Chlamydia trachomatis-Specific Antibodies and In Vitro Fertilization Outcome
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Analyses
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ART | Assisted reproductive technology |
B | Regression coefficient or estimate |
CT | Chlamydia trachomatis |
Df | Degree of freedom |
ELISA | Enzyme-Linked Immunosorbent Assay |
IQR | Interquartile range |
IVF | In vitro fertilization |
MOMP | Major outer membrane protein |
OR | Odds ratio |
P | Probability |
PCR | Polymerase chain reaction |
PID | Pelvic inflammatory disease |
RU | Relative unit |
S/CO | Signal-to-cutoff |
SD | Standard deviation |
SE | Standard error |
TFI | Tubal factor infertility |
Wald χ2 | Wald test statistics for df = 1 |
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The international glossary on infertility and fertility care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Infertility Prevalence Estimates 1990–2021; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef]
- Hamamah, S.; Lherbet, M. Towards for a worldwide strategy to combat infertility: A demographic winter. J. Gynecol. Obstet. Hum. Reprod. 2024, 53, 102838. [Google Scholar] [CrossRef]
- Walker, M.; Tobler, K. Female Infertility. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556033/ (accessed on 7 May 2025).
- Tur-Kaspa, I.; Gal, M.; Hartman, M.; Hartman, J.; Hartman, A. A prospective evaluation of uterine abnormalities by saline infusion sonohysterography in 1009 women with infertility or abnormal uterine bleeding. Fertil. Steril. 2006, 86, 1731–1735. [Google Scholar] [CrossRef]
- Reichman, D.; Laufer, M.R.; Robinson, B.K. Pregnancy outcomes in unicornuate uteri: A review. Fertil. Steril. 2009, 91, 1886–1894. [Google Scholar] [CrossRef]
- Tanbo, T.; Fedorcsak, P. Endometriosis-associated infertility: Aspects of pathophysiological mechanisms and treatment options. Acta Obstet. Gynecol. Scand. 2017, 96, 659–667. [Google Scholar] [CrossRef]
- Siristatidis, C.; Vaidakis, D.; Rigos, I.; Chrelias, G.; Papantoniou, N. Leiomyomas and infertility. Minerva Ginecol. 2016, 68, 283–296. [Google Scholar] [PubMed]
- Malogajski, J.; Branković, I.; Land, J.A.; Thomas, P.P.M.; Morré, S.A.; Ambrosino, E. The potential role for host genetic profiling in screening for chlamydia-associated tubal factor infertility (tfi)-new perspectives. Genes 2019, 10, 410. [Google Scholar] [CrossRef]
- World Health Organization. Global Strategy for the Prevention and Control of Sexually Transmitted Infections: 2006–2015: Breaking the Chain of Transmission; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Nachtigall, R.D. International disparities in access to infertility services. Fertil. Steril. 2006, 85, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Leslie, S.; Wray, A. Sexually Transmitted Infections. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560808/ (accessed on 8 May 2025).
