Safety and Efficacy of Renal Denervation for the Treatment of Resistant Hypertension in Patients with Chronic Kidney Disease: A Narrative Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
3. Pathophysiology
4. Sympathetic Nervous System Activity in CKD
4.1. Plasma Noradrenaline (NA) Levels
4.2. Resting Heart Rate (RHR)
4.3. Heart Rate Variability (HRV)
4.4. Muscle Sympathetic Nerve Activity (MSNA)
5. Preclinical Data
5.1. Preclinical Data in Blood Pressure Reduction
5.2. Preclinical Data in Left Ventricular Hypertrophy and Atrial Fibrillation Susceptibility
5.3. Preclinical Data in Cardiorenal Syndrome
5.4. Preclinical Data of RDN on Top of Drug Treatment
5.5. Preclinical Data in Re-Innervation
6. Clinical Data
6.1. Moderate-to-Severe Chronic Kidney Disease
6.2. End-Stage Renal Disease
7. Ongoing Trials and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | Albumin/creatinine ratio |
CKD | Chronic kidney disease |
CO2 | Carbon dioxide |
ESRD | End-stage renal disease |
eGFR | Estimated glomerular filtration rate |
GFR | Glomerular filtration rate |
HF | Heart failure |
HRV | Heart rate variability |
LVH | Left ventricular hypertrophy |
MSNA | Muscle sympathetic nerve activity |
NA | Noradrenaline |
NT-proBNP | N-terminal pro b-type natriuretic peptide |
PWV | Pulse-wave velocity |
RAAS | Renin–angiotensin–aldosterone system |
RHR | Resting heart rate |
RDN | Renal denervation |
SNA | Sympathetic nervous activity |
SNS | Sympathetic nervous system |
References
- Fay, K.S.; Cohen, D.L. Resistant Hypertension in People With CKD: A Review. Am. J. Kidney Dis. 2021, 77, 110–121. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, J.-W.; Wu, M.-S.; Chen, K.-C.; Peng, C.-C.; Kang, Y.-N. Effects of Calcium Channel Blockers Comparing to Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Patients with Hypertension and Chronic Kidney Disease Stage 3 to 5 and Dialysis: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0188975. [Google Scholar] [CrossRef]
- Akbari, S.; Ten Eyck, P.; Wendt, L.; Yamada, M.; Boucher, R.; Beddhu, S.; Jalal, D.I. Trends of Blood Pressure Control in Chronic Kidney Disease Among US Adults: Findings From NHANES 2011 to 2020. J. Am. Heart Assoc. 2024, 13, e034568. [Google Scholar] [CrossRef]
- Schmieder, R.E. Renal Denervation in Patients with Chronic Kidney Disease: Current Evidence and Future Perspectives. Nephrol. Dial. Transplant. 2023, 38, 1089–1096. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Stambolliu, E.; Iliakis, P.; Tsioufis, K.; Damianaki, A. Managing Hypertension in Chronic Kidney Disease: The Role of Diet and Guideline Recommendations. J. Clin. Med. 2025, 14, 3755. [Google Scholar] [CrossRef] [PubMed]
- Koutra, E.; Dimitriadis, K.; Pyrpyris, N.; Iliakis, P.; Fragkoulis, C.; Beneki, E.; Kasiakogias, A.; Tsioufis, P.; Tatakis, F.; Kordalis, A.; et al. Unravelling the Effect of Renal Denervation on Glucose Homeostasis: More Questions than Answers? Acta Diabetol. 2024, 61, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Iliakis, P.; Pyrpyris, N.; Tatakis, F.; Fragkoulis, C.; Mantziaris, V.; Plaitis, A.; Beneki, E.; Tsioufis, P.; Hering, D.; et al. Renal Denervation in Heart Failure Treatment: Data for a Self-Fulfilling Prophecy. J. Clin. Med. 2024, 13, 6656. [Google Scholar] [CrossRef]
- Doumas, M.; Andreadis, E.; Andronoglou, M.; Davlouros, P.; Dimitriadis, K.; Gkaliagkousi, E.; Grassos, H.; Hatzitolios, A.; Iliakis, P.; Kalaitzidis, R.; et al. Joint ESH Excellence Centers’ National Meeting on Renal Sympathetic Denervation: A Greek Experts’ Survey. Hell. J. Cardiol. 2021, 62, 355–358. [Google Scholar] [CrossRef]
