The Effects of High-Fat Diet on the Molecular Pathways in Cardiac Tissue: A Systematic Review of In Vivo Rodent Studies and Integrated Bioinformatic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. Screening Process
2.3. Data Analysis Methods
2.3.1. Quality Assessment
2.3.2. Bioinformatics Analysis
3. Results
3.1. Systematic Research
3.2. Study Quality
3.3. Identification of DEGs and DEPs in Cardiac Tissue
3.4. Protein–Protein Interaction (PPI) Network and Modular Analysis
3.5. Gene Ontology (GO) and Pathway Enrichment Analysis of the Identified Clusters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CMV | Cytomegalovirus |
CVD | Cardiovascular diseases |
DAVID | Database for Annotation, Visualization, and Integrated Discovery |
DEGs | Differentially expressed genes |
DEPs | Differentially expressed proteins |
GO | Gene ontology |
JBI | Joanna Briggs Institute |
KEGG | Kyoto Encyclopaedia of Genes and Genomes |
KO | Knockout |
MCODE | Molecular Complex Detection |
MeSH | Medical Subject Heading |
NGS | Next-Generation Sequencing |
PPI | Protein–Protein Interaction |
qPCR | Quantitative real-time polymerase chain reaction |
RT-PCR | Reverse transcription-polymerase chain reaction |
STRING | Search Tool for the Retrieval of Interacting Genes/Proteins |
References
- World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organ: Geneva, Switzerland, 2024.
- Korakas, E.; Dimitriadis, G.; Raptis, A.; Lambadiari, V. Dietary composition and cardiovascular risk: A mediator or a bystander? Nutrients 2018, 10, 1912. [Google Scholar] [CrossRef]
- Jin, N.; Wang, Y.; Liu, L.; Xue, F.; Jiang, T.; Xu, M. Dysregulation of the Renin-Angiotensin System and Cardiometabolic Status in Mice Fed a Long-Term High-Fat Diet. Med. Sci. Monit. 2019, 25, 6605–6614. [Google Scholar] [CrossRef] [PubMed]
- Sahraoui, A.; Dewachter, C.; Vegh, G.; Mc Entee, K.; Naeije, R.; Bouguerra, S.A.; Dewachter, L. High fat diet altered cardiac metabolic gene profile in Psammomys obesus gerbils. Lipids Health Dis. 2020, 19, 123. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, X.; Ban, J.; Yue, L.; Ren, L.; Chen, S. Effects of High-Fat Diet on Cardiovascular Protein Expression in Mice Based on Proteomics. Diabetes Metab. Syndr. Obes. Targets Ther. 2023, 16, 873–882. [Google Scholar] [CrossRef]
- Govindsamy, A.; Ghoor, S.; Cerf, M.E. Programming With Varying Dietary Fat Content Alters Cardiac Insulin Receptor, Glut4 and FoxO1 Immunoreactivity in Neonatal Rats, Whereas High Fat Programming Alters Cebpa Gene Expression in Neonatal Female Rats. Front. Endocrinol. 2022, 12, 772095. [Google Scholar] [CrossRef]
- Alsolami, K.; Alrefaie, Z. Uncoupling proteins and cardiac apoptosis in high-fat diet-fed male rats. Genet. Mol. Res. 2020, 19, gmr16039972. [Google Scholar]
- Siddeek, B.; Mauduit, C.; Chehade, H.; Blin, G.; Liand, M.; Chindamo, M.; Benahmed, M.; Simeoni, U. Long-term impact of maternal high-fat diet on offspring cardiac health: Role of micro-RNA biogenesis. Cell Death Discov. 2019, 5, 71. [Google Scholar] [CrossRef]
- Dudick, K.; Chen, K.; Shoemaker, R. Effects of high-fat feeding on expression of genes regulating fatty-1 acid metabolism in hearts of pregnant C57BL/6 mice. Austin J. Clin. Cardio 2023, 9, 1103. [Google Scholar] [CrossRef]