- Nwokolo, N.C.; Dragovic, B.; Patel, S.; Tong, C.Y.; Barker, G.; Radcliffe, K. 2015 UK national guideline for the management of infection with Chlamydia trachomatis. Int. J. STD AIDS 2016, 27, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Simms, I.; Stephenson, J.M. Pelvic inflammatory disease epidemiology: What do we know and what do we need to know? Sex. Transm. Infect. 2000, 76, 80–87. [Google Scholar] [CrossRef]
- Lewis, D.A.; Latif, A.S.; Ndowa, F. Who global strategy for the prevention and control of sexually transmitted infections: Time for action. Sex. Transm. Infect. 2007, 83, 508–509. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Timms, P.; Allan, J.A.; Alexander, K.; Rombauts, L.; Horner, P.; Keltz, M.; Hocking, J.; Huston, W.M. Human and pathogen factors associated with Chlamydia trachomatis-related infertility in women. Clin. Microbiol. Rev. 2015, 28, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Den Heijer, C.D.J.; Hoebe, C.; Driessen, J.H.M.; Wolffs, P.; van den Broek, I.V.F.; Hoenderboom, B.M.; Williams, R.; de Vries, F.; Dukers-Muijrers, N. Chlamydia trachomatis and the risk of pelvic inflammatory disease, ectopic pregnancy, and female infertility: A retrospective cohort study among primary care patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Price, M.J.; Ades, A.E.; Welton, N.J.; Macleod, J.; Turner, K.; Simms, I.; Horner, P.J. How much tubal factor infertility is caused by chlamydia? Estimates based on serological evidence corrected for sensitivity and specificity. Sex. Transm. Dis. 2012, 39, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Pandian, Z.; Gibreel, A.; Bhattacharya, S. In vitro fertilisation for unexplained subfertility. Cochrane Database Syst. Rev. 2015, 2015, Cd003357. [Google Scholar] [CrossRef]
- Smeenk, J.; Wyns, C.; De Geyter, C.; Kupka, M.; Bergh, C.; Cuevas Saiz, I.; De Neubourg, D.; Rezabek, K.; Tandler-Schneider, A.; Rugescu, I.; et al. Art in Europe, 2019: Results generated from European registries by ESHRE. Hum. Reprod. 2023, 38, 2321–2338. [Google Scholar] [CrossRef]
- Gameiro, S.; van den Belt-Dusebout, A.W.; Smeenk, J.M.J.; Braat, D.D.M.; van Leeuwen, F.E.; Verhaak, C.M. Women’s adjustment trajectories during IVF and impact on mental health 11–17 years later. Hum. Reprod. 2016, 31, 1788–1798. [Google Scholar] [CrossRef]
- Cimadomo, D.; de Los Santos, M.J.; Griesinger, G.; Lainas, G.; Le Clef, N.; McLernon, D.J.; Montjean, D.; Toth, B.; Vermeulen, N.; Macklon, N. Eshre good practice recommendations on recurrent implantation failure. Hum. Reprod. Open 2023, 2023, hoad023. [Google Scholar] [CrossRef]
- Fu, K.; Li, Y.; Lv, H.; Wu, W.; Song, J.; Xu, J. Development of a model predicting the outcome of in vitro fertilization cycles by a robust decision tree method. Front. Endocrinol. 2022, 13, 877518. [Google Scholar] [CrossRef]
- Passos, L.G.; Terraciano, P.; Wolf, N.; Oliveira, F.D.S.; Almeida, I.; Passos, E.P. The correlation between Chlamydia trachomatis and female infertility: A systematic review. Rev. Bras. Ginecol. Obstet. Rev. Fed. Bras. Soc. Ginecol. Obstet. 2022, 44, 614–620. [Google Scholar] [CrossRef]
- Insurance, R.F.O.H. Instructions for Implementing Infertility Treatment with Biomedically Assisted Fertilization; Republic Fund of Health Insurance: Belgrade, Serbia, 2023. (In Serbian) [Google Scholar]