- Barbato, E.; Azizi, M.; Schmieder, R.E.; Lauder, L.; Böhm, M.; Brouwers, S.; Bruno, R.M.; Dudek, D.; Kahan, T.; Kandzari, D.E.; et al. Renal Denervation in the Management of Hypertension in Adults. A Clinical Consensus Statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2023, 44, 1313–1330. [Google Scholar] [CrossRef]
- Mahfoud, F.; Ukena, C.; Adam, O.; Dalinghoff, M.; Linz, D.; Schmidt, J.; Scheller, B.; Laufs, U.; Cremers, B.; Boehm, M. Procedural Parameters during Renal Denervation and Change of Blood Pressure in Patients with Resistant Hypertension. Eur. Heart J. 2013, 34, 3617. [Google Scholar] [CrossRef]
- Burrows, N.R.; Koyama, A.; Pavkov, M.E. Reported Cases of End-Stage Kidney Disease—United States, 2000-2019. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Esler, M. The Human Sympathetic Nervous System: Its Relevance in Hypertension and Heart Failure. Eur. Heart J. 2012, 33, 1058–1066. [Google Scholar] [CrossRef]
- Grassi, G.; Bertoli, S.; Seravalle, G. Sympathetic Nervous System: Role in Hypertension and in Chronic Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2012, 21, 46–51. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Husain-Syed, F.; McCullough, P.A.; Birk, H.-W.; Renker, M.; Brocca, A.; Seeger, W.; Ronco, C. Cardio-Pulmonary-Renal Interactions. J. Am. Coll. Cardiol. 2015, 65, 2433–2448. [Google Scholar] [CrossRef]
- Converse, R.L.; Jacobsen, T.N.; Toto, R.D.; Jost, C.M.; Cosentino, F.; Fouad-Tarazi, F.; Victor, R.G. Sympathetic Overactivity in Patients with Chronic Renal Failure. N. Engl. J. Med. 1992, 327, 1912–1918. [Google Scholar] [CrossRef]
- Targoński, R.; Sadowski, J.; Price, S.; Targoński, R. Sodium-Induced Inflammation-an Invisible Player in Resistant Hypertension. Hypertens. Res. 2020, 43, 629–633. [Google Scholar] [CrossRef]
- Guyton, A.C. Roles of the Kidneys and Fluid Volumes in Arterial Pressure Regulation and Hypertension. Chin. J. Physiol. 1989, 32, 49–57. [Google Scholar]
- Zheng, Y.; Tang, L.; Chen, X.; Cai, G.; Li, W.; Ni, Z.; Shi, W.; Ding, X.; Lin, H. Resistant and Undertreated Hypertension in Patients with Chronic Kidney Disease: Data from the PATRIOTIC Survey. Clin. Exp. Hypertens. 2018, 40, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Katsurada, K.; Patel, K.P. The Role of Afferent Renal Nerves in Regulating Sympathetic Outflow via Central Nervous System Mechanisms. Hypertens. Res. 2024, 47, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Bovée, D.M.; Cuevas, C.A.; Zietse, R.; Danser, A.H.J.; Mirabito Colafella, K.M.; Hoorn, E.J. Salt-Sensitive Hypertension in Chronic Kidney Disease: Distal Tubular Mechanisms. Am. J. Physiol. Renal Physiol. 2020, 319, F729–F745. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Xie, D.; Chen, H.-Y.; Anderson, A.H.; Appel, L.J.; Bodana, S.; Brecklin, C.S.; Drawz, P.; Flack, J.M.; Miller, E.R.; et al. Prevalence and Prognostic Significance of Apparent Treatment Resistant Hypertension in Chronic Kidney Disease. Hypertension 2016, 67, 387–396. [Google Scholar] [CrossRef]
- Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; do Carmo, J.M. Obesity, Kidney Dysfunction, and Inflammation: Interactions in Hypertension. Cardiovasc. Res. 2021, 117, 1859–1876. [Google Scholar] [CrossRef]