- Pan, X.; Chen, S.; Chen, X.; Ren, Q.; Yue, L.; Niu, S.; Li, Z.; Zhu, R.; Chen, X.; Jia, Z.; et al. Effect of high-fat diet and empagliflozin on cardiac proteins in mice. Nutr. Metab. 2022, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Men, L.; Hui, W.; Guan, X.; Song, T.; Wang, X.; Zhang, S.; Chen, X. Cardiac Transcriptome Analysis Reveals Nr4a1 Mediated Glucose Metabolism Dysregulation in Response to High-Fat Diet. Genes 2020, 11, 720. [Google Scholar] [CrossRef]
- Preston, C.C.; Larsen, T.D.; Eclov, J.A.; Louwagie, E.J.; Gandy, T.C.T.; Faustino, R.S.; Baack, M.L. Maternal High Fat Diet and Diabetes Disrupts Transcriptomic Pathways That Regulate Cardiac Metabolism and Cell Fate in Newborn Rat Hearts. Front. Endocrinol. 2020, 11, 570846. [Google Scholar] [CrossRef]
- Mohr, A.E.; Reiss, R.A.; Beaudet, M.; Sena, J.; Naik, J.S.; Walker, B.R.; Sweazea, K.L. Short-term high fat diet alters genes associated with metabolic and vascular dysfunction during adolescence in rats: A pilot study. PeerJ 2021, 9, e11714. [Google Scholar] [CrossRef]
- Huang, H.; Shoemaker, R.; Alsiraj, Y.; Murphy, M.; Gibbons, T.E.; Bauer, J.A. Hepatic Inflammation Primes Vascular Dysfunction Following Treatment with LPS in a Murine Model of Pediatric Fatty Liver Disease. Int. J. Mol. Sci. 2025, 26, 6802. [Google Scholar] [CrossRef]
- Hynynen, H.; Mutikainen, M.; Naumenko, N.; Shakirzyanova, A.; Tuomainen, T.; Tavi, P. Short high-fat diet interferes with the physiological maturation of the late adolescent mouse heart. Physiol. Rep. 2020, 8, e14474. [Google Scholar] [CrossRef] [PubMed]
- Plaza, A.; Antonazzi, M.; Blanco-Urgoiti, J.; Del Olmo, N.; Ruiz-Gayo, M. Potential Role of Leptin in Cardiac Steatosis Induced by Highly Saturated Fat Intake during Adolescence. Mol. Nutr. Food Res. 2019, 63, 1900110. [Google Scholar] [CrossRef]
- Han, Q.; Yeung, S.C.; Ip, M.S.M.; Mak, J.C.W. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018, 17, 255. [Google Scholar] [CrossRef]
- Jovanovic, A.; Obradovic, M.; Milovanovic, E.S.; Stewart, A.J.; Pitt, S.J.; Alavantic, D.; Aleksic, E.; Isenovic, E.R. Changes in cardiac Na+/K+-ATPase expression and activity in female rats fed a high-fat diet. Mol. Cell. Biochem. 2017, 436, 49–58. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Zhao, H.; Peng, S.; Zuo, Z. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism 2015, 64, 917–925. [Google Scholar] [CrossRef]
- Catar, R.A.; Muller, G.; Brandt, A.; Langbein, H.; Brunssen, C.; Goettsch, C.; Frenzel, A.; Hofmann, A.; Goettsch, W.; Steinbronn, N.; et al. Increased Gene Expression of the Cardiac Endothelin System in Obese Mice. Horm. Metab. Res. 2014, 47, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Jeckel, K.M.; Bouma, G.J.; Hess, A.M.; Petrilli, E.B.; Frye, M.A. Dietary fatty acids alter left ventricular myocardial gene expression in Wistar rats. Nutr. Res. 2014, 34, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Lima-Leopoldo, A.P.; Leopoldo, A.S.; Silva, D.C.T.; Nascimento, A.F.D.; de Campos, D.H.S.; Luvizotto, R.d.A.M.; Júnior, S.A.d.O.; Padovani, C.R.; Nogueira, C.R.; Cicogna, A.C. Influence of Long-Term Obesity on Myocardial Gene Expression. Arq. Bras. Cardiol. 2013, 100, 229–236. [Google Scholar] [CrossRef]
