Genetic Variants, Metabolic Dysfunction-Associated Fatty Liver Disease, and Major Health Outcomes in Older Adults
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Participant Assessment and Laboratory Data
2.3. Identifying MAFLD
2.4. Baseline Characteristics and Cardiometabolic Comorbidities
2.5. Genetics
2.6. Defining Outcomes
2.7. Statistical Analysis
3. Results
3.1. Study Population and Genetic Variant Prevalence
3.2. Major Adverse Cardiovascular Events
3.3. All-Cause Mortality
3.4. Genetic Variant Associations in Older Individuals Without MAFLD
3.5. Outcomes in the MASLD Group
4. Discussion
Strengths and Weaknesses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Driessen, S.; Francque, S.M.; Anker, S.D.; Castro Cabezas, M.; Grobbee, D.E.; Tushuizen, M.E.; Holleboom, A.G. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2023, 82, 487–503. [Google Scholar] [CrossRef]
- Vaz, K.; Clayton-Chubb, D.; Majeed, A.; Lubel, J.; Simmons, D.; Kemp, W.; Roberts, S.K. Current understanding and future perspectives on the impact of changing NAFLD to MAFLD on global epidemiology and clinical outcomes. Hepatol. Int. 2023, 17, 1082–1097. [Google Scholar] [CrossRef]
- Vaz, K.; Kemp, W.; Majeed, A.; Lubel, J.; Magliano, D.J.; Glenister, K.M.; Bourke, L.; Simmons, D.; Roberts, S.K. NAFLD and MAFLD independently increase the risk of major adverse cardiovascular events (MACE): A 20-year longitudinal follow-up study from regional Australia. Hepatol. Int. 2024, 18, 1135–1143. [Google Scholar] [CrossRef]
- Bianco, C.; Jamialahmadi, O.; Pelusi, S.; Baselli, G.; Dongiovanni, P.; Zanoni, I.; Santoro, L.; Maier, S.; Liguori, A.; Meroni, M.; et al. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. J. Hepatol. 2021, 74, 775–782. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, G.C.; Tan, H.Y.; Hao, F.B.; Hu, J.J. Nonalcoholic fatty liver disease and mortality from all causes, cardiovascular disease, and cancer: A meta-analysis. Sci. Rep. 2019, 9, 11124. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef]
- Golabi, P.; Paik, J.; Reddy, R.; Bugianesi, E.; Trimble, G.; Younossi, Z.M. Prevalence and long-term outcomes of non-alcoholic fatty liver disease among elderly individuals from the United States. BMC Gastroenterol. 2019, 19, 56. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Majeed, A.; Commins, I.; Woods, R.L.; Chan, A.T.; Ryan, J.; Neumann, J.T.; Schneider, H.G.; Tonkin, A.M.; Nelson, M.R.; et al. Prevalence and outcomes of steatotic liver disease subtypes in older adults. Hepatol. Commun. 2025, 9, e0756. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Arab, J.P.; Arrese, M. Perspectives on Precision Medicine Approaches to NAFLD Diagnosis and Management. Adv. Ther. 2021, 38, 2130–2158. [Google Scholar] [CrossRef]
- Di Costanzo, A.; Belardinilli, F.; Bailetti, D.; Sponziello, M.; D’Erasmo, L.; Polimeni, L.; Baratta, F.; Pastori, D.; Ceci, F.; Montali, A.; et al. Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy. Sci. Rep. 2018, 8, 3702. [Google Scholar] [CrossRef] [PubMed]
- Jonas, W.; Schurmann, A. Genetic and epigenetic factors determining NAFLD risk. Mol. Metab. 2021, 50, 101111. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.A.; Kemp, W.W.; Muller, K.R.; Powell, E.E.; Roberts, S.K.; Bertot, L.C.; Best, S.; Deed, G.; Emery, J.D.; Hocking, S.L.; et al. Assessment of metabolic dysfunction-associated fatty liver disease in primary care: A consensus statement summary. Med. J. Aust. 2025. [Google Scholar] [CrossRef]
- MAFLD Consensus Statement Working Group. Recommendations for the Assessment of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Primary Care: A Consensus Statement; Gastroenterological Society of Australia: Melbourne, Australia, 2024; Available online: https://www.gesa.org.au/public/13/files/Education%20%26%20Resources/Clinical%20Practice%20Resources/MAFLD/MAFLD%20consensus%20statement%202024.pdf (accessed on 6 August 2024).