- Camafort, M.; Kario, K. Hypertension, Heart Failure, and Frailty in Older People: A Common but Unclear Situation. J. Clin. Hypertens. 2020, 22, 1763–1768. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Parlongo, S.; Cutrupi, S.; Benedetto, F.A.; Tripepi, G.; Bonanno, G.; Rapisarda, F.; Fatuzzo, P.; Seminara, G.; et al. Plasma Norepinephrine Predicts Survival and Incident Cardiovascular Events in Patients with End-Stage Renal Disease. Circulation 2002, 105, 1354–1359. [Google Scholar] [CrossRef]
- Hausberg, M.; Kosch, M.; Harmelink, P.; Barenbrock, M.; Hohage, H.; Kisters, K.; Dietl, K.H.; Rahn, K.H. Sympathetic Nerve Activity in End-Stage Renal Disease. Circulation 2002, 106, 1974–1979. [Google Scholar] [CrossRef]
- Grassi, G.; Pisano, A.; Bolignano, D.; Seravalle, G.; D’Arrigo, G.; Quarti-Trevano, F.; Mallamaci, F.; Zoccali, C.; Mancia, G. Sympathetic Nerve Traffic Activation in Essential Hypertension and Its Correlates. Hypertension 2018, 72, 483–491. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Mahapatra, N.R. Renalase: A Novel Regulator of Cardiometabolic and Renal Diseases. Hypertens. Res. 2022, 45, 1582–1598. [Google Scholar] [CrossRef]
- Heryć, R.; Cecerska-Heryć, E.; Serwin, N.; Stodolak, P.; Goszka, M.; Polikowska, A.; Ciechanowski, K.; Wiśniewska, M. Renalase, Dopamine, and Norepinephrine as Markers for the Development of Hypertension in CKD Patients. BMC Nephrol. 2025, 26, 200. [Google Scholar] [CrossRef]
- Schwedhelm, E.; Böger, R.H. The Role of Asymmetric and Symmetric Dimethylarginines in Renal Disease. Nat. Rev. Nephrol. 2011, 7, 275–285. [Google Scholar] [CrossRef]
- Wungu, C.D.K.; Susilo, H.; Alsagaff, M.Y.; Witarto, B.S.; Witarto, A.P.; Pakpahan, C.; Gusnanto, A. Role of Klotho and Fibroblast Growth Factor 23 in Arterial Calcification, Thickness, and Stiffness: A Meta-Analysis of Observational Studies. Sci. Rep. 2024, 14, 5712. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, A.; Rovella, V.; Anemona, L.; Servadei, F.; Giannini, E.; Bove, P.; Anselmo, A.; Melino, G.; Di Daniele, N. Increased Sympathetic Renal Innervation in Hemodialysis Patients Is the Anatomical Substrate of Sympathetic Hyperactivity in End-Stage Renal Disease. J. Am. Heart Assoc. 2015, 4, e002426. [Google Scholar] [CrossRef] [PubMed]
- Osborn, J.W.; Tyshynsky, R.; Vulchanova, L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu. Rev. Physiol. 2021, 83, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Fernando, K.; Connolly, D.; Darcy, E.; Evans, M.; Hinchliffe, W.; Holmes, P.; Strain, W.D. Advancing Cardiovascular, Kidney, and Metabolic Medicine: A Narrative Review of Insights and Innovations for the Future. Diabetes Ther. 2025, 16, 1155–1176. [Google Scholar] [CrossRef]
- Lauder, L.; Siwy, J.; Mavrogeorgis, E.; Keller, F.; Kunz, M.; Wachter, A.; Emrich, I.E.; Böhm, M.; Mischak, H.; Mahfoud, F. Impact of Renal Denervation on Urinary Peptide-Based Biomarkers in Hypertension. Hypertension 2024, 81, 1374–1382. [Google Scholar] [CrossRef]
- Tsioufis, C.; Iliakis, P.; Kasiakogias, A.; Konstantinidis, D.; Lovic, D.; Petras, D.; Doumas, M.; Tsiamis, E.; Papademetriou, V.; Tousoulis, D. Non-Pharmacological Modulation of the Autonomic Nervous System for Heart Failure Treatment: Where Do We Stand? Curr. Vasc. Pharmacol. 2017, 16, 30–43. [Google Scholar] [CrossRef]
- Goldstein, D.S. Plasma Norepinephrine as an Indicator of Sympathetic Neural Activity in Clinical Cardiology. Am. J. Cardiol. 1981, 48, 1147–1154. [Google Scholar] [CrossRef]
- Darwish, R.; Elias, A.N.; Vaziri, N.D.; Pahl, M.; Powers, D.; Stokes, J.D. Plasma and Urinary Catecholamines and Their Metabolites in Chronic Renal Failure. Arch. Intern. Med. 1984, 144, 69–71. [Google Scholar] [CrossRef]
