Current Application of Mineralocorticoid Antagonist (MRA) in Heart Failure and CKD: Does Non-Steroidal Drug Add Novel Insights
Abstract
1. Introduction
2. The Current Role of MRA in HF Treatment
3. Specific MRA Trial Results
4. Evidence of MRA in High-Risk CKD Patients
5. Biochemical, Pharmacological, and Cellular Effects of Finerenone in Cardiorenal Disease
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-Converting Enzyme |
ARB | Angiotensin Receptor Blocker |
ARNI | Angiotensin Receptor–Neprilysin Inhibitor |
ARTS | MinerAlocorticoid Receptor Antagonist Tolerability Study |
ARTS-HF | ARTS in Heart Failure |
BNP | Brain Natriuretic Peptide |
CCL-2 | C-C Motif Chemokine Ligand 2 |
CHF | Chronic Heart Failure |
CI | Confidence Interval |
CKD | Chronic Kidney Disease |
CTGF | Connective Tissue Growth Factor |
CV | Cardiovascular |
EF | Ejection Fraction |
eGFR | Estimated Glomerular Filtration Rate |
EMPHASIS-HF | Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure |
EPHESUS | Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study |
ESKD | End-Stage Kidney Disease |
FIDELIO-DKD | Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease |
FIDELITY | Pooled Analysis of FIDELIO-DKD and FIGARO-DKD |
FIGARO-DKD | Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease |
FINEARTS-HF | Finerenone in Heart Failure with Preserved Ejection Fraction |
FINARTS | Finerenone in Albuminuria and Resistant Hypertension Study |
GFR | Glomerular Filtration Rate |
GDMT | Guideline-Directed Medical Therapy |
HF | Heart Failure |
HFmEF/HFmrEF | Heart Failure with Mildly Reduced Ejection Fraction |
HFpEF | Heart Failure with Preserved Ejection Fraction |
HFrEF | Heart Failure with Reduced Ejection Fraction |
HHF | Hospitalization for Heart Failure |
IL-1β | Interleukin-1 Beta |
IV | Intravenous |
LVEF | Left Ventricular Ejection Fraction |
MI | Myocardial Infarction |
MR | Mineralocorticoid Receptor |
MRA | Mineralocorticoid Receptor Antagonist |
NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
NOX | NADPH Oxidase |
NT-proBNP | N-terminal pro-B-type Natriuretic Peptide |
NYHA | New York Heart Association |
PAI-1 | Plasminogen Activator Inhibitor-1 |
PIIINP | Procollagen Type III N-Terminal Propeptide |
PINP | Procollagen Type I N-Terminal Propeptide |
QoL | Quality of Life |
RAAS | Renin–Angiotensin–Aldosterone System |
RALES | Randomized Aldactone Evaluation Study |
RR | Relative Risk |
ROS | Reactive Oxygen Species |
SGLT2 | Sodium-Glucose Cotransporter-2 |
SRC-1 | Steroid Receptor Coactivator-1 |
T2D/T2DM | Type 2 Diabetes Mellitus |
TGF-β1 | Transforming Growth Factor-beta 1 |
TNF-α | Tumor Necrosis Factor-alpha |
TOPCAT | Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial |
UACR | Urinary Albumin-to-Creatinine Ratio |
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, F.P.; De Boer, R.A.; Van Der Harst, P.; Voors, A.A.; Gansevoort, R.T.; Bakker, S.J.; Hillege, H.L.; van Veldhuisen, D.J.; van Gilst, W.H. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur. Heart J. 2013, 34, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Van Riet, E.E.S.; Hoes, A.W.; Limburg, A.; Landman, M.A.J.; Van Der Hoeven, H.; Rutten, F.H. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur. J. Heart Fail. 2014, 16, 772–777. [Google Scholar] [CrossRef]