- Sorak, M.P.; Nikolov, A.B.; Sazdanovic, P.S.; Arsenijevic, N.S.; Milicic, V.M.; Cekovic, J.M.; Parandilovic, A.Z.; Gavrilovic, A.Z. Activity of enzymes in the follicular fluid and outcome of in vitro fertilization. Medicine 2024, 103, e36851. [Google Scholar] [CrossRef]
- Yang, H.; Liu, F.; Ma, Y.; Di, M. Clinical pregnancy outcomes prediction in vitro fertilization women based on random forest prediction model: A nested case-control study. Medicine 2022, 101, e32232. [Google Scholar] [CrossRef]
- Farquhar, C.; Marjoribanks, J. Assisted reproductive technology: An overview of cochrane reviews. Cochrane Database Syst. Rev. 2018, 8, CD010537. [Google Scholar] [CrossRef]
- Bhattacharjee, N.V.; Schumacher, A.E.; Aali, A.; Abate, Y.H.; Abbasgholizadeh, R.; Abbasian, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd ElHafeez, S.; Abd-Elsalam, S.; et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: A comprehensive demographic analysis for the global burden of disease study 2021. Lancet 2024, 403, 2057–2099. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations; United Nations Environment Programme; World Organisation for Animal Health. Implementing the Global Action Plan on Antimicrobial Resistance: First Quadripartite Biennial Report; World Health Organization: Geneva, Switzerland, 2023; p. 197. [Google Scholar]
- Gadenne, C.; Miquel, L.; Faust, C.; Berbis, J.; Perrin, J.; Courbiere, B. Impact of a positive Chlamydia trachomatis serology on cumulative IVF live birth rate. Reprod. Biomed. Online 2024, 48, 103586. [Google Scholar] [CrossRef]
- Chen, T.-S.; Kuo, P.-L.; Yu, T.; Wu, M.-H. Ivf and obstetric outcomes among women of advanced maternal age (≥45 years) using donor eggs. Reprod. Biomed. Online 2024, 49, 104291. [Google Scholar] [CrossRef] [PubMed]
- Shalev-Ram, H.; Klement, A.H.; Haikin-Herzberger, E.; Levi, M.; Rahav-Koren, R.; Wiser, A.; Miller, N. Perinatal outcomes in siblings from different conception methods: In vitro fertilization with autologous oocyte or donor egg vs. unassisted medical conception. Fertil. Steril. 2024, 123, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, Z.W.; Hoenderboom, B.M.; Hoebe, C.J.P.A.; Dukers-Muijrers, N.H.T.M.; Götz, H.M.; van der Sande, M.A.B.; de Vries, H.J.C.; den Hartog, J.E.; Morré, S.A.; van Benthem, B.H.B. Reproductive tract complication risks following Chlamydia trachomatis infections: A long-term prospective cohort study from 2008 to 2022. Lancet Reg. Health–Eur. 2024, 45, 101027. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, L.; Rupp, J. Chlamydia trachomatis as the cause of infectious infertility: Acute, repetitive or persistent long-term infection? Curr. Top. Microbiol. Immunol. 2018, 412, 159–182. [Google Scholar]
- Pacchiarotti, A.; Sbracia, M.; Mohamed, M.A.; Frega, A.; Pacchiarotti, A.; Espinola, S.M.; Aragona, C. Autoimmune response to Chlamydia trachomatis infection and in vitro fertilization outcome. Fertil. Steril. 2009, 91, 946–948. [Google Scholar] [CrossRef]
- Rodrigues, R.; Marques, L.; Vieira-Baptista, P.; Sousa, C.; Vale, N. Therapeutic options for Chlamydia trachomatis infection: Present and future. Antibiotics 2022, 11, 1634. [Google Scholar] [CrossRef]
- Puolakkainen, M. Laboratory diagnosis of persistent human chlamydial infection. Front. Cell. Infect. Microbiol. 2013, 3, 99. [Google Scholar] [CrossRef]
