-Light Levels in Diffuse but Not Focal Traumatic Brain Injury in a Piglet Model. Biomedicines 2025, 13, 2547. https://doi.org/10.3390/biomedicines13102547
Huber CM, Thakore AD, Oeur A, Margulies SS. Short-Term Cyclosporin A Treatment Reduced Serum Neurofilament-Light Levels in Diffuse but Not Focal Traumatic Brain Injury in a Piglet Model. Biomedicines. 2025; 13(10):2547. https://doi.org/10.3390/biomedicines13102547
Chicago/Turabian StyleHuber, Colin M., Akshara D. Thakore, Anna Oeur, and Susan S. Margulies. 2025. "Short-Term Cyclosporin A Treatment Reduced Serum Neurofilament-Light Levels in Diffuse but Not Focal Traumatic Brain Injury in a Piglet Model" Biomedicines 13, no. 10: 2547. https://doi.org/10.3390/biomedicines13102547
APA StyleHuber, C. M., Thakore, A. D., Oeur, A., & Margulies, S. S. (2025). Short-Term Cyclosporin A Treatment Reduced Serum Neurofilament-Light Levels in Diffuse but Not Focal Traumatic Brain Injury in a Piglet Model. Biomedicines, 13(10), 2547. https://doi.org/10.3390/biomedicines13102547