- Meyer, S.; Brouwers, F.P.; Voors, A.A.; Hillege, H.L.; de Boer, R.A.; Gansevoort, R.T.; van der Harst, P.; Rienstra, M.; van Gelder, I.C.; van Veldhuisen, D.J.; et al. Sex differences in new-onset heart failure. Clin. Res. Cardiol. 2015, 104, 342–350. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef]
- ter Maaten, J.M.; Damman, K.; Verhaar, M.C.; Paulus, W.J.; Duncker, D.J.; Cheng, C.; van Heerebeek, L.; Hillege, H.L.; Lam, C.S.; Navis, G.; et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: The role of endothelial dysfunction and inflammation. Eur. J. Heart Fail. 2016, 18, 588–598. [Google Scholar] [CrossRef]
- Löfman, I.; Szummer, K.; Dahlström, U.; Jernberg, T.; Lund, L.H. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur. J. Heart Fail. 2017, 19, 1606–1614. [Google Scholar] [CrossRef]
- Schefold, J.C.; Filippatos, G.; Hasenfuss, G.; Anker, S.D.; Von Haehling, S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat. Rev. Nephrol. 2016, 12, 610–623. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Zeller, C.; Anker, S.D.; Butler, J.; Filippatos, G.; Hauske, S.J.; Brueckmann, M.; Pfarr, E.; et al. Cardiac and Kidney Benefits of Empagliflozin in Heart Failure Across the Spectrum of Kidney Function: Insights From EMPEROR-Reduced. Circulation 2021, 143, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Ruocco, G.; Pellicori, P.; Incampo, E.; Di Tommaso, C.; Favilli, R.; Evangelista, I.; Nuti, R.; Testani, J.M. The prognostic role of different renal function phenotypes in patients with acute heart failure. Int. J. Cardiol. 2019, 276, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Vizzardi, E.; Regazzoni, V.; Caretta, G.; Gavazzoni, M.; Sciatti, E.; Bonadei, I.; Trichaki, E.; Raddino, R.; Metra, M. Mineralocorticoid receptor antagonist in heart failure: Past, present and future perspectives. Int. J. Cardiol. Heart Vessel. 2014, 3, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Ferreira, J.P.; Zannad, F. Mineralocorticoid receptor antagonists in patients with heart failure: Current experience and future perspectives. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 48–57. [Google Scholar] [CrossRef]
- Lenzi, F.; Caniggia, A.; Di Perri, T.; Guideri, R.; Ravenni, G. Aldosterone in congestive heart failure. N. Engl. J. Med. 2001, 345, 329–339. [Google Scholar] [CrossRef]
- Young, M.J. Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr. Opin. Nephrol. Hypertens. 2008, 17, 174–180. [Google Scholar] [CrossRef]
- Funder, J.W.; Carey, R.M. Primary Aldosteronism: Where Are We Now? Where to From Here? Hypertension 2022, 79, 726–735. [Google Scholar] [CrossRef]
- Struthers, A.D. The clinical implications of aldosterone escape in congestive heart failure. Eur. J. Heart Fail. 2004, 6, 539–545. [Google Scholar] [CrossRef]
- Mcmurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 132–133. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; Gordeev, I.; et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. Circulation 2015, 131, 34–42. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022, 43, 474–484A. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; McMurray, J.J.V.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef]
- Rousseau, M.F.; Gurné, O.; Duprez, D.; Van Mieghem, W.; Robert, A.; Ahn, S.; Galanti, L.; Ketelslegers, J.-M. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: Results from the rales neurohormonal substudy. J. Am. Coll. Cardiol. 2002, 40, 1596–1601. [Google Scholar] [CrossRef]