- Eslam, M.; Fan, J.G.; Yu, M.L.; Wong, V.W.; Cua, I.H.; Liu, C.J.; Tanwandee, T.; Gani, R.; Seto, W.K.; Alam, S.; et al. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol. Int. 2025, 19, 261–301. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Murray, A.M.; Reid, C.M.; Kirpach, B.; Storey, E.; Shah, R.C.; Wolfe, R.S.; Tonkin, A.M.; et al. Baseline Characteristics of Participants in the ASPREE (ASPirin in Reducing Events in the Elderly) Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1586–1593. [Google Scholar] [CrossRef]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- Parker, E.J.; Orchard, S.G.; Gilbert, T.J.; Phung, J.J.; Owen, A.J.; Lockett, T.; Nelson, M.R.; Reid, C.M.; Tonkin, A.M.; Abhayaratna, W.P.; et al. The ASPREE Healthy Ageing Biobank: Methodology and participant characteristics. PLoS ONE 2024, 19, e0294743. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Ernst, M.E.; Broder, J.C.; Wolfe, R.; Woods, R.L.; Nelson, M.R.; Ryan, J.; Shah, R.C.; Orchard, S.G.; Chan, A.T.; Espinoza, S.E.; et al. Health Characteristics and Aspirin Use in Participants at the Baseline of the ASPirin in Reducing Events in the Elderly—eXTension (ASPREE-XT) Observational Study. Contemp. Clin. Trials 2023, 130, 107231. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Chui, H.C. The Modified Mini-Mental State (3MS) examination. J. Clin. Psychiatry 1987, 48, 314–318. [Google Scholar]
- Andresen, E.M.; Malmgren, J.A.; Carter, W.B.; Patrick, D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 1994, 10, 77–84. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale:A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Kemp, W.W.; Majeed, A.; Lubel, J.S.; Woods, R.L.; Tran, C.; Ryan, J.; Hodge, A.; Schneider, H.G.; McNeil, J.J.; et al. Metabolic dysfunction-associated steatotic liver disease in older adults is associated with frailty and social disadvantage. Liver Int. 2024, 44, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Clayton-Chubb, D.; Roberts, S.K.; Majeed, A.; Woods, R.L.; Tonkin, A.M.; Nelson, M.R.; Chan, A.T.; Ryan, J.; Tran, C.; Hodge, A.; et al. Associations between MASLD, atrial fibrillation, cardiovascular events, mortality and aspirin use in older adults. Geroscience 2024, 47, 1303–1318. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Huang, J.; Zhu, Y.; Lin, S. Validation of five hepatic steatosis algorithms in metabolic-associated fatty liver disease: A population based study. J. Gastroenterol. Hepatol. 2022, 37, 938–945. [Google Scholar] [CrossRef]
- Koehler, E.M.; Schouten, J.N.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L. External validation of the fatty liver index for identifying nonalcoholic fatty liver disease in a population-based study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Clayton-Chubb, D.; Kemp, W.W.; Majeed, A.; Woods, R.L.; Ryan, J.; Murray, A.M.; Chong, T.T.J.; Lubel, J.S.; Tran, C.; Hodge, A.D.; et al. Late-Life Metabolic Dysfunction-Associated Steatotic Liver Disease and its Association With Physical Disability and Dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 79, glae011. [Google Scholar] [CrossRef]
- Commins, I.; Clayton-Chubb, D.; Fitzpatrick, J.A.; George, E.S.; Schneider, H.G.; Phyo, A.Z.Z.; Majeed, A.; Janko, N.; Vaughan, N.; Woods, R.L.; et al. Associations Between MASLD, Ultra-Processed Food and a Mediterranean Dietary Pattern in Older Adults. Nutrients 2025, 17, 1415. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- U. S. Preventive Services Task Force; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; et al. Screening for Prediabetes and Type 2 Diabetes: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 736–743. