Fetuin-A as a Link Between Dyslipidemia and Cardiovascular Risk in Type 2 Diabetes: A Metabolic Insight for Clinical Practice
Abstract
1. Introduction
2. Materials and Methods
- Abdominal obesity was diagnosed when waist circumference (WC) exceeded 80 cm in women or 94 cm in men, whereas normal WC values were within these limits;
- For blood pressure, arterial hypertension was previously diagnosed or the values were higher than 130 mmHg systolic blood pressure or 85 mmHg diastolic blood pressure during clinical examination;
- Hypertriglyceridemia was defined as triglycerides greater than 150 mg/dL;
- Low values of HDLc were less than 40 mg/dL in men and less than 50 mg/dL in women;
- Hyperglycemia (fasting plasma glucose > 100 mg/dL) or type 2 diabetes mellitus—all the subjects included met this criteria.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chekol-Abebe, E.; Tilahun-Muche, Z.; Behaile, T.; Mariam, A.; Mengie-Ayele, T.; Mekonnen-Agidew, M.; Teshome-Azezew, M.; Abebe, E.; Asmamaw-Dejenie, T.; Asmamaw-Mengstie, M. The structure, biosynthesis, and biological roles of fetuin-A: A review. Front. Cell Dev. Biol. 2022, 18, 945287. [Google Scholar] [CrossRef]
- Siddiq, A.; Lepretre, F.; Hercberg, S.; Froguel, P.; Gibson, F. A synonymous coding polymorphism in the α2-Heremans-schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 2005, 54, 2477–2481. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, M.; Huang, Q.; Chen, Q.; Chen, Z. The relationship between fetuin-A and coronary atherosclerotic heart disease (CHD) and CHD-related risk factors: A retrospective study. Medicine 2021, 100, e27481. [Google Scholar] [CrossRef]
- Liu, S.; Hu, W.; He, Y.; Li, L.; Liu, H.; Gao, L.; Yang, G.; Liao, X. Serum Fetuin-A levels are increased and associated with insulin resistance in women with polycystic ovary syndrome. BMC Endocr. Disord. 2020, 20, 67. [Google Scholar] [CrossRef]
- Ishibashi, A.; Ikeda, Y.; Ohguro, T.; Kumon, Y.; Yamanaka, S.; Takata, H.; Inoue, M.; Suehiro, T.; Terada, Y. Serum fetuin-A is an independent marker of insulin resistance in Japanese men. J. Atheroscler. Thromb. 2010, 17, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wen, S.W.; Bestman, P.L.; Kaminga, A.C.; Acheampong, K.; Liu, A. Fetuin-A in Metabolic syndrome: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0229776. [Google Scholar] [CrossRef]
- Ix, J.H.; Shlipak, M.G.; Brandenburg, V.M.; Ali, S.; Ketteler, M.; Whooley, M.A. Association between human fetuin-A and the metabolic syndrome: Data from the Heart and Soul Study. Circulation 2006, 113, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Wassel, C.L.; Kanaya, A.M.; Vittinghoff, E.; Johnson, K.C.; Koster, A.; Cauley, J.A.; Harris, T.B.; Cummings, S.R.; Shlipak, M.G. Fetuin-A and incident diabetes mellitus in older persons. JAMA 2008, 300, 182–188. [Google Scholar] [CrossRef]