- Anand, I.S.; Fisher, L.D.; Chiang, Y.T.; Latini, R.; Masson, S.; Maggioni, A.P.; Glazer, R.D.; Tognoni, G.; Cohn, J.N. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003, 107, 1278–1283. [Google Scholar] [CrossRef]
- Juurlink, D.N.; Mamdani, M.M.; Lee, D.S.; Kopp, A.; Austin, P.C.; Laupacis, A.; Redelmeier, D.A. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N. Engl. J. Med. 2004, 351, 543–551. [Google Scholar] [CrossRef]
- Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003, 348, 1309–1321. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Rossello, X.; Pitt, B.; Rossignol, P.; Zannad, F. Eplerenone in patients with myocardial infarction and “mid-range” ejection fraction: An analysis from the EPHESUS trial. Clin. Cardiol. 2019, 42, 1106–1112. [Google Scholar] [CrossRef]
- Swedberg, K.; Zannad, F.; McMurray, J.J.V.; Krum, H.; Van Veldhuisen, D.J.; Shi, H.; Vincent, J.; Pitt, B. Eplerenone and atrial fibrillation in mild systolic heart failure: Results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure) study. J. Am. Coll. Cardiol. 2012, 59, 1598–1603. [Google Scholar] [CrossRef]
- Kolkhof, P.; Borden, S.A. Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Mol. Cell. Endocrinol. 2012, 350, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Nowack, C.; Eitner, F. Nonsteroidal antagonists of the mineralocorticoid receptor. Curr. Opin. Nephrol. Hypertens. 2015, 24, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Kober, L.; Ponikowski, P.; Gheorghiade, M.; Filippatos, G.; Krum, H.; Nowack, C.; Kolkhof, P.; Kim, S.-Y.; Zannad, F. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomized, double-blind trial. Eur. Heart J. 2013, 34, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Heinig, R.; Kimmeskamp-Kirschbaum, N.; Halabi, A.; Lentini, S. Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94-8862) in Individuals With Renal Impairment. Clin. Pharmacol. Drug Dev. 2016, 5, 488–501. [Google Scholar] [CrossRef]
- Pitt, B.; Anker, S.D.; Böhm, M.; Gheorghiade, M.; Køber, L.; Krum, H.; Maggioni, A.P.; Ponikowski, P.; Voors, A.A.; Zannad, F.; et al. Rationale and design of MinerAlocorticoid Receptor antagonist Tolerability Study-Heart Failure (ARTS-HF): A randomized study of finerenone vs. eplerenone in patients who have worsening chronic heart failure with diabetes and/or chronic kidney disease. Eur. J. Heart Fail. 2015, 17, 224–232. [Google Scholar] [CrossRef]
- Barrera-Chimal, J.; Lima-Posada, I.; Bakris, G.L.; Jaisser, F. Mineralocorticoid receptor antagonists in diabetic kidney disease—Mechanistic and therapeutic effects. Nat. Rev. Nephrol. 2022, 18, 56–70. [Google Scholar] [CrossRef]
- Filippatos, G.; Anker, S.D.; Agarwal, R.; Ruilope, L.M.; Rossing, P.; Bakris, G.L.; Tasto, C.; Joseph, A.; Kolkhof, P.; Lage, A.; et al. Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial. Circulation 2022, 145, 437–447. [Google Scholar] [CrossRef]
- Mc Causland, F.R.; Vaduganathan, M.; Claggett, B.L.; Kulac, I.J.; Desai, A.S.; Jhund, P.S.; Henderson, A.D.; Brinker, M.; Perkins, R.; Scheerer, M.F.; et al. Finerenone and Kidney Outcomes in Patients With Heart Failure: The FINEARTS-HF Trial. J. Am. Coll. Cardiol. 2025, 85, 159–168. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Vaduganathan, M.; Claggett, B.; Jhund, P.S.; Desai, A.S.; Henderson, A.D.; Lam, C.S.; Pitt, B.; Senni, M.; et al. Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2024, 391, 1475–1485. [Google Scholar] [CrossRef]