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schonherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- Taliun, D.; Harris, D.N.; Kessler, M.D.; Carlson, J.; Szpiech, Z.A.; Torres, R.; Taliun, S.A.G.; Corvelo, A.; Gogarten, S.M.; Kang, H.M.; et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 2021, 590, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Bakshi, A.; Watts, G.F.; Renton, A.E.; Fulton-Howard, B.; Goate, A.M.; Natarajan, P.; Chasman, D.I.; Robman, L.; Woods, R.L.; et al. Genome-Wide Association Study of Cardiovascular Resilience Identifies Protective Variation in the CETP Gene. J. Am. Heart Assoc. 2023, 12, e031459. [Google Scholar] [CrossRef]
- Yu, C.; Ryan, J.; Orchard, S.G.; Robb, C.; Woods, R.L.; Wolfe, R.; Renton, A.E.; Goate, A.M.; Brodtmann, A.; Shah, R.C.; et al. Validation of newly derived polygenic risk scores for dementia in a prospective study of older individuals. Alzheimers Dement. 2023, 19, 5333–5342. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Pirola, C.J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2017, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Trepo, E.; Valenti, L. Update on NAFLD genetics: From new variants to the clinic. J. Hepatol. 2020, 72, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D. Common genetic variants and nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2013, 11, 1191–1193. [Google Scholar] [CrossRef]
- Aspree Investigator Group. Study design of ASPirin in Reducing Events in the Elderly (ASPREE): A randomized, controlled trial. Contemp. Clin. Trials 2013, 36, 555–564. [Google Scholar] [CrossRef]
- Neumann, J.T.; Thao, L.T.P.; Callander, E.; Chowdhury, E.; Williamson, J.D.; Nelson, M.R.; Donnan, G.; Woods, R.L.; Reid, C.M.; Poppe, K.K.; et al. Cardiovascular risk prediction in healthy older people. Geroscience 2022, 44, 403–413. [Google Scholar] [CrossRef]
- Neumann, J.T.; Thao, L.T.P.; Murray, A.M.; Callander, E.; Carr, P.R.; Nelson, M.R.; Wolfe, R.; Woods, R.L.; Reid, C.M.; Shah, R.C.; et al. Prediction of disability-free survival in healthy older people. Geroscience 2022, 44, 1641–1655. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, L.A.; Sonneveld, M.J.; Kavousi, M.; Ikram, M.A.; de Man, R.A.; de Knegt, R.J. Fatty liver disease is not associated with increased mortality in the elderly: A prospective cohort study. Hepatology 2023, 77, 585–593. [Google Scholar] [CrossRef]
- Shang, Y.; Nasr, P.; Widman, L.; Hagstrom, H. Risk of cardiovascular disease and loss in life expectancy in NAFLD. Hepatology 2022, 76, 1495–1505. [Google Scholar] [CrossRef]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P.; et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef]
- Kanwal, F.; Shubrook, J.H.; Adams, L.A.; Pfotenhauer, K.; Wai-Sun Wong, V.; Wright, E.; Abdelmalek, M.F.; Harrison, S.A.; Loomba, R.; Mantzoros, C.S.; et al. Clinical Care Pathway for the Risk Stratification and Management of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2021, 161, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, B.; Linden, D.; Brolen, G.; Liljeblad, M.; Bjursell, M.; Romeo, S.; Loomba, R. Review article: The emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1305–1320. [Google Scholar] [CrossRef]
- Caddeo, A.; Spagnuolo, R.; Maurotti, S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023, 43, 2351–2364. [Google Scholar] [CrossRef]
- Xu, X.; Xu, H.; Liu, X.; Zhang, S.; Cao, Z.; Qiu, L.; Du, X.; Liu, Y.; Wang, G.; Zhang, L.; et al. MBOAT7 rs641738 (C>T) is associated with NAFLD progression in men and decreased ASCVD risk in elder Chinese population. Front. Endocrinol. 2023, 14, 1199429. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Wu, F.Z.; Lin, K.H.; Chen, Y.H.; Wu, P.C.; Chen, Y.H.; Chen, C.S.; Wang, W.H.; Mar, G.Y.; Yu, H.C. Role of Fatty Liver Index and Metabolic Factors in the Prediction of Nonalcoholic Fatty Liver Disease in a Lean Population Receiving Health Checkup. Clin. Transl. Gastroenterol. 2019, 10, e00042. [Google Scholar] [CrossRef]