- Al-Ali, L.; Van de Vegte, Y.J.; Said, M.A.; Groot, H.E.; Hendriks, T.; Yeung, M.W.; Lipsic, E.; Van der Harst, P. Fetuin-A and its genetic association with cardiometabolic disease. Sci. Rep. 2023, 13, 21469. [Google Scholar] [CrossRef] [PubMed]
- Hurjui, D.M.; Niţă, O.; Graur, L.I.; Mihalache, L.; Popescu, D.S.; Huţanaşu, I.C.; Ungureanu, D.; Graur, M. Non-alcoholic fatty liver disease is associated with cardiovascular risk factors of metabolic syndrome. Med.-Surg. J. 2012, 116, 692–699. [Google Scholar]
- Haukeland, J.W.; Dahl, T.B.; Yndestad, A.; Gladhaug, I.P.; Løberg, E.M.; Haaland, T.; Konopski, Z.; Wium, C.; Aasheim, E.T.; Johansen, O.E.; et al. Fetuin A in nonalcoholic fatty liver disease: In vivo and in vitro studies. Eur. J. Endocrinol. 2012, 166, 503–510. [Google Scholar] [CrossRef]
- Dogru, T.; Kirik, A.; Gurel, H.; Rizvi, A.A.; Rizzo, M.; Sonmez, A. The Evolving Role of Fetuin-A in Nonalcoholic Fatty Liver Disease: An Overview from Liver to the Heart. Int. J. Mol. Sci. 2021, 22, 6627. [Google Scholar] [CrossRef]
- Mihalache, L.; Graur, L.I.; Popescu, D.S.; Boiculese, L.; Badiu, C.; Graur, M. The prevalence of the metabolic syndrome and its components in a rural community. Acta Endocrinol. 2012, 8, 595–606. [Google Scholar] [CrossRef]
- Hurjui, D.M.; Niţă, O.; Graur, L.I.; Mihalache, L.; Popescu, D.S.; Graur, M. The central role of the non alcoholic fatty liver disease in metabolic syndrome. Med.-Surg. J. 2012, 116, 425–431. [Google Scholar]
- Blaton, V. How is the Metabolic Syndrome Related to the Dyslipidemia? EJIFCC 2007, 18, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef] [PubMed]
- Leustean, L.; Preda, C.; Teodoriu, L.; Mihalache, L.; Arhire, L.; Ungureanu, M.-C. Role of Irisin in Endocrine and Metabolic Disorders—Possible New Therapeutic Agent? Appl. Sci. 2021, 11, 5579. [Google Scholar] [CrossRef]
- Fatima, F.; Ahsan, N.; Nasim, A.; Alam, F. Association of fetuin-A with dyslipidemia and insulin resistance in type-II Diabetics of Pakistani population. Pak. J. Med. Sci. 2020, 36, 64–68. [Google Scholar] [CrossRef]
- Naito, C.; Hashimoto, M.; Watanabe, K.; Shirai, R.; Takahashi, Y.; Kojima, M.; Watanabe, R.; Sato, K.; Iso, Y.; Matsuyama, T.A.; et al. Facilitatory effects of fetuin-A on atherosclerosis. Atherosclerosis 2016, 246, 344–351. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chiu, Y.L.; Hsu, S.P.; Pai, M.F.; Lai, C.F.; Peng, Y.S.; Kao, T.W.; Hung, K.Y.; Tsai, T.J.; Wu, K.D. Association of serum fetuin A with truncal obesity and dyslipidemia in non-diabetic hemodialysis patients. Eur. J. Endocrinol. 2009, 160, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child Adolesc. Health 2022, 3, 158–170. [Google Scholar] [CrossRef]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011-18. Postgrad. Med. J. 2023, 99, 985–992. [Google Scholar] [CrossRef]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef]
