Diagnostic Challenges of Short Stature and Growth Hormone Insufficiency Across Different Genetic Etiologies
Abstract
1. Introduction
2. Search Strategy
3. Main Findings
3.1. Genetic Testing in Short Stature
3.2. Short Stature in Growth Hormone Deficiency
4. Growth Hormone Deficiency
4.1. Isolated Growth Hormone Deficiency
4.2. Genes Involved in Pituitary Development
4.3. Genes Mainly Involved in Pituitary Somatotroph Differentiation
5. Growth Hormone Insensitivity
5.1. Defects in the Growth Hormone Receptor Gene (Laron Syndrome)
5.2. Defects in Intracellular Growth Hormone Signaling Pathway
6. Insulin-like Growth Factor I Resistance
6.1. Defective Synthesis of Insulin-like Growth Factor-1 and of Insulin-like Growth Factor-2
6.2. Ternary Complex Defect
6.3. Insulin-like Growth Factor-1 Resistance
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Inzaghi, E.; Reiter, E.; Cianfarani, S. The Challenge of Defining and Investigating the Causes of Idiopathic Short Stature and Finding an Effective Therapy. Horm. Res. Paediatr. 2019, 92, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Sodero, G.; Mariani, F.; Caprarelli, M.; Agazzi, C.; Quarta, L.; Benacquista, L.; Rigante, D.; Clelia, C. Growth hormone responses during arginine and clonidine stimulation test: Correlations with patients’ auxological and metabolic parameters in a single centre study. Growth Horm. IGF Res. 2023, 68, 101522. [Google Scholar] [CrossRef] [PubMed]
- Zhou, E.; Hauser, B.R.; Jee, Y.H. Genetic evaluation in children with short stature. Curr. Opin. Pediatr. 2021, 33, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.E.; Rogol, A.D. Children With Idiopathic Short Stature: An Expanding Role for Genetic Investigation in Their Medical Evaluation. Endocr. Pract. 2024, 30, 679–686. [Google Scholar] [CrossRef]
- Cohen, L.E. Idiopathic short stature: A clinical review. JAMA 2014, 311, 1787–1796. [Google Scholar] [CrossRef]
- Jee, Y.H.; Baron, J.; Nilsson, O. New developments in the genetic diagnosis of short stature. Curr. Opin. Pediatr. 2018, 30, 541–547. [Google Scholar] [CrossRef]
- Grunauer, M.; Jorge, A.A.L. Genetic short stature. Growth Horm. IGF Res. 2018, 38, 29–33. [Google Scholar] [CrossRef]
- Cipolla, C.; Sodero, G.; Cammisa, I.; Turriziani Colonna, A.; Giuliano, S.; Amar, I.D.; Ram Biton, R.; Scambia, G.; Villa, P. The impact of glucocorticoids on bone health and growth: Endocrine and non-endocrine effects in children and young patients. Minerva Pediatr. 2023, 75, 896–904. [Google Scholar] [CrossRef]
- Sodero, G.; Lezzi, M.; Moscogiuri, L.A.; Malavolta, E.; Arzilli, F.; Meoli, A.; Camporeale, A.; Gallo, F.; Rigante, D.; Cipolla, C. Distinguishing organic from idiopathic central precocious puberty: Clinical characteristics and predictive factors for organic etiology in a multicenter Italian cohort study. J. Pediatr. Endocrinol. Metab. 2025. advance online publication. [Google Scholar] [CrossRef]
- Sodero, G.; Cipolla, C.; Rigante, D.; Arzilli, F.; Mercuri, E.M. Pubertal induction therapy in pediatric patients with Duchenne muscular dystrophy. J. Pediatr. Endocrinol. Metab. 2025, 38, 781–787. [Google Scholar] [CrossRef]
- Wit, J.M.; Oostdijk, W.; Losekoot, M.; van Duyvenvoorde, H.A.; Ruivenkamp, C.A.; Kant, S.G. Mechanisms in endocrinology: Novel genetic causes of short stature. Eur. J. Endocrinol. 2016, 174, R145–R173. [Google Scholar] [CrossRef]