- Mendez-Sanchez, N.; Brouwer, W.P.; Lammert, F.; Yilmaz, Y. Metabolic dysfunction associated fatty liver disease in healthy weight individuals. Hepatol. Int. 2024, 18, 884–896. [Google Scholar] [CrossRef]
- Hooper, R. To adjust, or not to adjust, for multiple comparisons. J. Clin. Epidemiol. 2025, 180, 111688. [Google Scholar] [CrossRef]
Characteristic | All Participants | Non-MAFLD (FLI < 30) | FLI 30–60 | MAFLD (FLI ≥ 60) | p-Value |
---|---|---|---|---|---|
Number of Participants | 8751 | 2641 (30.2%) | 2800 (32.0%) | 3310 (37.8%) | |
Sex (male) | 4066 (46.5%) | 820 (31.0%) | 1437 (51.3%) | 1809 (54.7%) | <0.001 a |
Age (years) (mean ± SD) | 75.0 ± 4.2 | 75.3 ± 4.4 | 75.2 ± 4.4 | 74.5 ± 3.8 | <0.001 b |
Alcohol Use | 0.778 a | ||||
Current Drinker (n, %) | 6977 (79.7%) | 2102 (79.6%) | 2236 (79.9%) | 2639 (79.7%) | |
Former Drinker (n, %) | 404 (4.6%) | 117 (4.4%) | 123 (4.4%) | 164 (5.0%) | |
Never Drinker (n, %) | 1370 (15.7%) | 422 (16.0%) | 441 (15.8%) | 507 (15.3%) | |
Weight (kg) (mean ± SD) | 76.12 ± 14.03 | 64.07 ± 8.69 | 75.75 ± 8.68 | 88.44 ± 12.16 | <0.001 b |
BMI (kg/m2) (mean ± SD) | 28.0 ± 4.5 | 23.9 ± 2.4 | 27.3 ± 2.2 | 31.8 ± 4.0 | <0.001 b <0.001 a |
BMI Category [1] * | |||||
Underweight | 39 (0.4%) | 39 (1.3%) | 0 (0.0%) | 0 (0.0%) | |
Healthy Weight | 2187 (25.0%) | 1765 (66.8%) | 388 (13.9%) | 34 (1.0%) | |
Overweight | 4052 (46.3%) | 821 (31.1%) | 2088 (74.6%) | 1143 (34.5%) | |
Obese | 2473 (28.3%) | 16 (0.6%) | 324 (11.6%) | 2133 (64.4%) | |
Waist Circumference (cm) (mean ± SD) | 97.0 ± 12.5 | 84.3 ± 7.8 | 96.3 ± 6.4 | 107.8 ± 9.3 | <0.001 b |
Elevated Abdominal Circumference [35] (n, %) † | 4989 (57.0%) | 428 (16.2%) | 1569 (56.0%) | 2992 (90.4%) | <0.001 a |
Hypertension (n, %) ¶ | 5243 (59.9%) | 1332 (50.4%) | 1679 (60.0%) | 2232 (67.4%) | <0.001 a |
Diabetes Mellitus (n, %) §§ | 817 (9.3%) | 95 (3.6%) | 199 (7.1%) | 523 (15.8%) | <0.001 a |
Dyslipidemia (n, %) ** | 4782 (54.6%) | 1123 (42.5%) | 1512 (54.0%) | 2147 (64.9%) | <0.001 a |
Use of HMG-CoA Reductase Medication | 2984 (34.1%) | 677 (25.6%) | 945 (33.8%) | 1362 (41.1%) | <0.001 a |
Use of Fibrate Medication | 76 (0.9%) | 10 (0.4%) | 18 (0.6%) | 48 (1.5%) | <0.001 a |
Smoking History (n, %) | <0.001 a | ||||
Never Smoked | 4865 (55.6%) | 1656 (62.7%) | 1557 (55.6%) | 1652 (49.9%) | |
Former Smoker | 3610 (41.3%) | 896 (33.9%) | 1150 (41.1%) | 1564 (47.3%) | |
Current Smoker | 276 (3.2%) | 89 (3.4%) | 93 (3.3%) | 94 (2.8%) | |
Laboratory Values ¶¶ | |||||
GGT (U/L) (median [IQR]) | 21 (16–32) | 16 (13–21) | 21 (16–28) | 29 (21–45) | <0.001 c |
ALT (U/L) (median [IQR]) | 18 (14–23) | 16 (13–19) | 18 (14–22) | 21 (16–28) | <0.001 c |
AST (U/L) (median [IQR]) | 21 (18–24) | 20 (18–24) | 20 (18–24) | 21 (18–26) | <0.001 c |
Total Cholesterol (mmol/L) (mean ± SD) | 5.3 ± 1.0 | 5.4 ± 0.9 | 5.3 ± 1.0 | 5.2 ± 1.0 | 0.042 b |
Non-HDL-C (mmol/L) (mean ± SD) | 3.7 ± 0.9 | 3.5 ± 0.9 | 3.7 ± 0.9 | 3.8 ± 1.0 | <0.001 b |
HDL-C (mmol/L) (mean ± SD) | 1.6 ± 0.5 | 1.8 ± 0.5 | 1.6 ± 0.4 | 1.4 ± 0.4 | <0.001 b |
Triglycerides (mmol/L) (mean ± SD) | 1.3 ± 0.7 | 0.9 ± 0.3 | 1.2 ± 0.5 | 1.7 ± 0.8 | <0.001 b |
Renal Function | |||||
eGFR (mL/min/1.73 m2) (mean ± SD) | 73.0 ± 13.4 | 74.8 ± 12.7 | 72.6 ± 13.1 | 71.7 ± 14.1 | <0.001 b |
Creatinine (mcmol/L) (mean ± SD) | 80.0 ± 0.22 | 74.6 ± 16.2 | 81.1 ± 18.7 | 83.4 ± 20.7 | <0.001 b |
Chronic Kidney Disease §§§ (n, %) | 1533 (17.5%) | 364 (13.8%) | 478 (17.1%) | 691 (20.9%) | <0.001 a |
MAFLD variants | |||||