- Fontes-Carvalho, R.; Santos-Ferreira, D.; Raz, I.; Marx, N.; Ruschitzka, F.; Cosentino, F. Protective effects of SGLT-2 inhibitors across the cardiorenal continuum: Two faces of the same coin. Eur. J. Prev. Cardiol. 2022, 29, 1352–1360. [Google Scholar] [CrossRef]
- Shibata, S.; Nagase, M.; Yoshida, S.; Kawachi, H.; Fujita, T. Podocyte as the target for aldosterone: Roles of oxidative stress and Sgk1. Hypertension 2007, 49, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Bigazzi, R.; Campese, V.M. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006, 70, 2116–2123. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 10. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Hyperkalemia across the Continuum of Kidney Function. Clin. J. Am. Soc. Nephrol. 2018, 13, 155–157. [Google Scholar] [CrossRef]
- Gerisch, M.; Heinig, R.; Engelen, A.; Lang, D.; Kolkhof, P.; Radtke, M.; Platzek, J.; Lovis, K.; Rohde, G.; Schwarz, T. Biotransformation of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, in Dogs, Rats, and Humans, In Vivo and In Vitro. Drug Metab. Dispos. 2018, 46, 1546–1555. [Google Scholar] [CrossRef]
- Filippatos, G.; Anker, S.D.; Agarwal, R.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Schloemer, P.; Tornus, I.; Joseph, A.; et al. Finerenone and Cardiovascular Outcomes in Patients With Chronic Kidney Disease and Type 2 Diabetes. Circulation 2021, 143, 540–552. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–127. [Google Scholar] [CrossRef]
- Rocha, R.; Chander, P.N.; Khanna, K.; Zuckerman, A.; Stier, C.T. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998, 31, 451–458. [Google Scholar] [CrossRef]
- Lerma, E.V.; Bensink, M.E.; Thakker, K.M.; Lieblich, R.; Bunke, M.; Rava, A.; Wang, K.; Murphy, M.V.; Oliveri, D.; Amari, D.T.; et al. Impact of Proteinuria and Kidney Function Decline on Health Care Costs and Resource Utilization in Adults With IgA Nephropathy in the United States: A Retrospective Analysis. Kidney Med. 2023, 5, 100693. [Google Scholar] [CrossRef]
- Mentz, R.J.; Ward, J.H.; Hernandez, A.F.; Lepage, S.; Morrow, D.A.; Sarwat, S.; Sharma, K.; Starling, R.C.; Velazquez, E.J.; Williamson, K.M.; et al. Angiotensin-Neprilysin Inhibition in Patients With Mildly Reduced or Preserved Ejection Fraction and Worsening Heart Failure. J. Am. Coll. Cardiol. 2023, 82, 1–12. [Google Scholar] [CrossRef]
- Brown, N.J. Aldosterone and vascular inflammation. Hypertension 2008, 51, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Bärfacker, L. 30 years of the mineralocorticoid receptor: Mineralocorticoid receptor antagonists: 60 years of research and development. J. Endocrinol. 2017, 234, T125–40. [Google Scholar] [CrossRef] [PubMed]
- Pippal, J.B.; Fuller, P.J. Structure-function relationships in the mineralocorticoid receptor. J. Mol. Endocrinol. 2008, 41, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lattenist, L.; Lechner, S.M.; Messaoudi, S.; Le Mercier, A.; El Moghrabi, S.; Prince, S.; Bobadilla, N.A.; Kolkhof, P.; Jaisser, F.; Barrera-Chimal, J. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Protects Against Acute Kidney Injury-Mediated Chronic Kidney Disease: Role of Oxidative Stress. Hypertension 2017, 69, 870–878. [Google Scholar] [CrossRef]