- Murray, P.G.; Clayton, P.E. Disorders of Growth Hormone in Childhood; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; Endotext. South Dartmouth (MA), MD Text.com Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Domené, H.M.; Fierro-Carrión, G. Genetic disorders of GH action pathway. Growth Horm. IGF Res. 2018, 38, 19–23. [Google Scholar] [CrossRef]
- Roberts, A.E.; Allanson, J.E.; Tartaglia, M.; Gelb, B.D. Noonan syndrome. Lancet 2013, 381, 333–342. [Google Scholar] [CrossRef]
- Suntharalingham, J.P.; Ishida, M.; Cameron-Pimblett, A.; McGlacken-Byrne, S.M.; Buonocore, F.; Del Valle, I.; Madhan, G.K.; Brooks, T.; Conway, G.S.; Achermann, J.C. Analysis of genetic variability in Turner syndrome linked to long-term clinical features. Front. Endocrinol. 2023, 14, 1227164. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Monseny, A.F. Unravelling short stature in pediatrics: The crucial role of genetic perspective. Transl. Pediatr. 2024, 13, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Mullis, P.E. Genetics of isolated growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Savage, M.O.; Burren, C.P.; Rosenfeld, R.G. The continuum of growth hormone-IGF-I axis defects causing short stature: Diagnostic and therapeutic challenges. Clin. Endocrinol. 2010, 72, 721–728. [Google Scholar] [CrossRef]
- Tommiska, J.; Känsäkoski, J.; Skibsbye, L.; Vaaralahti, K.; Liu, X.; Lodge, E.J. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat. Commun. 2017, 8, 1289. [Google Scholar] [CrossRef]
- Nakajima, H.; Kodo, K.; Morimoto, H.; Hori, S.; Sugimoto, S. A japanese boy with dysmorphic syndrome with multiple pituitary hormone deficiency and gingival fibromatosis due to a pathogenic kcnq1 variant. Intern Med. 2025, 64, 575–580. [Google Scholar] [CrossRef]
- Phillips, J.A., 3rd; Cogan, J.D. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J. Clin. Endocrinol. Metab. 1994, 78, 11–16. [Google Scholar] [CrossRef]
- Mullis, P.E. Genetics of GHRH, GHRH-receptor, GH and GH-receptor: Its impact on pharmacogenetics. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 25–41. [Google Scholar] [CrossRef]
- Alatzoglou, K.S.; Webb, E.A.; Le Tissier, P.; Dattani, M.T. Isolated growth hormone deficiency (GHD) in childhood and adolescence: Recent advances. Endocr. Rev. 2014, 35, 376–432. [Google Scholar] [CrossRef] [PubMed]
- Binder, G.; Keller, E.; Mix, M.; Massa, G.G.; Stokvis-Brantsma, W.H.; Wit, J.M.; Ranke, M.B. Isolated GH deficiency with dominant inheritance: New mutations, new insights. J. Clin. Endocrinol. Metab. 2001, 86, 3877–3881. [Google Scholar] [CrossRef] [PubMed]
- Alatzoglou, K.S.; Dattani, M.T. Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian J. Pediatr. 2012, 79, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Punt, L.D.; Kooijman, S.; Mutsters, N.J.M.; Yue, K.; van der Kaay, D.C.M.; van Tellingen, V.; Bakker-van Waarde, W.M.; Boot, A.M.; van den Akker, E.L.T.; van Boekholt, A.A.; et al. Loss-of-Function GHSR Variants Are Associated With Short Stature and Low IGF-I. J. Clin. Endocrinol. Metab. 2025, 110, e1303–e1314. [Google Scholar] [CrossRef]
- Wit, J.M.; Oostdijk, W.; Losekoot, M. Spectrum of insulin-like growth factor deficiency. Endocr. Dev. 2012, 23, 30–41. [Google Scholar] [CrossRef]