- Rindler, P.M.; Plafker, S.M.; Szweda, L.I.; Kinter, M. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria. J. Biol. Chem. 2013, 288, 1979–1990. [Google Scholar] [CrossRef]
- Fujita, M.; Momose, A.; Ohtomo, T.; Nishinosono, A.; Tanonaka, K.; Toyoda, H.; Morikawa, M.; Yamada, J. Upregulation of Fatty Acyl-CoA Thioesterases in the Heart and Skeletal Muscle of Rats Fed a High-Fat Diet. Biol. Pharm. Bull. 2011, 34, 87–91. [Google Scholar] [CrossRef]
- Cornall, L.M.; Mathai, M.L.; Hryciw, D.H.; McAinch, A.J. Diet-induced Obesity Up-regulates the Abundance of GPR43 and GPR120 in a Tissue Specific Manner. Cell. Physiol. Biochem. 2011, 28, 949–958. [Google Scholar] [CrossRef]
- Marti, A.; Vaquerizo, J.; Zulet, M.A.; Moreno-Aliaga, M.J.; Martínez, J.A. Down-regulation of heart HFABP and UCP2 gene expression in diet-induced (cafeteria) obese rats. J. Physiol. Biochem. 2002, 58, 69–74. [Google Scholar] [CrossRef]
- Keleher, M.R.; Zaidi, R.; Hicks, L.; Shah, S.; Xing, X.; Li, D.; Wang, T.; Cheverud, J.M. A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice. BMC Genom. 2018, 19, 888. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, J.; McMillen, T.S.; Villet, O.; Tian, R.; Shao, D. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart. J. Mol. Cell. Cardiol. 2020, 146, 1–11. [Google Scholar] [CrossRef]
- Vundavilli, H.; Tripathi, L.P.; Datta, A.; Mizuguchi, K. Network modeling and inference of peroxisome proliferator-activated receptor pathway in high fat diet-linked obesity. J. Theor. Biol. 2021, 519, 110647. [Google Scholar] [CrossRef]
- Lai, C.-Q.; Parnell, L.D.; Smith, C.E.; Guo, T.; Sayols-Baixeras, S.; Aslibekyan, S.; Tiwari, H.K.; Irvin, M.R.; Bender, C.; Fei, D.; et al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A. Am. J. Clin. Nutr. 2020, 112, 1200–1211. [Google Scholar] [CrossRef]
- Ducote, M.P.; Cothern, C.R.; Batdorf, H.M.; Fontenot, M.S.; Martin, T.M.; Iftesum, M.; Gartia, M.R.; Noland, R.C.; Burk, D.H.; Ghosh, S.; et al. Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion. J. Biol. Chem. 2025, 301, 108187. [Google Scholar] [CrossRef]
- Kesherwani, V.; Shahshahan, H.R.; Mishra, P.K.; Kukreja, R. Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLOS ONE 2017, 12, e0182828. [Google Scholar] [CrossRef]
- Jin, M.; Wu, W.; Yang, X.; Shi, X.; Cao, X.; Tian, S.; Liu, Y. Proteomics Profiling of Early Coronary Artery Injury in a Rat Model of Type 1 Diabetes Mellitus. Cell Biochem. Funct. 2025, 43, e70106. [Google Scholar] [CrossRef]
- Tillander, V.; Alexson, S.E.; Cohen, D.E. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Trends Endocrinol. Metab. 2017, 28, 473–484. [Google Scholar] [CrossRef]
- Posma, J.J.; Grover, S.P.; Hisada, Y.; Owens, A.P.; Antoniak, S.; Spronk, H.M.; Mackman, N. Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arter. Thromb. Vasc. Biol. 2019, 39, 13–24. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Zhong, X.; Wei, Y.; Sun, Q.; Zhong, L. Human umbilical cord mesenchymal stem cells attenuate diet-induced obesity and NASH-related fibrosis in mice. Heliyon 2024, 10, e25460. [Google Scholar] [CrossRef]