- Grassi, G.; Fowler, B.; Scali, B.; Rossi, F.; Motto, E.; Pieruzzi, F.; Mancia, G. Sympathetic Activation and Heart Rate Thresholds for Cardiovascular Risk in Chronic Kidney Disease. J. Hypertens. 2022, 40, 1530–1536. [Google Scholar] [CrossRef]
- Hering, D.; Esler, M.D.; Schlaich, M.P. Chronic Kidney Disease: Role of Sympathetic Nervous System Activation and Potential Benefits of Renal Denervation. EuroIntervention 2013, 9, R127–R135. [Google Scholar] [CrossRef]
- Beddhu, S.; Nigwekar, S.U.; Ma, X.; Greene, T. Associations of Resting Heart Rate with Insulin Resistance, Cardiovascular Events and Mortality in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2009, 24, 2482–2488. [Google Scholar] [CrossRef]
- Park, D.H.; Chung, C.H.; Lee, D.H.; Lee, E.Y.; Jeon, J.Y. Resting Heart Rate Is Associated with the Prevalence of Chronic Kidney Disease in Korean Adult: The Korean National Health and Nutrition Survey. BMC Public Health 2024, 24, 367. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Tanaka, K.; Ejiri, H.; Kimura, H.; Shimabukuro, M.; Asahi, K.; Watanabe, T.; Kazama, J.J. Elevated Resting Heart Rate Is Associated with Mortality in Patients with Chronic Kidney Disease. Sci. Rep. 2024, 14, 17372. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, N. Prognostic Significance and Therapeutic Option of Heart Rate Variability in Chronic Kidney Disease. Int. Urol. Nephrol. 2014, 46, 19–25. [Google Scholar] [CrossRef]
- Malik, M.; John Camm, A.; Thomas Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Mylonopoulou, M.; Tentolouris, N.; Antonopoulos, S.; Mikros, S.; Katsaros, K.; Melidonis, A.; Sevastos, N.; Katsilambros, N. Heart Rate Variability in Advanced Chronic Kidney Disease with or without Diabetes: Midterm Effects of the Initiation of Chronic Haemodialysis Therapy. Nephrol. Dial. Transplant. 2010, 25, 3749–3754. [Google Scholar] [CrossRef]
- Chandra, P.; Sands, R.L.; Gillespie, B.W.; Levin, N.W.; Kotanko, P.; Kiser, M.; Finkelstein, F.; Hinderliter, A.; Pop-Busui, R.; Rajagopalan, S.; et al. Predictors of Heart Rate Variability and Its Prognostic Significance in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2012, 27, 700–709. [Google Scholar] [CrossRef]
- Chou, Y.H.; Huang, W.L.; Chang, C.H.; Yang, C.C.H.; Kuo, T.B.J.; Lin, S.L.; Chiang, W.C.; Chu, T.S. Heart Rate Variability as a Predictor of Rapid Renal Function Deterioration in Chronic Kidney Disease Patients. Nephrology 2019, 24, 806–813. [Google Scholar] [CrossRef]
- Kaur, J.; Young, B.E.; Fadel, P.J. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms. Int. J. Mol. Sci. 2017, 18, 1682. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Biffi, A.; Seravalle, G.; Bertoli, S.; Airoldi, F.; Corrao, G.; Pisano, A.; Mallamaci, F.; Mancia, G.; Zoccali, C. Sympathetic Nerve Traffic Overactivity in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Hypertens. 2021, 39, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Quarti-Trevano, F.; Seravalle, G.; Arenare, F.; Volpe, M.; Furiani, S.; Delloro, R.; Mancia, G. Early Sympathetic Activation in the Initial Clinical Stages of Chronic Renal Failure. Hypertension 2011, 57, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Penne, E.L.; Neumann, J.; Klein, I.H.; Oey, P.L.; Bots, M.L.; Blankestijn, P.J. Sympathetic Hyperactivity and Clinical Outcome in Chronic Kidney Disease Patients during Standard Treatment. J. Nephrol. 2009, 22, 208–215. [Google Scholar]