- Lee, Y.H.; Cho, Y.; Lee, B.W.; Park, C.Y.; Lee, D.H.; Cha, B.S.; Rhee, E.J. Nonalcoholic Fatty Liver Disease in Diabetes. Part I: Epidemiology and Diagnosis. Diabetes Metab. J. 2019, 43, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Cepin, S.; Tesfai, K.; Hofflich, H.; Cadman, K.; Lopez, S.; Madamba, E.; Bettencourt, R.; Richards, L.; Behling, C.; et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J. Hepatol. 2023, 78, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Lang, S.; Goeser, T.; Demir, M.; Steffen, H.M.; Kasper, P. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr. Atheroscler. Rep. 2022, 24, 533–546. [Google Scholar] [CrossRef]
- Deprince, A.; Haas, J.T.; Staels, B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 2020, 42, 101092. [Google Scholar] [CrossRef] [PubMed]
- Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 2021, 50, 101122. [Google Scholar] [CrossRef]
- Kim, K.S.; Hong, S.; Han, K.; Park, C.Y. Association of non-alcoholic fatty liver disease with cardiovascular disease and all cause death in patients with type 2 diabetes mellitus: Nationwide population based study. BMJ 2024, 384, e076388. [Google Scholar] [CrossRef]
- Yoo, J.J.; Cho, E.J.; Chung, G.E.; Chang, Y.; Cho, Y.; Park, S.H.; Jeong, S.M.; Kim, B.Y.; Shin, D.W.; Kim, Y.J.; et al. Nonalcoholic Fatty Liver Disease Is a Precursor of New-Onset Metabolic Syndrome in Metabolically Healthy Young Adults. J. Clin. Med. 2022, 11, 935. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Matos, A.F.; Silva-Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Niederseer, D.; Wernly, B.; Aigner, E.; Stickel, F.; Datz, C. NAFLD and Cardiovascular Diseases: Epidemiological, Mechanistic and Therapeutic Considerations. J. Clin. Med. 2021, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kaminga, A.C.; Chen, J.; Luo, M.; Luo, J. Fetuin-A and Fetuin-B in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis and Meta-Regression. Int. J. Environ. Res. Public Health 2020, 17, 2735. [Google Scholar] [CrossRef]
- Roshdy, A.; Okash, H.; Soliman, A.; Maamoun, H.; Shaker, O.; Soliman, M.A.; Hamdy, A. Serum Fetuin A Levels: Are They a Reliable Marker for Hepatic Steatosis and Regional Adiposity in Renal Transplant Recipients? Transplant. Proc. 2015, 47, 2703–2706. [Google Scholar] [CrossRef]
- Laughlin, G.A.; Cummins, K.M.; Wassel, C.L.; Daniels, L.B.; Ix, J.H. The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: The Rancho Bernardo study. J. Am. Coll. Cardiol. 2012, 59, 1688–1696. [Google Scholar] [CrossRef]
- Jensen, M.K.; Bartz, T.M.; Mukamal, K.J.; Djoussé, L.; Kizer, J.R.; Tracy, R.P.; Zieman, S.J.; Rimm, E.B.; Siscovick, D.S.; Shlipak, M.; et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: The cardiovascular health study. Diabetes Care 2013, 36, 1222–1228. [Google Scholar] [CrossRef]