- Romualdi, D.; Ata, B.; Bhattacharya, S.; Bosch, E.; Costello, M.; Gersak, K.; Homburg, R.; Mincheva, M.; Norman, R.J.; Piltonen, T.; et al. Evidence-based guideline: Unexplained infertility†. Hum. Reprod. 2023, 38, 1881–1890. [Google Scholar] [CrossRef]
- Lunenfeld, E.; Sarov, B.; Sarov, I.; Potashnik, G.; Albotiano, S.; Shapiro, B.S.; Decherney, A.H.; Insler, V. Chlamydial IgG and IgA in serum and follicular fluid among patients undergoing in vitro fertilisation. Eur. J. Obstet. Gynecol. Reprod. Biol. 1990, 37, 163–173. [Google Scholar] [CrossRef]
- Neuer, A.; Lam, K.N.; Tiller, F.W.; Kiesel, L.; Witkin, S.S. Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kda heat shock protein in follicular fluid of in-vitro fertilization patients. Hum. Reprod. 1997, 12, 925–929. [Google Scholar] [CrossRef]
- Tovi, F.; Hadar, T.; Sidi, J.; Sarov, B.; Sarov, I. The significance of specific IgA antibodies in the serum in the early diagnosis of zoster. J. Infect. Dis. 1985, 152, 230. [Google Scholar] [CrossRef] [PubMed]
- Muller, V.; Savicheva, A.; Kogan, I.; Shalepo, K.; Fedorova, I.; Lesik, E.; Shilnikova, E.; Bogdanova, M.; Gzgzyan, A. Association between anti-chlamydial immunity and IVF outcome. Gynecol. Endocrinol. 2015, 31, 69–73. [Google Scholar] [CrossRef]
- Moore, D.E.; Spadoni, L.R.; Foy, H.M.; Wang, S.P.; Daling, J.R.; Kuo, C.C.; Grayston, J.T.; Eschenbach, D.A. Increased frequency of serum antibodies to Chlamydia trachomatis in infertility due to distal tubal disease. Lancet 1982, 2, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Torode, H.W.; Wheeler, P.A.; Saunders, D.M.; McPetrie, R.A.; Medcalf, S.C.; Ackerman, V.P. The role of chlamydial antibodies in an in vitro fertilization program. Fertil. Steril. 1987, 48, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Sarov, I.; Lunenfeld, E.; Sarov, B.; Hanuka, N.; Rosenzweig, R.; Potashnik, G.; Chaim, W.; Insler, V. Chlamydia specific IgG and IgA antibodies in women with obstructive infertility as determined by immunoblotting and immunoperoxidase assays. Eur. J. Epidemiol. 1988, 4, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrands, I.; Olsen, A.W.; Knudsen, S.; Dehari, N.; Juel, H.B.; Cheeseman, H.M.; Andersen, P.; Shattock, R.J.; Follmann, F. Human antibody signatures towards the Chlamydia trachomatis major outer membrane protein after natural infection and vaccination. eBioMedicine 2024, 104, 105140. [Google Scholar] [CrossRef] [PubMed]
- Rowland, G.F.; Forsey, T.; Moss, T.R.; Steptoe, P.C.; Hewitt, J.; Darougar, S. Failure of in vitro fertilization and embryo replacement following infection with Chlamydia trachomatis. J. Vitr. Fertil. Embryo Transf. IVF 1985, 2, 151–155. [Google Scholar] [CrossRef]
- Lunenfeld, E.; Shapiro, B.S.; Sarov, B.; Sarov, I.; Insler, V.; Decherney, A.H. The association between chlamydial-specific IgG and IgA antibodies and pregnancy outcome in an in vitro fertilization program. J. Vitr. Fertil. Embryo Transf. 1989, 6, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Jiang, T.-T.; Teng, Y.; Han, Y.; Yin, Y.-P.; Chen, X.-S. Associations of Chlamydia trachomatis serology with fertility-related and pregnancy adverse outcomes in women: A systematic review and meta-analysis of observational studies. eBioMedicine 2023, 94, 104696. [Google Scholar] [CrossRef]