PNPLA3 (rs738409 C > G) (n, %) | 0.613 a | ||||
Wildtype | 5292 (60.5%) | 1593 (60.3%) | 1726 (61.6%) | 1973 (59.6%) | |
Heterozygous | 3047 (34.8%) | 924 (35.0%) | 946 (33.8%) | 1177 (35.6%) | |
Homozygous | 412 (4.7%) | 124 (4.7%) | 128 (4.6%) | 160 (4.8%) | |
MBOAT7 (rs641738 C > T) (n, %) | 0.569 a | ||||
Wildtype | 2779 (31.8%) | 862 (32.6%) | 884 (31.6%) | 1033 (31.2%) | |
Heterozygous | 3405 (49.2%) | 1269 (48.0%) | 1400 (50.0%) | 1636 (49.4%) | |
Homozygous | 1667 (19.0%) | 510 (19.3%) | 516 (18.4%) | 641 (19.4%) | |
TM6SF2 (rs58542926 C > T) (n, %) | 0.762 a | ||||
Wildtype | 7446 (85.1%) | 2257 (85.5%) | 2393 (85.5%) | 2796 (84.5%) | |
Heterozygous | 1255 (14.3%) | 369 (14.0%) | 393 (14.0%) | 493 (14.9%) | |
Homozygous | 50 (0.6%) | 15 (0.6%) | 14 (0.5%) | 21 (0.6%) | |
HSD17B13 (rs72613567 T > TA) (n, %) | 0.010 a | ||||
Wildtype | 4558 (52.1%) | 1366 (51.7%) | 1514 (54.0%) | 1680 (50.8%) | |
Heterozygous | 3545 (40.5%) | 1074 (40.7%) | 1066 (38.1%) | 1405 (42.4%) | |
Homozygous | 648 (7.4%) | 201 (7.6%) | 222 (7.9%) | 225 (6.8%) | |
GCKR (rs1260326 C > T) (n, %) | 0.005 a | ||||
Wildtype | 3095 (35.4%) | 988 (37.4%) | 983 (35.1%) | 1124 (34.0%) | |
Heterozygous | 4257 (48.6%) | 1267 (48.0%) | 1386 (49.5%) | 1604 (48.5%) | |
Homozygous | 1399 (16.0%) | 386 (14.6%) | 431 (15.4%) | 582 (17.6%) | |
LYPLAL1 (rs12137855 C > T) (n, %) | 0.858 a | ||||
Wildtype | 5394 (61.6%) | 1623 (61.5%) | 1714 (61.2%) | 2057 (62.1%) | |
Heterozygous | 2994 (33.6%) | 897 (34.0%) | 945 (33.8%) | 1102 (33.3%) | |
Homozygous | 413 (4.7%) | 121 (4.6%) | 141 (5.0%) | 151 (4.6%) |
MAFLD Genetic Variants | Female (n = 4685) | Male (n = 4066) | p-Value |
---|---|---|---|
PNPLA3 (rs738409 C > G) | 1869 (39.9%) | 1590 (39.1%) | 0.452 a |
MBOAT7 (rs641738 C > T) | 3221 (68.8%) | 2751 (67.7%) | 0.273 a |
TM6SF2 (rs58542926 C > T) | 708 (15.1%) | 597 (14.7%) | 0.574 a |
HSD17B13 (rs72613567 T > TA) | 2284 (48.8%) | 1909 (47.0%) | 0.093 a |
GCKR (rs1260326 C > T) | 3028 (68.5%) | 2628 (64.6%) | 0.249 a |
LYPLAL1 (rs12137855 C > T) | 1808 (38.6%) | 1549 (38.1%) | 0.635 a |
Outcome in the MAFLD Group | No MACE | MACE | p-Value | No Death | Death | p-Value |
---|---|---|---|---|---|---|
Number of participants | 3027 | 283 | 2813 | 497 | ||
Sex (male) | 1619 (53.5%) | 190 (67.1%) | <0.001 a | 1505 (53.5%) | 304 (61.2%) | 0.002 a |
Age (years) (mean ± SD) | 74.4 ± 3.8 | 75.9 ± 4.5 | <0.001 b | 74.2 ± 3.5 | 76.5 ± 4.8 | <0.001 b |
MAFLD variants | ||||||
PNPLA3 (rs738409 C > G) (n, %) | 0.494 a | 0.570 a | ||||
Wildtype | 1795 (59.3%) | 178 (62.9%) | 1669 (59.3%) | 304 (61.2%) | ||
Heterozygous | 1085 (35.8%) | 92 (32.5%) | 1004 (35.7%) | 173 (34.8%) | ||
Homozygous | 147 (4.9%) | 13 (4.6%) | 140 (5.0%) | 20 (4.0%) | ||
MBOAT7 (rs641738 C > T) (n, %) | 0.062 a | 0.620 a | ||||
Wildtype | 929 (30.7%) | 104 (36.7%) | 879 (31.2%) | 154 (31.0%) | ||
Heterozygous | 1501 (49.6%) | 135 (47.7%) | 1395 (49.6%) | 239 (48.1%) | ||
Homozygous | 597 (19.7%) | 44 (15.5%) | 537 (19.1%) | 104 (20.9%) | ||
TM6SF2 (rs58542926 C > T) (n, %) | 0.583 a | 0.207 a | ||||
Wildtype | 2563 (84.7%) | 233 (82.3%) | 2389 (84.9%) | 407 (81.9%) | ||
Heterozygous | 445 (14.7%) | 48 (17.0%) | 406 (14.4%) | 87 (17.5%) | ||
Homozygous | 19 (0.6%) | 2 (0.7%) | 18 (0.6%) | 3 (0.6%) | ||
HSD17B13 (rs72613567 T > TA) (n, %) | 0.645 a | 0.618 a | ||||
Wildtype | 1529 (50.5%) | 151 (53.4%) | 1422 (50.6%) | 258 (51.9%) | ||
Heterozygous | 1292 (42.7%) | 113 (39.9%) | 1203 (42.8%) | 202 (40.6%) | ||
Homozygous | 206 (6.8%) | 19 (6.7%) | 188 (6.7%) | 37 (7.4%) | ||
GCKR (rs1260326 C > T) (n, %) | 0.341 a | 0.101 a | ||||
Wildtype | 1017 (33.6%) | 107 (37.8%) | 939 (33.4%) | 185 (37.2%) | ||