- Grassi, G.; Seravalle, G.; Brambilla, G.; Trabattoni, D.; Cuspidi, C.; Corso, R.; Pieruzzi, F.; Genovesi, S.; Stella, A.; Facchetti, R.; et al. Blood Pressure Responses to Renal Denervation Precede and Are Independent of the Sympathetic and Baroreflex Effects. Hypertension 2015, 65, 1209–1216. [Google Scholar] [CrossRef]
- Hering, D.; Lambert, E.A.; Marusic, P.; Walton, A.S.; Krum, H.; Lambert, G.W.; Esler, M.D.; Schlaich, M.P. Substantial Reduction in Single Sympathetic Nerve Firing after Renal Denervation in Patients with Resistant Hypertension. Hypertension 2013, 61, 457–464. [Google Scholar] [CrossRef]
- Campese, V.M.; Kogosov, E.; Koss, M. Renal Afferent Denervation Prevents the Progression of Renal Disease in the Renal Ablation Model of Chronic Renal Failure in the Rat. Am. J. Kidney Dis. 1995, 26, 861–865. [Google Scholar] [CrossRef]
- Chen, H.H.; Cheng, P.W.; Ho, W.Y.; Lu, P.J.; Lai, C.C.; Tseng, Y.M.; Fang, H.C.; Sun, G.C.; Hsiao, M.; Liu, C.P.; et al. Renal Denervation Improves the Baroreflex and GABA System in Chronic Kidney Disease-Induced Hypertension. Sci. Rep. 2016, 6, 38447. [Google Scholar] [CrossRef]
- Veiga, A.C.; Milanez, M.I.O.; Ferreira, G.R.; Lopes, N.R.; Santos, C.P.; De Angelis, K.; Garcia, M.L.; Oyama, L.M.; Gomes, G.N.; Nogueira, F.N.; et al. Selective Afferent Renal Denervation Mitigates Renal and Splanchnic Sympathetic Nerve Overactivity and Renal Function in Chronic Kidney Disease-Induced Hypertension. J. Hypertens. 2020, 38, 765–773. [Google Scholar] [CrossRef]
- Veiga, G.L.; Nishi, E.E.; Estrela, H.F.; Lincevicius, G.S.; Gomes, G.N.; Simões Sato, A.Y.; Campos, R.R.; Bergamaschi, C.T. Total Renal Denervation Reduces Sympathoexcitation to Different Target Organs in a Model of Chronic Kidney Disease. Auton. Neurosci. 2017, 204, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; McArdle, Z.M.; Iudica, M.; Easton, L.K.; Booth, L.C.; May, C.N.; Parkington, H.C.; Lombardo, P.; Head, G.A.; Lambert, G.; et al. Sustained Decrease in Blood Pressure and Reduced Anatomical and Functional Reinnervation of Renal Nerves in Hypertensive Sheep 30 Months After Catheter-Based Renal Denervation. Hypertension 2019, 73, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; McArdle, Z.M.; Booth, L.C.; May, C.N.; Head, G.A.; Moritz, K.M.; Schlaich, M.P.; Denton, K.M. Increase in Bioavailability of Nitric Oxide after Renal Denervation Improves Kidney Function in Sheep with Hypertensive Kidney Disease. Hypertension 2021, 77, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shi, L.; Cui, X.; Yu, Y.; Qi, T.; Chen, C.; Tang, X. Renal Denervation Decreases Susceptibility of the Heart to Ventricular Fibrillation in a Canine Model of Chronic Kidney Disease. Exp. Physiol. 2017, 102, 1414–1423. [Google Scholar] [CrossRef]
- Liu, S.H.; Lo, L.W.; Chou, Y.H.; Lin, W.L.; Tsai, T.Y.; Cheng, W.H.; Yamada, S.; Chen, S.A. Renal Denervation Prevents Myocardial Structural Remodeling and Arrhythmogenicity in a Chronic Kidney Disease Rabbit Model. Heart Rhythm 2021, 18, 1596–1604. [Google Scholar] [CrossRef]
- Hohl, M.; Selejan, S.R.; Wintrich, J.; Lehnert, U.; Speer, T.; Schneider, C.; Mauz, M.; Markwirth, P.; Wong, D.W.L.; Boor, P.; et al. Renal Denervation Prevents Atrial Arrhythmogenic Substrate Development in CKD. Circ. Res. 2022, 130, 814–828. [Google Scholar] [CrossRef]
- Eriguchi, M.; Tsuruya, K.; Haruyama, N.; Yamada, S.; Tanaka, S.; Suehiro, T.; Noguchi, H.; Masutani, K.; Torisu, K.; Kitazono, T. Renal Denervation Has Blood Pressure-Independent Protective Effects on Kidney and Heart in a Rat Model of Chronic Kidney Disease. Kidney Int. 2015, 87, 116–127. [Google Scholar] [CrossRef]