Parameter | IDF Cut-Off Value |
---|---|
Waist circumference | ≥94 cm (men); ≥80 cm (women) |
Triglycerides | ≥150 mg/dL (1.7 mmol/L) |
HDL cholesterol | <40 mg/dL (men); <50 mg/dL (women) |
Blood pressure | ≥130/85 mmHg |
Fasting plasma glucose | ≥100 mg/dL (5.6 mmol/L) or diagnosed T2DM |
Parameters | Subjects n = 51 | |
---|---|---|
N | % | |
Female | 28 | 54.9 |
Male | 23 | 45.1 |
Age | ||
Average ± SD | 62.49 ± 8.91 | |
Median/min–max | (62/34–86) | |
≤60 years | 18 | 35.3 |
>60 years | 33 | 64.7 |
Atheroma plaques | 4 | 7.8 |
Steatosis | 30 | 58.8 |
Metabolic syndrome | 40 | 78.4 |
Characteristics | n = 51 | |||
---|---|---|---|---|
Average | SD | Median | Range | |
BMI (kg/m2) | 30.94 | 5.34 | 30.42 | 21.70–47.60 |
WC (cm) | 103.04 | 11.72 | 100 | 78–133 |
WHR | 0.95 | 0.07 | 0.96 | 0.80–1.08 |
Fetuin (ng/mL) | 21.74 | 6.50 | 20.93 | 12.26–49.77 |
Glycaemia (mg/dL) | 138.67 | 34.36 | 132 | 92–255 |
HbA1c | 6.75 | 1.15 | 6.40 | 5.0–9.70 |
Insulinemia (mcU/mL) | 13.63 | 9.38 | 10 | 2.0–42.60 |
HOMA | 4.71 | 3.94 | 3.44 | 0.55–19.87 |
Creatinine (mg/dL) | 0.87 | 0.18 | 0.82 | 0.61–1.33 |
Uric acid (mg/dL) | 5.51 | 1.31 | 5.50 | 2.90–8.70 |
Vitamin D (ng/mL) | 17.44 | 9.10 | 15.96 | 4.40–56.23 |
Total cholesterol (mg/dL) | 207.37 | 52.82 | 211 | 110–342 |
LDLc (mg/dL) | 136.88 | 46.10 | 136.50 | 54–254 |
HDLc (mg/dL) | 43.39 | 11.72 | 40 | 27–75 |
NonHDLc (mg/dL) | 163.98 | 55.27 | 164 | 73–310 |
Right CIMT (mm) | 0.99 | 0.14 | 1 | 0.80–1.30 |
Left CIMT (mm) | 0.99 | 0.18 | 1 | 0.60–1.50 |
A-CIMT | 1.99 | 0.26 | 2 | 1.40–2.80 |
Steatosis n = 30 | Normal Liver n = 21 | Test | p | |
---|---|---|---|---|
Male gender | 16 (53.3%) | 7 (33.3%) | Chi Square Test | 0.155 |
Age > 60 years | 22 (73.3%) | 11 (52.4%) | Chi Square Test | 0.124 |
Atheroma plaques | 3 (10.0%) | 4 (4.8%) | Chi Square Test | 0.481 |
Metabolic syndrome | 26 (86.7%) | 14 (66.7%) | Chi Square Test | 0.089 |
BMI average ± SD median/min–max | 32.48 ± 3.78 32/26.10–40.60 | 29.87 ± 6.04 30/21.70–47.60 | One Way ANOVA test | 0.087 |
Obesity | 5 (16.7%) | 5 (23.8%) | Chi Square Test | 0.531 |
WC average ± SD median/min–max | 102.53 ± 13.18 102.5/78–133 | 103.84 ± 9.23 104/90–120 | One Way ANOVA test | 0.708 |
High WC | 25 (83.3%) | 18 (94.7%) | Chi Square Test | 0.820 |
WHR average ± SD median/min–max | 0.96 ± 0.06 0.97/0.80–1.08 | 0.94 ± 0.07 0.94/15–30 | One Way ANOVA test | 0.200 |
WHR > 1 | 22 (73.3%) | 12 (63.2%) | Chi Square Test | 0.232 |
Fetuin average ± SD median/min–max | 21.58 ± 7.29 21.59/12.26–49.77 | 21.95 ± 5.34 21.96/13.47–35.63 | One Way ANOVA test | 0.844 |
Steatosis (n = 30) | Normal Liver (n = 21) | Test | p | |
---|---|---|---|---|
Glycaemia average ± SD median/min–max | 137.0 ± 34.86 137/100–255 | 141.05 ± 34.34 141/92–234 | One Way ANOVA test | 0.683 |
High glycaemia | 19 (63.3%) | 13 (61.9%) | Chi Square Test | 0.917 |