Heterozygous | 1473 (48.7%) | 131 (46%) | 1385 (49.2%) | 219 (44.1%) | ||
Homozygous | 537 (17.7%) | 45 (15.9%) | 489 (17.4%) | 93 (18.7%) | ||
LYPLAL1 (rs12137855 C > T) (n, %) | 0.683 a | 0.767 a | ||||
Wildtype | 1880 (62.1%) | 177 (62.5%) | 1745 (62.0%) | 312 (62.8%) | ||
Heterozygous | 1006 (33.2%) | 96 (33.9%) | 942 (33.5%) | 160 (32.2%) | ||
Homozygous | 141 (4.7%) | 10 (3.5%) | 126 (4.5%) | 25 (5.0%) |
MACE Median Follow-Up 8.3 (7.3–9.4) Years | ||||||
---|---|---|---|---|---|---|
MAFLD Variants | HR (95% CI) | p-Value | aHR * (95% CI) | p-Value | aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.87 (0.68–1.12) | 0.275 | 0.87 (0.68–1.12) | 0.281 | 0.88 (0.68–1.14) | 0.332 |
Homozygous | 0.88 (0.50–1.55) | 0.654 | 0.92 (0.52–1.61) | 0.761 | 0.91 (0.52–1.61) | 0.747 |
MBOAT7 (rs641738 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.82 (0.63–1.05) | 0.119 | 0.81 (0.62–1.04) | 0.103 | 0.81 (0.62–1.05) | 0.111 |
Homozygous | 0.68 (0.48–0.97) | 0.034 | 0.67 (0.47–0.96) | 0.027 | 0.64 (0.44–0.92) | 0.015 |
TM6SF2 (rs58542926 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.22 (0.89–1.66) | 0.216 | 1.22 (0.89–1.66) | 0.222 | 1.25 (0.91–1.72) | 0.165 |
Homozygous | 1.19 (0.29–4.82) | 0.810 | 1.04 (0.26–4.25) | 0.952 | 1.19 (0.29–4.85) | 0.811 |
HSD17B13 (rs72613567 T > TA) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.87 (0.69–1.13) | 0.335 | 0.89 (0.70–1.14) | 0.361 | 0.86 (0.67–1.10) | 0.221 |
Homozygous | 0.92 (0.57–1.48) | 0.729 | 0.88 (0.54–1.42) | 0.598 | 0.92 (0.57–1.49) | 0.735 |
GCKR (rs1260326 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.85 (0.66–1.10) | 0.225 | 0.87 (0.67–1.12) | 0.286 | 0.90 (0.69–1.16) | 0.412 |
Homozygous | 0.82 (0.58–1.17) | 0.280 | 0.84 (0.59–1.19) | 0.330 | 0.84 (0.58–1.20) | 0.331 |
LYPLAL1 (rs12137855 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.02 (0.80–1.31) | 0.857 | 1.04 (0.81–1.33) | 0.772 | 1.05 (0.82–1.36) | 0.687 |
Homozygous | 0.80 (0.42–1.52) | 0.504 | 0.81 (0.42–1.53) | 0.507 | 0.87 (0.46–1.66) | 0.678 |
MACE Median Follow-Up 8.3 (7.3–9.4) Years | ||||||
---|---|---|---|---|---|---|
MAFLD Genetic Variants | HR (95% CI) | p-Value | Model 1 aHR * (95% CI) | p-Value | Model 2 aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | 0.87 (0.68–1.11) | 0.251 | 0.88 (0.69–1.12) | 0.283 | 0.88 (0.69–1.13) | 0.327 |
MBOAT7 (rs641738 C > T) | 0.78 (0.61–0.99) | 0.043 | 0.77 (0.60–0.98) | 0.034 | 0.76 (0.59–0.97) | 0.029 |
TM6SF2 (rs58542926 C > T) | 1.22 (0.90–1.65) | 0.211 | 1.21 (0.89–1.64) | 0.230 | 1.25 (0.91–1.70) | 0.162 |
HSD17B13 (rs72613567 T > TA) | 0.89 (0.70–1.13) | 0.335 | 0.89 (0.70–1.13) | 0.332 | 0.86 (0.68–1.10) | 0.233 |
GCKR (rs1260326 C > T) | 0.85 (0.66–1.08) | 0.174 | 0.86 (0.68–1.10) | 0.228 | 0.88 (0.69–1.13) | 0.312 |
LYPLAL1 (rs12137855 C > T) | 1.00 (0.78–1.27) | 0.985 | 1.01 (0.79–1.29) | 0.935 | 1.03 (0.81–1.32) | 0.796 |
All-Cause Mortality Median Follow-Up 8.4 (7.4–9.5) Years | ||||||
---|---|---|---|---|---|---|
MAFLD Variants | HR (95% CI) | p-Value | aHR * (95% CI) | p-Value | aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.95 (0.79–1.14) | 0.568 | 0.94 (0.78–1.14) | 0.531 | 0.92 (0.76–1.12) | 0.414 |
Homozygous | 0.79 (0.49–1.22) | 0.264 | 0.81 (0.52–1.28) | 0.371 | 0.76 (0.47–1.21) | 0.246 |
MBOAT7 (rs641738 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.98 (0.80–1.21) | 0.876 | 0.95 (0.77–1.16) | 0.621 | 0.96 (0.78–1.18) | 0.706 |
Homozygous | 1.14 (0.89–1.47) | 0.291 | 1.09 (0.85–1.41) | 0.481 | 1.10 (0.85–1.42) | 0.475 |
TM6SF2 (rs58542926 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.26 (1.00–1.59) | 0.053 | 1.22 (0.97–1.54) | 0.093 | 1.19 (0.93–1.51) | 0.166 |
Homozygous | 0.97 (0.31–3.04) | 0.958 | 0.84 (0.27–2.65) | 0.769 | 0.91 (0.29–2.86) | 0.868 |