- Peleli, M.; Flacker, P.; Zhuge, Z.; Gomez, C.; Wheelock, C.E.; Persson, A.E.G.; Carlstrom, M. Renal Denervation Attenuates Hypertension and Renal Dysfunction in a Model of Cardiovascular and Renal Disease Which Is Associated with Reduced NADPH and Xanthine Oxidase Activity. Redox Biol. 2017, 13, 522–527. [Google Scholar] [CrossRef]
- Zou, X.; Lin, S.; Zhong, L.; Liu, J.; Meng, Y.; Zhu, Y.; Sun, J. Renal Denervation Alleviates Renal Ischemic Reperfusion Injury-Induced Acute and Chronic Kidney Injury in Rats Partly by Modulating MiRNAs. Clin. Exp. Nephrol. 2022, 26, 13–21. [Google Scholar] [CrossRef]
- Nishihara, M.; Takesue, K.; Hirooka, Y. Olmesartan Combined with Renal Denervation Reduces Blood Pressure in Association with Sympatho-Inhibitory and Aldosterone-Reducing Effects in Hypertensive Mice with Chronic Kidney Disease. Clin. Exp. Hypertens. 2019, 41, 211–219. [Google Scholar] [CrossRef]
- Sharp, A.S.P.; Tunev, S.; Schlaich, M.; Lee, D.P.; Finn, A.V.; Trudel, J.; Hettrick, D.A.; Mahfoud, F.; Kandzari, D.E. Histological Evidence Supporting the Durability of Successful Radiofrequency Renal Denervation in a Normotensive Porcine Model. J. Hypertens. 2022, 40, 2068–2075. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Schmieder, R.E.; Iliakis, P.; Nickel, L.; Tsioufis, K.; Weil, J. Long-Term Efficacy and Safety of Renal Denervation: An Update from Registries and Randomised Trials. Blood Press 2023, 32, 2266664. [Google Scholar] [CrossRef]
- Li, S.; Phillips, J.K. Patient Selection for Renal Denervation in Hypertensive Patients: What Makes a Good Candidate? Vasc. Health Risk Manag. 2022, 18, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Mahfoud, F.; Mancia, G.; Narkiewicz, K.; Ruilope, L.M.; Fahy, M.; Schlaich, M.P.; Böhm, M.; Schmieder, R.E. Renal Denervation in Patients with versus without Chronic Kidney Disease: Results from the Global SYMPLICITY Registry with Follow-up Data of 3 Years. Nephrol. Dial. Transplant. 2022, 37, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Hering, D.; Mahfoud, F.; Walton, A.S.; Krum, H.; Lambert, G.W.; Lambert, E.A.; Sobotka, P.A.; Böhm, M.; Cremers, B.; Esler, M.D.; et al. Renal Denervation in Moderate to Severe CKD. J. Am. Soc. Nephrol. 2012, 23, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Mahfoud, F.; Schmid, A.; Toennes, S.W.; Ewen, S.; Ditting, T.; Veelken, R.; Ukena, C.; Uder, M.; Böhm, M.; et al. Renal Denervation Preserves Renal Function in Patients with Chronic Kidney Disease and Resistant Hypertension. J. Hypertens. 2015, 33, 1261–1266. [Google Scholar] [CrossRef]
- Kiuchi, M.G.; Graciano, M.L.; Carreira, M.A.M.d.Q.; Kiuchi, T.; Chen, S.; Lugon, J.R. Long-Term Effects of Renal Sympathetic Denervation on Hypertensive Patients With Mild to Moderate Chronic Kidney Disease. J. Clin. Hypertens. 2016, 18, 190–196. [Google Scholar] [CrossRef]
- Hering, D.; Marusic, P.; Duval, J.; Sata, Y.; Head, G.A.; Denton, K.M.; Burrows, S.; Walton, A.S.; Esler, M.D.; Schlaich, M.P. Effect of Renal Denervation on Kidney Function in Patients with Chronic Kidney Disease. Int. J. Cardiol. 2017, 232, 93–97. [Google Scholar] [CrossRef]
- Hameed, M.A.; Freedman, J.S.; Watkin, R.; Ganeshan, A.; Dasgupta, I. Renal Denervation Using Carbon Dioxide Renal Angiography in Patients with Uncontrolled Hypertension and Moderate to Severe Chronic Kidney Disease. Clin. Kidney J. 2017, 10, 778–782. [Google Scholar] [CrossRef]