- Jaisser, F.; Farman, N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol. Rev. 2016, 68, 49–75. [Google Scholar] [CrossRef]
- González-Juanatey, J.R.; Górriz, J.L.; Ortiz, A.; Valle, A.; Soler, M.J.; Facila, L. Cardiorenal benefits of finerenone: Protecting kidney and heart. Ann. Med. 2023, 55, 502–513. [Google Scholar] [CrossRef]
- Rocha, R.; Rudolph, A.E.; Frierdich, G.E.; Nachowiak, D.A.; Kekec, B.K.; Blomme, E.A.G.; McMahon, E.G.; Delyani, J.A. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1802–H1810. [Google Scholar] [CrossRef]
- Su, H.; Wan, C.; Song, A.; Qiu, Y.; Xiong, W.; Zhang, C. Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. Adv. Exp. Med. Biol. 2019, 1165, 585–604. [Google Scholar] [CrossRef]
- Rickard, A.J.; Young, M.J. Corticosteroid receptors, macrophages and cardiovascular disease. J. Mol. Endocrinol. 2009, 42, 449–459. [Google Scholar] [CrossRef]
- Schäfer, N.; Lohmann, C.; Winnik, S.; Van Tits, L.J.; Miranda, M.X.; Vergopoulos, A.; Ruschitzka, F.; Nussberger, J.; Berger, S.; Lüscher, T.F.; et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 2013, 34, 3515–3524. [Google Scholar] [CrossRef]
- MacHnik, A.; Neuhofer, W.; Jantsch, J.; Dahlmann, A.; Tammela, T.; MacHura, K.; Park, J.-K.; Beck, F.-X.; Müller, D.N.; Derer, W.; et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Palazzuoli, A.; Greene, S.J. Effect of finerenone across the stages of heart failure: From prevention to treatment. Eur. J. Heart Fail 2025, 27, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Hartmann, E.; Freyberger, A.; Pavkovic, M.; Mathar, I.; Sandner, P.; Droebner, K.; Joseph, A.; Hüser, J.; Eitner, F. Effects of Finerenone Combined with Empagliflozin in a Model of Hypertension-Induced End-Organ Damage. Am. J. Nephrol. 2021, 52, 642–652. [Google Scholar] [CrossRef]
- Grune, J.; Benz, V.; Brix, S.; Salatzki, J.; Blumrich, A.; Höft, B.; Klopfleisch, R.; Foryst-Ludwig, A.; Kolkhof, P.; Kintscher, U. Steroidal and Nonsteroidal Mineralocorticoid Receptor Antagonists Cause Differential Cardiac Gene Expression in Pressure Overload-induced Cardiac Hypertrophy. J. Cardiovasc. Pharmacol. 2016, 67, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Chen, J.; Zhao, S.; Li, H. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology 2013, 126, 1–11. [Google Scholar] [CrossRef]
- Ravid, J.D.; Laffin, L.J. Effects of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, on Cardiovascular Disease, Chronic Kidney Disease, and Blood Pressure. Curr. Cardiol. Rep. 2022, 24, 1251–1259. [Google Scholar] [CrossRef]
- Agarwal, R.; Joseph, A.; Anker, S.D.; Filippatos, G.; Rossing, P.; Ruilope, L.M.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef]
- Rossing, P.; Anker, S.D.; Filippatos, G.; Pitt, B.; Ruilope, L.M.; Birkenfeld, A.L.; McGill, J.B.; Rosas, S.E.; Joseph, A.; Gebel, M.; et al. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis. Diabetes Care 2022, 45, 2991–2998. [Google Scholar] [CrossRef]
- Blaxall, B.C.; Miano, J.M.; Berk, B.C. Angiotensin II: A devious activator of mineralocorticoid receptor-dependent gene expression. Circ. Res. 2005, 96, 610–611. [Google Scholar] [CrossRef]