- Sun, G.; Pal, S.; Sarcon Annahita, K.; Kim, S.; Sugawara, E.; Nikaido, H.; Cocco Melanie, J.; Peterson Ellena, M.; de la Maza Luis, M. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J. Bacteriol. 2007, 189, 6222–6235. [Google Scholar] [CrossRef]
- Gijsen, A.P.; Land, J.A.; Goossens, V.J.; Slobbe, M.E.; Bruggeman, C.A. Chlamydia antibody testing in screening for tubal factor subfertility: The significance of IgG antibody decline over time. Hum. Reprod. 2002, 17, 699–703. [Google Scholar] [CrossRef]
- den Hartog, J.E.; Land, J.A.; Stassen, F.R.; Kessels, A.G.; Bruggeman, C.A. Serological markers of persistent c. Trachomatis infections in women with tubal factor subfertility. Hum. Reprod. 2005, 20, 986–990. [Google Scholar] [CrossRef]
- Keltz, M.D.; Gera, P.S.; Moustakis, M. Chlamydia serology screening in infertility patients. Fertil. Steril. 2006, 85, 752–754. [Google Scholar] [CrossRef]
- Jakus, S.; Neuer, A.; Dieterle, S.; Bongiovanni, A.M.; Witkin, S.S. Antibody to the Chlamydia trachomatis 60 kda heat shock protein in follicular fluid and in vitro fertilization outcome. Am. J. Reprod. Immunol. 2008, 59, 85–89. [Google Scholar] [CrossRef]
- da Silva, F.C.; Kamuyu, G.; Michels, B.; Edney, J.; Hassall, L.; Stickings, P.; Maharjan, S.; Waterboer, T.; Beddows, S. Candidate antibody reference reagents for Chlamydia trachomatis serology. J. Immunol. Methods 2024, 534, 113761. [Google Scholar] [CrossRef] [PubMed]
- Öhman, H.; Rantsi, T.; Joki-Korpela, P.; Tiitinen, A.; Surcel, H.M. Prevalence and persistence of Chlamydia trachomatis-specific antibodies after occasional and recurrent infections. Sex. Transm. Infect. 2020, 96, 277–282. [Google Scholar] [CrossRef]
- Claman, P.; Amimi, M.N.; Peeling, R.W.; Toye, B.; Jessamine, P. Does serologic evidence of remote Chlamydia trachomatis infection and its heat shock protein (CHSP 60) affect in vitro fertilization-embryo transfer outcome? Fertil. Steril. 1996, 65, 146–149. [Google Scholar] [CrossRef]
- Hjelholt, A.; Christiansen, G.; Johannesson, T.G.; Ingerslev, H.J.; Birkelund, S. Tubal factor infertility is associated with antibodies against Chlamydia trachomatis heat shock protein 60 (HSP60) but not human HSP60. Hum. Reprod. 2011, 26, 2069–2076. [Google Scholar] [CrossRef]
- van Ess, E.F.; Eck-Hauer, A.; Land, J.A.; Morré, S.A.; Ouburg, S. Combining individual Chlamydia trachomatis IgG antibodies MOMP, TARP, CPAF, OMP2, and HSP60 for tubal factor infertility prediction. Am. J. Reprod. Immunol. 2019, 81, e13091. [Google Scholar] [CrossRef]
- Salihu, H.M.; Shumpert, M.N.; Slay, M.; Kirby, R.S.; Alexander, G.R. Childbearing beyond maternal age 50 and fetal outcomes in the United States. Obstet. Gynecol. 2003, 102, 1006–1014. [Google Scholar] [CrossRef]
- Padilla, S.L.; Garcia, J.E. Effect of maternal age and number of in vitro fertilization procedures on pregnancy outcome. Fertil. Steril. 1989, 52, 270–273. [Google Scholar] [CrossRef]
- Minaretzis, D.; Harris, D.; Alper, M.M.; Mortola, J.F.; Berger, M.J.; Power, D. Multivariate analysis of factors predictive of successful live births in in vitro fertilization (IVF) suggests strategies to improve IVF outcome. J. Assist. Reprod. Genet. 1998, 15, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, T.L.; McCoy, T.P.; Higdon, H.L., 3rd; Boone, W.R. Factors affecting assisted reproductive technology (art) pregnancy rates: A multivariate analysis. J. Assist. Reprod. Genet. 2005, 22, 335–346. [Google Scholar] [CrossRef]