- Inoue, H.; Kangawa, N.; Kinouchi, A.; Sakamoto, Y.; Kimura, C.; Horikawa, R.; Shigematsu, Y.; Itakura, M.; Ogata, T.; Fujieda, K. Japan Growth Genome Consortium Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature. J. Clin. Endocrinol. Metab. 2011, 96, E373–E378. [Google Scholar] [CrossRef]
- Duriez, B.; Duquesnoy, P.; Dastot, F.; Bougnères, P.; Amselem, S.; Goossens, M. An exon-skipping mutation in the btk gene of a patient with X-linked agammaglobulinemia and isolated growth hormone deficiency. FEBS Lett. 1994, 346, 165–170. [Google Scholar] [CrossRef]
- Sodero, G.; Cipolla, C.; Camporesi, A.; Martino, L.; Costa, S.; Cannioto, Z.; Frassanito, P.; Tamburrini, G.; Veredice, C.; Maggio, L.; et al. Endocrinologic Dysfunctions and Neuropsychiatric Sequelae in Pediatric Patients With a History of Central Nervous System Infection (ENDLESS): A Prospective Monocentric Study. Pediatr. Infect. Dis. J. 2025, 44, 310–317. [Google Scholar] [CrossRef]
- Pfaeffle, R.W.; Savage, J.J.; Hunter, C.S.; Palme, C.; Ahlmann, M.; Kumar, P.; Bellone, J.; Schoenau, E.; Korsch, E.; Brämswig, J.H.; et al. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J. Clin. Endocrinol. Metab. 2007, 92, 1909–1919. [Google Scholar] [CrossRef]
- Pfaeffle, R.W.; Hunter, C.S.; Savage, J.J.; Duran-Prado, M.; Mullen, R.D.; Neeb, Z.P.; Eiholzer, U.; Hesse, V.; Haddad, N.G.; Stobbe, H.M.; et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J. Clin. Endocrinol. Metab. 2008, 93, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Machinis, K.; Pantel, J.; Netchine, I.; Léger, J.; Camand, O.J.; Sobrier, M.L.; Dastot-Le Moal, F.; Duquesnoy, P.; Abitbol, M.; Czernichow, P.; et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am. J. Hum. Genet. 2001, 69, 961–968. [Google Scholar] [CrossRef]
- Reynaud, R.; Albarel, F.; Saveanu, A.; Kaffel, N.; Castinetti, F.; Lecomte, P.; Brauner, R.; Simonin, G.; Gaudart, J.; Carmona, E.; et al. Pituitary stalk interruption syndrome in 83 patients: Novel HESX1 mutation and severe hormonal prognosis in malformative forms. Eur. J. Endocrinol. 2011, 164, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Brickman, J.M.; Clements, M.; Tyrell, R.; McNay, D.; Woods, K.; Warner, J.; Stewart, A.; Beddington, R.S.; Dattani, M. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development 2001, 128, 5189–5199. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.J.; Alatzoglou, K.S.; Dattani, M.T. Septo-optic dysplasia and other midline defects: The role of transcription factors: HESX1 and beyond. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 115–124. [Google Scholar] [CrossRef]
- Dateki, S.; Kosaka, K.; Hasegawa, K.; Tanaka, H.; Azuma, N.; Yokoya, S.; Muroya, K.; Adachi, M.; Tajima, T.; Motomura, K.; et al. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J. Clin. Endocrinol. Metab. 2010, 95, 756–764. [Google Scholar] [CrossRef]
- Rizzoti, K.; Lovell-Badge, R. Early development of the pituitary gland: Induction and shaping of Rathke’s pouch. Rev. Endocr. Metab. Disord. 2005, 6, 161–172. [Google Scholar] [CrossRef]
- Laumonnier, F.; Ronce, N.; Hamel, B.C.; Thomas, P.; Lespinasse, J.; Raynaud, M.; Paringaux, C.; Van Bokhoven, H.; Kalscheuer, V.; Fryns, J.P.; et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am. J. Hum. Genet. 2002, 71, 1450–1455. [Google Scholar] [CrossRef]
- França, M.M.; Jorge, A.A.; Carvalho, L.R.; Costalonga, E.F.; Vasques, G.A.; Leite, C.C.; Mendonca, B.B.; Arnhold, I.J. Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J. Clin. Endocrinol. Metab. 2010, 95, E384–E391. [Google Scholar] [CrossRef]