- Hazra, S.; Henson, G.D.; Bramwell, R.C.; Donato, A.J.; Lesniewski, L.A. Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. Am. J. Physiol. Circ. Physiol. 2019, 316, H485–H494. [Google Scholar] [CrossRef]
- Soni, S.; Chatterjee, P.K.; Hsieh, F.F.; Xue, X.; Kohn, N.; Madankumar, S.; Rochelson, B.; Metz, C.N. Altered Uterine Gene Expression in Lean and Obese Mice Following Maternal Oxytocin. J. Women’s Health Dev. 2022, 05, 206–220. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.; Wang, N.; Zuo, Z.; Wei, H.; Zhao, F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 2022, 72, 686–698. [Google Scholar] [CrossRef]
- Muir, R.; Ballan, J.; Clifford, B.; McMullen, S.; Khan, R.; Shmygol, A.; Quenby, S.; Elmes, M. Modelling maternal obesity: The effects of a chronic high-fat, high-cholesterol diet on uterine expression of contractile-associated proteins and ex vivo contractile activity during labour in the rat. Clin. Sci. 2015, 130, 183–192. [Google Scholar] [CrossRef]
- Ren, L.; Liu, X.; Huang, X.; Zhang, H.; Fei, W.; Yu, X.; Hu, Z.; Zhen, Y.; Chen, S. Oxymatrine relieves high-fructose/fat-induced obesity via reprogramming the activity of lipid metabolism-related enhancer. Front. Endocrinol. 2023, 14, 1145575. [Google Scholar] [CrossRef]
No | Type of Rodent | HFD (%) | Duration of HFD Feeding | Upregulated Genes | Downregulated Genes | Upregulated Proteins | Downregulated Proteins | Author, Year (References) |
---|---|---|---|---|---|---|---|---|
1 | Mice | 60% fat, 20% protein, 20% carbohydrate | 8 weeks | 93 | 1 | 1 | Men et al. 2020 [11] | |
2 | Mice | 42% kcal fat, 42% kcal carbohydrate | 8 weeks | 1 | - | 3 | - | Hynynen et al. 2020 [15] |
3 | Mice | 50% saturated, 50% unsaturated fatty acids | 8 weeks | 2 | - | 1 | 1 | Plaza et al. 2019 [16] |
4 | Mice | 60% fat | 36 weeks | 4 | 3 | 3 | 1 | Jin et al. 2019 [3] |
5 | Sprague–Dawley rats | 22.5% protein, 45% carbohydrate, 20% fat, 1.3% cholesterol | 2 or 4 weeks | - | - | 2 | 2 | Han et al. 2018 [17] |
6 | Wistar female rats | 42% fat | 10 weeks | - | - | 2 | 4 | Jovanovic et al. 2017 [18] |
7 | Mice | 45% fat | 11 months | 2 | - | 5 | 4 | Wang et al. 2015 [19] |
8 | Mice | 21% butter fat | 10 weeks | 4 | 1 | Catar et al. 2015 [20] | ||
9 | Wistar rats | 57.9% fat | 12 weeks | 4 | 3 | 4 | 2 | Jeckel et al. 2014 [21] |
10 | Wistar rats | 49.2% fat, 28.9% carbohydrates, 21.9% protein | 15, 30, or 45 weeks | 5 | - | - | - | Lima-Leopoldo et al. 2013 [22] |
11 | Wild type mice (KO) | High fat 60% fat, low fat 10% fat | 2,20, or 30 weeks | 1 | - | 1 | - | Rindler et al. 2013 [23] |
12 | Wistar rats | HFD 20% carbohydrates, 60% fat and 20% protein | N/A | - | - | 3 | - | Fujita et al. 2011 [24] |
13 | Sprague–Dawley rats | 22% fat | 12 weeks | 1 | - | - | - | Cornall et al. 2011 [25] |
14 | Wistar rats | N/A | 65 days | - | 2 | - | - | Marti et al. 2002 [26] |
Cluster | Term | Description | Genes | p-Value |
---|---|---|---|---|
1 | GO:0005739 | Mitochondrion | CPT1A, Ucp3, Ucp2, Hmgcs2, Gck | 0.002 |
GO:0006006 | Glucose metabolic process | CPT1A, Irs2, Pck1, Gck | 5.48 × 10−6 | |