HbA1c average ± SD median/min–max | 6.59 ± 1.02 6.50/5.50–9.50 | 6.96 ± 1.31 6.96/5.0–9.70 | One Way ANOVA test | 0.273 |
HbA1c > 6 | 22 (73.3%) | 17 (85.0%) | Chi Square Test | 0.320 |
Insulinemia average ± SD median/min–max | 13.12 ± 9.74 13.13/2.0–42.60 | 14.51 ± 8.93 14.51/4.01–38.10 | One Way ANOVA test | 0.273 |
HOMA average ± SD median/min–max | 4.62 ± 4.29 4.63/0.55–19.87 | 4.86 ± 2.99 4.87/1.07–11.96 | One Way ANOVA test | 0.840 |
Creatinin average ± SD median/min–max | 0.87 ± 0.16 0.88/0.62–1.33 | 0.87 ± 0.20 0.86/0.61–1.29 | One Way ANOVA test | 0.948 |
Number of components for MS average ± SD median/min–max | 4 ± 1 4/2–5 | 3 ± 1 3/1–5 | One Way ANOVA test | 0.003 |
MS | 26 (86.7%) | 14 (66.7%) | Chi Square Test | 0.089 |
Uric acid average ± SD median/min–max | 5.79 ± 1.22 5.79/3.20–8.70 | 5.12 ± 1.37 5.12/2.90–8.20 | One Way ANOVA test | 0.072 |
Uric acid > 6 | 14 (46.7%) | 4 (19.0%) | Chi Square Test | 0.038 |
Vit D average ± SD median/min–max | 19.42 ± 10.14 19.42/4.40–56.23 | 14.88 ± 6.96 14.88/4.40–29.74 | One Way ANOVA test | 0.072 |
TC average ± SD median/min–max | 219.13 ± 56.20 219/110–342 | 190.57 ± 43.49 190/126–306 | One Way ANOVA test | 0.050 |
TC > 200 | 20 (66.7%) | 9 (42.9%) | Chi Square Test | 0.091 |
LDLc average ± SD median/min–max | 146.10 ± 50.0 146/54–254 | 124.14 ± 37.60 124/56–206 | One Way ANOVA test | 0.097 |
LDLc > 100 | 23 (76.7%) | 16 (76.2%) | Chi Square Test | 0.969 |
HDLc average ± SD median/min–max | 38.30 ± 9.30 38.5/27–67 | 50.67 ± 11.12 51/33–75 | One Way ANOVA test | 0.001 |
HDLc < 40 | 22 (73.3%) | 3 (14.3%) | Chi Square Test | 0.001 |
Non-HDLc average ± SD median/min–max | 180.83 ± 58.49 181/73–310 | 139.90 ± 40.53 140/82–233 | One Way ANOVA test | 0.008 |
Non-HDLc > 160 | 20 (66.7%) | 7 (33.3%) | Chi Square Test | 0.017 |
Triglycerides average ± SD median/min–max | 188.83 ± 89.83 188.5/71–429 | 124.10 ± 42.50 124/44–201 | One Way ANOVA test | 0.004 |
Right CIMT average ± SD median/min–max | 1.0 ± 0.15 1.0/0.80–1.30 | 0.98 ± 0.13 0.98/0.80–1.20 | One Way ANOVA test | 0.505 |
Right CIMT > 1 | 12 (40.0%) | 6 (28.6%) | Chi Square Test | 0.398 |
Left CIMT average ± SD median/min–max | 1.03 ± 0.20 1.03/0.60–1.50 | 0.95 ± 0.14 0.98/0.80–1.20 | One Way ANOVA test | 0.048 |
Left CIMT > 1 | 15 (50.0%) | 4 (19.0%) | Chi Square Test | 0.021 |
A-CIMT average ± SD median/min–max | 1.01 ± 0.15 0.99/0.70–1.40 | 1.02 ± 0.25 0.99/0.75–2.0 | One Way ANOVA test | 0.929 |
A-CIMT > 1 | 12 (40.0%) | 6 (28.6%) | Chi Square Test | 0.398 |
Right CIMT average ± SD median/min–max | 1.0 ± 0.15 1.0/0.80–1.30 | 0.98 ± 0.13 0.98/0.80–1.20 | One Way ANOVA test | 0.505 |
Right CIMT > 1 | 12 (40.0%) | 6 (28.6%) | Chi Square Test | 0.398 |
Left CIMT average ± SD median/min–max | 1.03 ± 0.20 1.03/0.60–1.50 | 0.95 ± 0.14 0.98/0.80–1.20 | One Way ANOVA test | 0.048 |