HSD17B13 (rs72613567 T > TA) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.92 (0.76–1.10) | 0.368 | 0.91 (0.76–1.10) | 0.346 | 0.89 (0.74–1.08) | 0.243 |
Homozygous | 1.05 (0.74–1.48) | 0.798 | 0.98 (0.69–1.38) | 0.887 | 0.94 (0.66–1.35) | 0.750 |
GCKR (rs1260326 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.81 (0.67–0.99) | 0.037 | 0.83 (0.68–1.01) | 0.210 | 0.86 (0.71–1.06) | 0.156 |
Homozygous | 0.96 (0.75–1.24) | 0.758 | 0.97 (0.75–1.24) | 0.786 | 0.96 (0.74–1.25) | 0.761 |
LYPLAL1 (rs12137855 C > T) | ||||||
Wildtype | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.97 (0.80–1.17) | 0.736 | 1.00 (0.82–1.21) | 0.989 | 0.93 (0.76–1.13) | 0.439 |
Homozygous | 1.12 (0.74–1.69) | 0.591 | 1.11 (0.74–1.68) | 0.603 | 1.09 (0.71–1.67) | 0.695 |
All-Cause Mortality Median Follow-Up 8.4 (7.4–9.5) Years | ||||||
---|---|---|---|---|---|---|
MAFLD Genetic Variants | HR (95% CI) | p-Value | Model 1 aHR * (95% CI) | p-Value | Model 2 aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | 0.93 (0.77–1.11) | 0.400 | 0.93 (0.77–1.11) | 0.409 | 0.90 (0.75–1.09) | 0.283 |
MBOAT7 (rs641738 C > T) | 1.03 (0.85–1.24) | 0.782 | 0.99 (0.82–1.20) | 0.912 | 1.00 (0.82–1.21) | 0.988 |
TM6SF2 (rs58542926 C > T) | 1.25 (0.99–1.57) | 0.061 | 1.20 (0.96–1.51) | 0.115 | 1.17 (0.93–1.49) | 0.188 |
HSD17B13 (rs72613567 T > TA) | 0.94 (0.78–1.12) | 0.465 | 0.92 (0.77–1.10) | 0.379 | 0.90 (0.75–1.08) | 0.256 |
GCKR (rs1260326 C > T) | 0.85 (0.71–1.02) | 0.081 | 0.86 (0.72–1.04) | 0.113 | 0.89 (0.74–1.07) | 0.222 |
LYPLAL1 (rs12137855 C > T) | 0.99 (0.82–1.18) | 0.876 | 1.01 (0.84–1.22) | 0.890 | 0.94 (0.78–1.14) | 0.549 |
MACE Median Follow-Up 8.4 (7.4–9.5) Years (Total MACE = 380; n = 5441) | All-Cause Mortality Median Follow-Up 8.4 (7.4–9.5) Years (Total Deaths = 775; n = 5441) | |||||||
---|---|---|---|---|---|---|---|---|
MAFLD Genetic Variants | HR (95% CI) | p-Value | aHR * (95% CI) | p-Value | HR (95% CI) | p-Value | aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.06 (0.86–1.31) | 0.590 | 1.12 (0.90–1.39) | 0.303 | 1.03 (0.89–1.20) | 0.686 | 1.05 (0.90–1.22) | 0.564 |
Homozygous | 1.29 (0.83–2.00) | 0.257 | 1.41 (0.90–2.22) | 0.134 | 0.92 (0.65–1.32) | 0.665 | 1.07 (0.75–1.54) | 0.696 |
MBOAT7 (rs641738 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.03 (0.82–1.30) | 0.768 | 1.06 (0.84–1.33) | 0.632 | 0.90 (0.77–1.05) | 0.180 | 0.90 (0.77–1.06) | 0.221 |
Homozygous | 0.96 (0.71–1.29) | 0.772 | 0.92 (0.68–1.25) | 0.598 | 0.91 (0.74–1.12) | 0.382 | 0.85 (0.69–1.05) | 0.127 |
TM6SF2 (rs58542926 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.03 (0.78–1.38) | 0.820 | (0.75–1.35) | 0.865 | 1.18 (0.97–1.43) | 0.091 | 1.17 (0.96–1.43) | 0.111 |
Homozygous | 1.25 (0.31–5.05) | 0.750 | 0.85 (0.12–6.12) | 0.875 | 1.62 (0.67–3.93) | 0.282 | 1.79 (0.66–4.82) | 0.250 |
HSD17B13 (rs72613567 T > TA) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.85 (0.69–1.06) | 0.155 | 0.86 (0.69–1.08) | 0.191 | 0.88 (0.76–1.03) | 0.109 | 0.89 (0.76–1.04) | 0.144 |
Homozygous | 1.36 (0.97–1.90) | 0.076 | 1.26 (0.89–1.80) | 0.194 | 1.00 (0.77–1.30) | 0.999 | 0.96 (0.72–1.26) | 0.747 |
GCKR (rs1260326 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.18 (0.87–1.60) | 0.287 | 1.13 (0.83–1.55) | 0.447 | 0.96 (0.83–1.12) | 0.629 | 0.99 (0.84–1.16) | 0.866 |
Homozygous | 0.99 (0.72–1.37) | 0.962 | 0.99 (0.71–1.37) | 0.939 | 0.96 (0.77–1.19) | 0.709 | 1.06 (0.85–1.33) | 0.595 |
LYPLAL1 (rs12137855 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.01 (0.63–1.62) | 0.964 | 1.06 (0.65–1.74) | 0.817 | 1.05 (0.91–1.23) | 0.490 | 1.06 (0.91–1.23) | 0.484 |
Homozygous | 0.87 (0.55–1.37) | 0.545 | 0.91 (0.56–1.48) | 0.704 | 0.91 (0.64–1.29) | 0.581 | 0.98 (0.68–1.40) | 0.902 |