- Li, H.; Nawsherwan; Fan, C.; Mubarik, S.; Nabi, G.; Ping, Y.X. The trend in delayed childbearing and its potential consequences on pregnancy outcomes: A single center 9-years retrospective cohort study in Hubei, China. BMC Pregnancy Childbirth 2022, 22, 514. [Google Scholar] [CrossRef] [PubMed]
- Kawwass, J.F.; Monsour, M.; Crawford, S.; Kissin, D.M.; Session, D.R.; Kulkarni, A.D.; Jamieson, D.J. Trends and outcomes for donor oocyte cycles in the United States, 2000–2010. JAMA 2013, 310, 2426–2434. [Google Scholar] [CrossRef]
- Levine, A.D.; Boulet, S.L.; Kissin, D.M. Contribution of assisted reproductive technology to overall births by maternal age in the United States, 2012–2014. JAMA 2017, 317, 1272–1273. [Google Scholar] [CrossRef]
- Sauer, M.V.; Paulson, R.J.; Lobo, R.A. Reversing the natural decline in human fertility. An extended clinical trial of oocyte donation to women of advanced reproductive age. JAMA 1992, 268, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Hong, C.; Wang, E.T.; Alexander, C.; Gregory, K.D.; Pisarska, M.D. Pregnancy outcomes in very advanced maternal age pregnancies: The impact of assisted reproductive technology. Fertil. Steril. 2015, 103, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.S.; Steward, R.G.; Dude, A.M.; Shah, A.A.; Goldfarb, J.M.; Muasher, S.J. Pregnancy outcomes decline in recipients over age 44: An analysis of 27,959 fresh donor oocyte in vitro fertilization cycles from the society for assisted reproductive technology. Fertil. Steril. 2014, 101, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Witkin, S.S. Circulating antibodies to Chlamydia trachomatis in women: Relationship to antisperm and antichlamydial antibodies in semen of male partners. Hum. Reprod. 1996, 11, 1635–1637. [Google Scholar] [CrossRef]
Biochemical Pregnancy | Live Birth | ||||
---|---|---|---|---|---|
Yes | No | Yes | No | ||
Age 1 | 34.0 (30.0–37.3) | 36.0 (33.0–40.0) | 34.0 (30.0–36.3) | 36.0 (33.0–40.0) | |
Number of oocytes 1 | Retrieved | 9 (7–12) | 6 (3–9) | 9 (7–12) | 7 (3–9) |
Obtained | 6 (4–8) | 3 (2–4) | 6 (4–8) | 3 (2–4) | |
Transferred | 2 (1–2) | 2 (2–2) | 2 (1–2) | 2 (2–2) | |
Implanted | 1 (1–1) | 0 (0–0) | 1 (1–1) | 0 (0–0) | |
IgG 2 | Serum | 3 (5.7%) | 11 (17.5%) | 3 (6.1%) | 11 (16.4%) |
Follicular fluid | 2 (3.7%) | 8 (12.3%) | 2 (4.0%) | 8 (11.6%) | |
IgA 2 | Serum | 4 (7.4%) | 8 (12.3%) | 4 (7.8%) | 8 (11.8%) |
Follicular fluid | 1 (2.0%) | 3 (4.8%) | 1 (2.1%) | 3 (4.5%) |
Univariable Logistic Regression Analysis | Bootstrapping Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | B | SE | Wald χ2 | p | OR | 95% CI 1 | B | SE | p | 95% CI 2 | |
Age | −0.117 | 0.043 | 7.284 | 0.007 | 0.890 | 0.817; 0.969 | −0.117 | 0.042 | 0.005 | −0.210; −0.043 | |
IgG | Serum | −1.260 | 0.681 | 3.426 | 0.064 | 0.284 | 0.075; 1.077 | −1.260 | 4.188 | 0.037 | −21.202; 0.021 |
Follicular fluid | −1.294 | 0.813 | 2.532 | 0.112 | 0.274 | 0.056; 1.350 | −1.294 | 6.688 | 0.062 | −21.293; 0.092 | |
IgA | Serum | −0.562 | 0.642 | 0.766 | 0.381 | 0.570 | 0.162; 2.007 | −0.562 | 2.807 | 0.385 | −2.416; 0.765 |
Follicular fluid | −0.933 | 1.171 | 0.635 | 0.425 | 0.393 | 0.040; 3.901 | −0.933 | 11.505 | 0.175 | −21.329; 21.336 | |
IgG or IgA | Serum | −0.874 | 0.564 | 2.403 | 0.121 | 0.417 | 0.138; 1.260 | −0.874 | 1.563 | 0.114 | −2.628; 0.160 |