- Prasad, B.; Berry, W.; Goyal, K.; Dehghani, P.; Townsend, R.R. Central Blood Pressure and Pulse Wave Velocity Changes Post Renal Denervation in Patients With Stages 3 and 4 Chronic Kidney Disease: The Regina RDN Study. Can. J. Kidney Health Dis. 2019, 6, 2054358119828388. [Google Scholar] [CrossRef]
- Hopper, I.; Gronda, E.; Hoppe, U.C.; Rundqvist, B.; Marwick, T.H.; Shetty, S.; Hayward, C.; Lambert, T.; Hering, D.; Esler, M.; et al. Sympathetic Response and Outcomes Following Renal Denervation in Patients With Chronic Heart Failure: 12-Month Outcomes From the Symplicity HF Feasibility Study. J. Card. Fail. 2017, 23, 702–707. [Google Scholar] [CrossRef]
- Xia, M.; Liu, T.; Chen, D.; Huang, Y. Efficacy and Safety of Renal Denervation for Hypertension in Patients with Chronic Kidney Disease: A Meta-Analysis. Int. J. Hyperth. 2021, 38, 732–742. [Google Scholar] [CrossRef]
- Schlaich, M.P.; Bart, B.; Hering, D.; Walton, A.; Marusic, P.; Mahfoud, F.; Böhm, M.; Lambert, E.A.; Krum, H.; Sobotka, P.A.; et al. Feasibility of Catheter-Based Renal Nerve Ablation and Effects on Sympathetic Nerve Activity and Blood Pressure in Patients with End-Stage Renal Disease. Int. J. Cardiol. 2013, 168, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Hoye, N.A.; Wilson, L.C.; Wilkins, G.T.; Jardine, D.L.; Putt, T.L.; Samaranayaka, A.; Schollum, J.B.W.; Walker, R.J. Endovascular Renal Denervation in End-Stage Kidney Disease Patients: Cardiovascular Protection-A Proof-of-Concept Study. Kidney Int. Rep. 2017, 2, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Schmid, A.; Ditting, T.; Veelken, R.; Uder, M.; Schmieder, R.E. Effects of Renal Denervation on Blood Pressure in Hypertensive Patients with End-Stage Renal Disease: A Single Centre Experience. Clin. Exp. Nephrol. 2019, 23, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Scalise, F.; Sole, A.; Singh, G.; Sorropago, A.; Sorropago, G.; Ballabeni, C.; Maccario, M.; Vettoretti, S.; Grassi, G.; Mancia, G. Renal Denervation in Patients with End-Stage Renal Disease and Resistant Hypertension on Long-Term Haemodialysis. J. Hypertens. 2020, 38, 936–942. [Google Scholar] [CrossRef]
- Schneider, S.; Promny, D.; Sinnecker, D.; Byrne, R.A.; Müller, A.; Dommasch, M.; Wildenauer, A.; Schmidt, G.; Heemann, U.; Laugwitz, K.L.; et al. Impact of Sympathetic Renal Denervation: A Randomized Study in Patients after Renal Transplantation (ISAR-Denerve). Nephrol. Dial. Transplant. 2015, 30, 1928–1936. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Iliakis, P.; Vakka, A.; Pyrpyris, N.; Pitsillidi, A.; Tsioufis, P.; Fragkoulis, C.; Hering, D.; Weil, J.; Kollias, A.; et al. Effects of Sympathetic Denervation in Metabolism Regulation: A Novel Approach for the Treatment of MASLD? Cardiol. Rev. 2025. [Google Scholar] [CrossRef]
- Nikolopoulou, L.; Dimitriadis, K.; Pyrpyris, N.; Tatakis, F.; Iliakis, P.; Thomopoulos, C.; Konstantinidis, D.; Rallidis, L.; Tousoulis, D.; Tsioufis, K. The Effect of Renal Denervation on Capillary Density in Patients With Uncontrolled Hypertension. Microcirculation 2025, 32, e70015. [Google Scholar] [CrossRef]
- Pisani, A.; Garofalo, C.; Riccio, E. Renal Denervation for Resistant Hypertension: Time to Improve Patient Selection. The Lesson From ADPKD. Front. Med. 2020, 7, 604384. [Google Scholar] [CrossRef]
Study (Author/Year) | n | Follow-Up (Months) | Age (Mean) | eGFR (Mean) | CKD (Stage) | Safety | Efficacy |
---|---|---|---|---|---|---|---|
Hering/2012 | 15 | 12 | 61 ± 9 | 31.2 ± 8.9 | 3–4 | No renal function deterioration No procedure—related events | ↓ OBP −33/−19 ↓ Nighttime ABPM |
Ott/2015 | 27 | 12 | 63.4 ± 9.4 | 48.5 ± 12 | 3–4 | Improvement of eGFR regression slope:
| Significant ↓ OBP 20/8 Significant ↓ ABPM 9/4 |
Kiuchi/2016 | 30 | 24 | 55 ± 10 | 61.9 ± 23.9 | 2–4 | NS difference in eGFR Significant improvement of ACR | ↓ OBP, ABPM ↓ average number of AHD |
Hering/2017 | 46 | 24 | 66 ± 9 | 46.2 ± 13.0 | 3–4 | Improvement of eGFR at 3 months NS changes at 6, 12 and 24 months | Significant ↓ daytime ABPM (148 ± 19 vs. 136 ± 17) |
Hameed/2017 | 11 | 6 | 57.3 ± 4.9 | 29.3 ± 6.6 | 3–4 | Groin hematoma (n = 1) Groin pain (n = 1) | NS ↓ systolic OBP −14 Significant ↑ systolic dABPM |
Hopper/2017 | 39 | 12 | 65 ± 11 | 52.6 ± 15.3 | 3–4 | 1 death, 1 myocardial infarction 12 hospitalizations for HF | Sig. ↓ NT-proBNP, OGTT NS change of eGFR, LVEF |
Prasad/2019 | 25 | 24 | 62.8 ± 12.4 | 37.5 ± 4.8 | 3–4 | No deterioration of renal function | NS improvement of cBP, PWV |
Liu/2023 | 8 | 6 | 46.5 ± 33.0 | 1–5 | No procedure—related events No deterioration of renal function | Significant ↓ OBP −22.1/11.0 Significant ↓ ABPM −18.0/7.7 |
Study (Author/Year) | n | Follow-Up (Months) | Age (Mean) | eGFR (Mean) | CKD (Stage) | Safety | Efficacy |
---|---|---|---|---|---|---|---|
Schlaich/2013 | 9 | 24 | 47.4 ± 13.0 | <15 | Dialysis | 1 patient developed femoral pseudo-aneurysm, needing vascular surgery | NS reduction of OBP ↓ of average number of AHD |
Hoye/2017 | 9 | 12 | 59 ± 9 | <15 | Dialysis | 1 patient: femoral pseudoaneurysm (needing vascular surgery) 1 patient: MI 4 days post-RDN 1 death from dialysis-related complications | ↓ LV mass by 8% (3 months) ↓ LV mass by 13% (12 months) ↓ OBP 24/13 ↓ ABPM by 14% |
Ott/2019 | 6 | 6 | 42.5 ± 15.2 | <15 | Dialysis | No procedure-related events No change in hemodialysis parameters | Significant ↓ in mean ABPM 20/15 |
Scalise/2020 | 24 | 12 | 56.5 ± 16.5 | <15 | Dialysis | No procedure-related events | Significant ↓ in OBP, ABPM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliakis, P.; Dimitriadis, K.; Tatakis, F.; Vakka, A.; Sakalidis, A.; Pyrpyris, N.; Fragoulis, C.; Konstantinidis, D.; Aznaouridis, K.; Tsioufis, K. Safety and Efficacy of Renal Denervation for the Treatment of Resistant Hypertension in Patients with Chronic Kidney Disease: A Narrative Review of the Literature. Biomedicines 2025, 13, 1951. https://doi.org/10.3390/biomedicines13081951
Iliakis P, Dimitriadis K, Tatakis F, Vakka A, Sakalidis A, Pyrpyris N, Fragoulis C, Konstantinidis D, Aznaouridis K, Tsioufis K. Safety and Efficacy of Renal Denervation for the Treatment of Resistant Hypertension in Patients with Chronic Kidney Disease: A Narrative Review of the Literature. Biomedicines. 2025; 13(8):1951. https://doi.org/10.3390/biomedicines13081951
Chicago/Turabian StyleIliakis, Panagiotis, Kyriakos Dimitriadis, Fotis Tatakis, Angeliki Vakka, Athanasios Sakalidis, Nikolaos Pyrpyris, Christos Fragoulis, Dimitrios Konstantinidis, Konstantinos Aznaouridis, and Konstantinos Tsioufis. 2025. "Safety and Efficacy of Renal Denervation for the Treatment of Resistant Hypertension in Patients with Chronic Kidney Disease: A Narrative Review of the Literature" Biomedicines 13, no. 8: 1951. https://doi.org/10.3390/biomedicines13081951
APA StyleIliakis, P., Dimitriadis, K., Tatakis, F., Vakka, A., Sakalidis, A., Pyrpyris, N., Fragoulis, C., Konstantinidis, D., Aznaouridis, K., & Tsioufis, K. (2025). Safety and Efficacy of Renal Denervation for the Treatment of Resistant Hypertension in Patients with Chronic Kidney Disease: A Narrative Review of the Literature. Biomedicines, 13(8), 1951. https://doi.org/10.3390/biomedicines13081951