- Jaffe, I.Z.; Mendelsohn, M.E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 2005, 96, 643–650. [Google Scholar] [CrossRef]
Study Name Authors | Rales Vardeny et al., 2021 | Emphasis-hf Rossignol et al., 2013 | Ephesus Pitt et al., 2003 | Topcat Beldhuis et al., 2021 | Athena Greene et al., 2019 | Finearts Solomon et al., 2024 |
---|---|---|---|---|---|---|
N. of female male patients | 1663 446 (27%) 1217 (73%) | 2737 610 (22%) 2127 (78%) | 6642 1918 (29%) 4714 (71%) | 3445 1775 (52%) 1670 (48%) | 360 129 (35%) 241 (65%) | 6001 2732 (46%) 3269 (54%) |
NYHA CLASS | ||||||
I or II III or IV Missing | NR | 2730 (100%) 3 (<1%) 4 | NR | 2303 (67%) 1136 (33%) 6 | 60 (17%) 302 (83%) | 4146 (69%) 1854 (31%) 1 |
EGFR (mL/min × 1.73 m2) | 63 (22) | 65 (18) | 78 (14) | 65 (19) | 56.5 (16) | 63 (20) |
Ejection fraction (FE)% | 25 (7) | 26 (5) | 33 (6) | 57 (7) | 33 (13) | 53 (8) |
Previous HF hospitalization | ||||||
Yes | NR | 1438 (53%) | 497 (7%) | 2489 (72%) | 334 (93%) | 3619 (60%) |
Missing | 1663 | 3 | 0 | 3 | 0 | 0 |
NT-proBNP | NR | NR | NR | 8430 (4630–17,200) | 4102 (2204–8752) | 10,414 (4485–19,459) |
Diabetes | 369 (22%) | 859 (31%) | 2125 (32%) | 1118 (32%) | 146 (41%) | 2454 (41%) |
Hypertension | 391 (24%) | 1819 (66%) | 4051 (61%) | 3147 (91%) | 301 (84%) | 5325 (89%) |
Atrial fibrillation | 183 (11%) | 844 (31%) | NR | 1214 (35%) | 172 (48%) | 3273 (55%) |
Myocardial infarction | 472 (28%) | 1380 (50%) | 1793 (27%) | 893 (26%) | 103 (29%) | 1541 (26%) |
Patients Characteristic | FIDELIO-DKD | FIGARO-DKD | FIDELITY |
---|---|---|---|
AGE (years) | 66.6 (±9.1) | 64.1 (±9.8) | 64.8 (±9.5) |
MALE (%) | 69.8% | 69.4% | 69.8% |
eGFR (mL/min/1.73m2) | 44.3 (±12.6) | 67.8 (±21.7) | 57.6 (±17.1) |
UACR (mg/g) | 852 (median) | 312 (median) | 515 (median) |
Systolic blood pressure (mmHg) | 136.7 (±14.2) | 136 (±14) | 136.7 (±14.2) |
HbA1c (%) | 7.7 (±1.4) | 7.7 (±1.4) | 7.7 (±1.4) |
Serum potassium (mmol/L) | 4.3 (±0.4) | 4.3 (±0.4) | 4.3 (±0.4) |
Diabetes duration (years) | 15.4 (±8.6) | 14.5 (±8.5) | 15.0 (±8.6) |
History of CV disease (%) | 45.6% | 44.3% | 45.6% |
ACEi/ARB use (%) | 99.8% | 99.7% | 99.8% |
Statins use (%) | 72.2% | 70.3% | 72.2% |
Diuretic use (%) | 51.5% | 47.4% | 51.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlino, I.; Pirrotta, F.; Gennari, L.; Palazzuoli, A. Current Application of Mineralocorticoid Antagonist (MRA) in Heart Failure and CKD: Does Non-Steroidal Drug Add Novel Insights. Biomedicines 2025, 13, 1693. https://doi.org/10.3390/biomedicines13071693
Carlino I, Pirrotta F, Gennari L, Palazzuoli A. Current Application of Mineralocorticoid Antagonist (MRA) in Heart Failure and CKD: Does Non-Steroidal Drug Add Novel Insights. Biomedicines. 2025; 13(7):1693. https://doi.org/10.3390/biomedicines13071693
Chicago/Turabian StyleCarlino, Irene, Filippo Pirrotta, Luigi Gennari, and Alberto Palazzuoli. 2025. "Current Application of Mineralocorticoid Antagonist (MRA) in Heart Failure and CKD: Does Non-Steroidal Drug Add Novel Insights" Biomedicines 13, no. 7: 1693. https://doi.org/10.3390/biomedicines13071693
APA StyleCarlino, I., Pirrotta, F., Gennari, L., & Palazzuoli, A. (2025). Current Application of Mineralocorticoid Antagonist (MRA) in Heart Failure and CKD: Does Non-Steroidal Drug Add Novel Insights. Biomedicines, 13(7), 1693. https://doi.org/10.3390/biomedicines13071693