GO:0050796 | Regulation of insulin secretion | CPT1A, Gck | 0.02 | |
hsa03320 | PPAR signalling pathway | CPT1A, Fabp4, Scd, Hmgcs2, Pck1 | 1.78 × 10−7 | |
2 | GO:0005886 | Plasma membrane | Ntrk2, Pik3ca, Pik3r1, Rhoa | 0.018 |
GO:0016310 | Thrombin signalling and protease-activated receptors | Pik3ca, Pik3r1, Rhoa | 1.75 × 10−4 | |
hsa05417 | Lipid and atherosclerosis | Pik3ca, Pik3r1, Rhoa | 0.002 | |
hsa04014 | Ras signalling pathway | Ntrk2, Pik3ca, Pik3r1, Rhoa | 2.00 × 10−6 | |
3 | GO:0005829 | Cytosol | Acot7, Acot2, Acot1, Acot4 | 0.019 |
GO:0052816 | Long-chain acyl-CoA hydrolase activity | Acot7, Acot2, Acot1, Acot4 | 1.02 × 10−9 | |
GO:0001676 | Long-chain fatty acid metabolic process | Acot2, Acot1, Acot4 | 8.54 × 10−6 | |
hsa01040 | Biosynthesis of unsaturated fatty acids | Acot7, Acot2, Acot1, Acot4 | 2.70 × 10−8 | |
4 | GO:0005886 | Plasma membrane | Cysltr1, Ednra, Ednrb, Irs1, Ube2c, Gng7, Akt1 | 0.043 |
GO:0051301 | Cell division | Ccna2, Ccnb1, Ube2c, Birc5 | 0.001 | |
GO:0042310 | Vasoconstriction | Ednra, Ednrb | 0.012 | |
GO:0008217 | Regulation of blood pressure | Ednra, Ednrb | 0.044 | |
5 | GO:0005916 | Fascia adherens | Gja1, Cdh2 | 0.002 |
GO:0007267 | Cell–cell signalling | Edn1, Gja1, Gata4 | 8.46 × 10−4 | |
GO:0043123 | Positive regulation of I-kappa B kinase/NF-kappa signalling | Edn1, Gja1 | 0.044 | |
hsa05412 | Arrhythmogenic right ventricular cardiomyopathy | Gja1, Cdh2 | 0.038 | |
6 | GO:0005737 | Cytoplasm | Rock2, Ccl5, Plk1, Rel, Ctnnb1 | 0.006 |
GO:0043123 | Positive regulation of I-kappa B kinase/NF-kappa signalling | Rel, Ctnnb1 | 7.56 × 10−5 | |
GO:0001837 | Epithelial to mesenchymal transition | Rock2, Ctnnb1 | 0.011 | |
hsa05163 | Human cytomegalovirus infection | Rock2, Ccl5, Ctnnb1 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Najib, M.S.; Elias, M.H.; Juliana, N.; Sheikh Abdul Kadir, S.H.; Ibrahim, E.; Abdul Hamid, N. The Effects of High-Fat Diet on the Molecular Pathways in Cardiac Tissue: A Systematic Review of In Vivo Rodent Studies and Integrated Bioinformatic Analysis. Biomedicines 2025, 13, 2071. https://doi.org/10.3390/biomedicines13092071
Ahmad Najib MS, Elias MH, Juliana N, Sheikh Abdul Kadir SH, Ibrahim E, Abdul Hamid N. The Effects of High-Fat Diet on the Molecular Pathways in Cardiac Tissue: A Systematic Review of In Vivo Rodent Studies and Integrated Bioinformatic Analysis. Biomedicines. 2025; 13(9):2071. https://doi.org/10.3390/biomedicines13092071
Chicago/Turabian StyleAhmad Najib, Muhammad Syaffuan, Marjanu Hikmah Elias, Norsham Juliana, Siti Hamimah Sheikh Abdul Kadir, Effendi Ibrahim, and Nazefah Abdul Hamid. 2025. "The Effects of High-Fat Diet on the Molecular Pathways in Cardiac Tissue: A Systematic Review of In Vivo Rodent Studies and Integrated Bioinformatic Analysis" Biomedicines 13, no. 9: 2071. https://doi.org/10.3390/biomedicines13092071
APA StyleAhmad Najib, M. S., Elias, M. H., Juliana, N., Sheikh Abdul Kadir, S. H., Ibrahim, E., & Abdul Hamid, N. (2025). The Effects of High-Fat Diet on the Molecular Pathways in Cardiac Tissue: A Systematic Review of In Vivo Rodent Studies and Integrated Bioinformatic Analysis. Biomedicines, 13(9), 2071. https://doi.org/10.3390/biomedicines13092071