MACE Median Follow-Up 8.3 (7.3–9.4) Years (Total MACE = 216; n = 2624) | All-Cause Mortality Median Follow-Up 8.4 (7.4–9.5) Years (Total Deaths = 374, n = 2624) | |||||||
---|---|---|---|---|---|---|---|---|
MASLD Genetic Variants | HR (95% CI) | p-Value | aHR * (95% CI) | p-Value | HR (95% CI) | p-Value | aHR ** (95% CI) | p-Value |
PNPLA3 (rs738409 C > G) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.83 (0.62–1.11) | 0.207 | 0.84 (0.62–1.13) | 0.250 | 0.92 (0.74–1.14) | 0.424 | 0.91 (0.72–1.13) | 0.380 |
Homozygous | 1.12 (0.64–1.94) | 0.686 | 1.17 (0.67–2.04) | 0.582 | 0.81 (0.50–1.31) | 0.384 | 0.77 (0.47–1.27) | 0.310 |
MBOAT7 (rs641738 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.82 (0.61–1.10) | 0.185 | 0.79 (0.58–1.06) | 0.115 | 1.00 (0.79–1.26) | 0.976 | 0.94 (0.73–1.19) | 0.599 |
Homozygous | 0.66 (0.44–0.99) | 0.044 | 0.59 (0.38–0.90) | 0.013 | 1.08 (0.81–1.45) | 0.596 | 1.03 (0.77–1.39) | 0.838 |
TM6SF2 (rs58542926 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.19 (0.83–1.79) | 0.354 | 1.21 (0.84–1.75) | 0.310 | 1.42 (1.09–1.84) | 0.008 | 1.31 (0.99–1.71) | 0.056 |
Homozygous | 0.87 (0.12–6.27) | 0.890 | 0.97 (0.13–7.09) | 0.978 | 1.02 (0.25–4.14) | 0.976 | 0.91 (0.22–3.71) | 0.893 |
HSD17B13 (rs72613567 T > TA) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.84 (0.63–1.11) | 0.220 | 0.81 (0.60–1.08) | 0.151 | 0.92 (0.74–1.13) | 0.420 | 0.90 (0.72–1.12) | 0.351 |
Homozygous | 0.96 (0.57–1.63) | 0.886 | 0.97 (0.57–1.65) | 0.919 | 1.00 (0.67–1.50) | 0.999 | 0.91 (0.60–1.39) | 0.665 |
GCKR (rs1260326 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 0.79 (0.59–1.05) | 0.108 | 0.84 (0.62–1.13) | 0.240 | 0.89 (0.71–1.12) | 0.339 | 0.95 (0.75–1.20) | 0.672 |
Homozygous | 0.70 (0.47–1.06) | 0.091 | 0.73 (0.48–1.11) | 0.136 | 1.00 (0.75–1.34) | 0.987 | 1.02 (0.75–1.39) | 0.878 |
LYPLAL1 (rs12137855 C > T) | ||||||||
Wildtype | Reference | – | Reference | – | Reference | – | Reference | – |
Heterozygous | 1.13 (0.85–1.51) | 0.389 | 1.19 (0.89–1.59) | 0.243 | 1.06 (0.85–1.33) | 0.577 | 1.02 (0.82–1.29) | 0.835 |
Homozygous | 1.10 (0.58–2.10) | 0.776 | 1.18 (0.61–2.25) | 0.625 | 1.37 (0.88–2.13) | 0.161 | 1.27 (0.80–2.02) | 0.307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clayton-Chubb, D.; Majeed, A.; Kemp, W.W.; Yu, C.; Lange, P.W.; Fitzpatrick, J.A.; Woods, R.L.; Tonkin, A.M.; Chan, A.T.; Nelson, M.R.; et al. Genetic Variants, Metabolic Dysfunction-Associated Fatty Liver Disease, and Major Health Outcomes in Older Adults. Biomedicines 2025, 13, 1977. https://doi.org/10.3390/biomedicines13081977
Clayton-Chubb D, Majeed A, Kemp WW, Yu C, Lange PW, Fitzpatrick JA, Woods RL, Tonkin AM, Chan AT, Nelson MR, et al. Genetic Variants, Metabolic Dysfunction-Associated Fatty Liver Disease, and Major Health Outcomes in Older Adults. Biomedicines. 2025; 13(8):1977. https://doi.org/10.3390/biomedicines13081977
Chicago/Turabian StyleClayton-Chubb, Daniel, Ammar Majeed, William W. Kemp, Chenglong Yu, Peter W. Lange, Jessica A. Fitzpatrick, Robyn L. Woods, Andrew M. Tonkin, Andrew T. Chan, Mark R. Nelson, and et al. 2025. "Genetic Variants, Metabolic Dysfunction-Associated Fatty Liver Disease, and Major Health Outcomes in Older Adults" Biomedicines 13, no. 8: 1977. https://doi.org/10.3390/biomedicines13081977
APA StyleClayton-Chubb, D., Majeed, A., Kemp, W. W., Yu, C., Lange, P. W., Fitzpatrick, J. A., Woods, R. L., Tonkin, A. M., Chan, A. T., Nelson, M. R., Ryan, J., Hodge, A. D., Lubel, J. S., Schneider, H. G., McNeil, J. J., & Roberts, S. K. (2025). Genetic Variants, Metabolic Dysfunction-Associated Fatty Liver Disease, and Major Health Outcomes in Older Adults. Biomedicines, 13(8), 1977. https://doi.org/10.3390/biomedicines13081977