Follicular fluid | −1.550 | 0.800 | 3.756 | 0.053 | 0.212 | 0.044; 1.018 | −1.550 | 6.442 | 0.038 | −21.263; −0.215 |
Univariable Logistic Regression Analysis | Bootstrapping Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | B | SE | Wald χ2 | p | OR | 95% CI 1 | B | SE | p | 95% CI 2 | |
Age | −0.099 | 0.043 | 5.327 | 0.021 | 0.906 | 0.833; 0.985 | −0.099 | 0.042 | 0.010 | −0.193; −0.2029 | |
IgG | Serum | −1.103 | 0.681 | 2.621 | 0.105 | 0.332 | 0.087; 1.261 | −1.103 | 4.081 | 0.057 | −20.958; 0.048 |
Follicular fluid | −1.147 | 0.814 | 1.985 | 0.159 | 0.318 | 0.064; 1.566 | −1.147 | 6.810 | 0.095 | −21.079; 0.314 | |
IgA | Serum | −0.449 | 0.643 | 0.488 | 0.485 | 0.638 | 0.181; 2.249 | −0.449 | 2.806 | 0.491 | −2.219; 0.838 |
Follicular fluid | −0.784 | 1.171 | 0.448 | 0.503 | 0.457 | 0.046; 4.530 | −0.784 | 10.930 | 0.239 | −21.131; 21.389 | |
IgG or IgA | Serum | −0.751 | 0.564 | 1.771 | 0.183 | 0.472 | 0.156; 1.426 | −0.751 | 2.003 | 0.159 | −2.459; 0.229 |
Follicular fluid | −1.391 | 0.800 | 3.022 | 0.082 | 0.249 | 0.052; 1.194 | −1.391 | 6.866 | 0.049 | −21.146; −0.025 |
Univariable Logistic Regression Analysis | Bootstrapping Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | B | SE | Wald χ2 | p | OR | 95% CI 1 | B | SE | 95% CI 2 | |
Age | −0.118 | 0.041 | 8.495 | 0.004 | 0.888 | 0.820; 0.962 | −0.118 | 0.040 | −0.211; −0.055 | |
IgG | Serum | 1.308 | 0.681 | 3.688 | 0.055 | 3.698 | 0.973; 14.053 | 1.308 | 3.625 | 0.239; 18.053 |
Follicular fluid | 1.431 | 0.836 | 9.926 | 0.087 | 4.181 | 0.812; 21.535 | 1.431 | 5.426 | 0.327; 18.073 | |
IgA | Serum | 0.688 | 0.640 | 1.157 | 0.282 | 1.990 | 0.568; 6.977 | 0.688 | 2.520 | −0.326; 2.525 |
Follicular fluid | 1.186 | 1.237 | 0.920 | 0.337 | 3.275 | 0.290; 36.991 | 1.186 | 7.558 | −0.274; 17.107 | |
IgG or IgA | Serum | 0.909 | 0.557 | 2.663 | 0.103 | 2.481 | 0.833; 7.391 | 0.909 | 1.148 | −0.055; 2.594 |
Follicular fluid | 1.659 | 0.819 | 4.104 | 0.043 | 5.254 | 1.055; 26.152 | 1.659 | 5.312 | 0.522; 18.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djordjevic, N.; Todorovic, A.; Sazdanovic, P.; Sazdanovic, M.; Sorak, M.; Gavrilovic, A.; Parandilovic, A.; Garalejic, E.; Vujovic, M.; Matic, S.; et al. Chlamydia trachomatis-Specific Antibodies and In Vitro Fertilization Outcome. Biomedicines 2025, 13, 2032. https://doi.org/10.3390/biomedicines13082032
Djordjevic N, Todorovic A, Sazdanovic P, Sazdanovic M, Sorak M, Gavrilovic A, Parandilovic A, Garalejic E, Vujovic M, Matic S, et al. Chlamydia trachomatis-Specific Antibodies and In Vitro Fertilization Outcome. Biomedicines. 2025; 13(8):2032. https://doi.org/10.3390/biomedicines13082032
Chicago/Turabian StyleDjordjevic, Natasa, Ana Todorovic, Predrag Sazdanovic, Maja Sazdanovic, Marija Sorak, Aleksandra Gavrilovic, Aida Parandilovic, Eliana Garalejic, Marija Vujovic, Sanja Matic, and et al. 2025. "Chlamydia trachomatis-Specific Antibodies and In Vitro Fertilization Outcome" Biomedicines 13, no. 8: 2032. https://doi.org/10.3390/biomedicines13082032
APA StyleDjordjevic, N., Todorovic, A., Sazdanovic, P., Sazdanovic, M., Sorak, M., Gavrilovic, A., Parandilovic, A., Garalejic, E., Vujovic, M., Matic, S., Popović, S., & Baskic, D. (2025). Chlamydia trachomatis-Specific Antibodies and In Vitro Fertilization Outcome. Biomedicines, 13(8), 2032. https://doi.org/10.3390/biomedicines13082032