Left CIMT > 1 | 15 (50.0%) | 4 (19.0%) | Chi Square Test | 0.021 |
A-CIMT average ± SD median/min–max | 1.01 ± 0.15 0.99/0.70–1.40 | 1.02 ± 0.25 0.99/0.75–2.0 | One Way ANOVA test | 0.929 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | p | ||
---|---|---|---|---|---|---|
t | p | Beta | ||||
1 | Constant | 21.673 | 3.796 | 5.710 | 0.000 | |
TC | 0.008 | 0.018 | −0.001 | −0.005 | 0.996 | |
2 | Constant | 26.008 | 4.220 | 6.164 | 0.000 | |
TC | −0.107 | 0.054 | −0.868 | −1.976 | 0.054 | |
LDLc | 0.130 | 0.062 | 0.915 | 2.082 | 0.043 | |
3 | Constant | 26.968 | 5.456 | 4.493 | 0.000 | |
TC | −0.104 | 0.056 | −0.847 | −1.880 | 0.066 | |
LDLc | 0.126 | 0.064 | 0.888 | 1.959 | 0.050 | |
HDLc | −0.023 | 0.081 | −0.041 | −0.282 | 0.779 | |
4 | Constant | 24.843 | 5.638 | 4.406 | 0.000 | |
TC | −0.124 | 0.057 | −1.003 | −2.173 | 0.035 | |
LDLc | 0.138 | 0.064 | 0.969 | 2.135 | 0.038 | |
HDLc | 0.014 | 0.085 | 0.025 | 0.163 | 0.871 | |
Triglycerides | 0.019 | 0.014 | 0.216 | 1.339 | 0.187 | |
5 | Constant | 19.243 | 7.081 | 2.717 | 0.009 | |
TC | −0.130 | 0.057 | −1.050 | −2.285 | 0.027 | |
LDLc | 0.146 | 0.064 | 1.031 | 2.276 | 0.028 | |
HDLc | 0.068 | 0.094 | 0.121 | 0.720 | 0.475 | |
Triglycerides | 0.009 | 0.016 | 0.105 | 0.578 | 0.566 | |
Components for MS | 1.345 | 1.042 | 0.243 | 1.291 | 0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavril, O.I.; Adam, C.A.; Stamate, T.C.; Gavril, R.S.; Zota, M.I.; Jigoranu, A.R.; Drugescu, A.; Costache, A.D.; Esanu, I.M.; Arhire, L.I.; et al. Fetuin-A as a Link Between Dyslipidemia and Cardiovascular Risk in Type 2 Diabetes: A Metabolic Insight for Clinical Practice. Biomedicines 2025, 13, 2098. https://doi.org/10.3390/biomedicines13092098
Gavril OI, Adam CA, Stamate TC, Gavril RS, Zota MI, Jigoranu AR, Drugescu A, Costache AD, Esanu IM, Arhire LI, et al. Fetuin-A as a Link Between Dyslipidemia and Cardiovascular Risk in Type 2 Diabetes: A Metabolic Insight for Clinical Practice. Biomedicines. 2025; 13(9):2098. https://doi.org/10.3390/biomedicines13092098
Chicago/Turabian StyleGavril, Oana Irina, Cristina Andreea Adam, Theodor Constantin Stamate, Radu Sebastian Gavril, Madalina Ioana Zota, Alexandru Raul Jigoranu, Andrei Drugescu, Alexandru Dan Costache, Irina Mihaela Esanu, Lidia Iuliana Arhire, and et al. 2025. "Fetuin-A as a Link Between Dyslipidemia and Cardiovascular Risk in Type 2 Diabetes: A Metabolic Insight for Clinical Practice" Biomedicines 13, no. 9: 2098. https://doi.org/10.3390/biomedicines13092098
APA StyleGavril, O. I., Adam, C. A., Stamate, T. C., Gavril, R. S., Zota, M. I., Jigoranu, A. R., Drugescu, A., Costache, A. D., Esanu, I. M., Arhire, L. I., Graur, M., & Mitu, F. (2025). Fetuin-A as a Link Between Dyslipidemia and Cardiovascular Risk in Type 2 Diabetes: A Metabolic Insight for Clinical Practice. Biomedicines, 13(9), 2098. https://doi.org/10.3390/biomedicines13092098