- Roessler, E.; Du, Y.Z.; Mullor, J.L.; Casas, E.; Allen, W.P.; Gillessen-Kaesbach, G.; Roeder, E.R.; Ming, J.E.; Ruiz i Altaba, A.; Muenke, M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Natl. Acad. Sci. USA 2003, 100, 13424–13429. [Google Scholar] [CrossRef]
- Dauber, A.; Rosenfeld, R.G.; Hirschhorn, J.N. Genetic evaluation of short stature. J. Clin. Endocrinol. Metab. 2014, 99, 3080–3092. [Google Scholar] [CrossRef]
- Di Iorgi, N.; Morana, G.; Allegri, A.E.; Napoli, F.; Gastaldi, R.; Calcagno, A.; Patti, G.; Loche, S.; Maghnie, M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 705–736. [Google Scholar] [CrossRef] [PubMed]
- Correa, F.A.; Trarbach, E.B.; Tusset, C.; Latronico, A.C.; Montenegro, L.R.; Carvalho, L.R.; Franca, M.M.; Otto, A.P.; Costalonga, E.F.; Brito, V.N.; et al. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr. Connect. 2015, 4, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Obara-Moszyńska, M.; Budny, B.; Kałużna, M.; Zawadzka, K.; Jamsheer, A.; Rohde, A.; Ruchała, M.; Ziemnicka, K.; Niedziela, M. CDON gene contributes to pituitary stalk interruption syndrome associated with unilateral facial and abducens nerve palsy. J. Appl. Genet. 2021, 62, 621–629. [Google Scholar] [CrossRef]
- Webb, E.A.; AlMutair, A.; Kelberman, D.; Bacchelli, C.; Chanudet, E.; Lescai, F.; Andoniadou, C.L.; Banyan, A.; Alsawaid, A.; Alrifai, M.T.; et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain 2013, 136 Pt 10, 3096–3105. [Google Scholar] [CrossRef] [PubMed]
- Bashamboo, A.; Bignon-Topalovic, J.; Moussi, N.; McElreavey, K.; Brauner, R. Mutations in the Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 2401–2406. [Google Scholar] [CrossRef]
- Hietamäki, J.; Gregory, L.C.; Ayoub, S.; Iivonen, A.P.; Vaaralahti, K.; Liu, X.; Brandstack, N.; Buckton, A.J.; Laine, T.; Känsäkoski, J.; et al. Loss-of-Function Variants in TBC1D32 Underlie Syndromic Hypopituitarism. J. Clin. Endocrinol. Metab. 2020, 105, 1748–1758. [Google Scholar] [CrossRef]
- Lucas-Herald, A.K.; Kinning, E.; Iida, A.; Wang, Z.; Miyake, N.; Ikegawa, S.; McNeilly, J.; Ahmed, S.F. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations. J. Clin. Endocrinol. Metab. 2015, 100, 1221–1224. [Google Scholar] [CrossRef]
- Gorbenko del Blanco, D.; de Graaff, L.C.; Posthouwer, D.; Visser, T.J.; Hokken-Koelega, A.C. Isolated GH deficiency: Mutation screening and copy number analysis of HMGA2 and CDK6 genes. Eur. J. Endocrinol. 2011, 165, 537–544. [Google Scholar] [CrossRef]
- Romano, S.; Maffei, P.; Bettini, V.; Milan, G.; Favaretto, F.; Gardiman, M.; Marshall, J.D.; Greggio, N.A.; Pozzan, G.B.; Collin, G.B.; et al. Alström syndrome is associated with short stature and reduced GH reserve. Clin. Endocrinol. 2013, 79, 529–536. [Google Scholar] [CrossRef]
- Tümer, Z.; Bach-Holm, D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur. J. Hum. Genet. 2009, 17, 1527–1539. [Google Scholar] [CrossRef]
- Gregory, L.C.; Ferreira, C.B.; Young-Baird, S.K.; Williams, H.J.; Harakalova, M.; van Haaften, G.; Rahman, S.A.; Gaston-Massuet, C.; Kelberman, D.; Gosgene; et al. Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 2019, 42, 470–480. [Google Scholar] [CrossRef]
- DHidalgo-Santos, A.; Del Carmen DeMingo-Alemany, M.; Moreno-Macián, F.; Roselló, M.; Orellana, C.; Martínez, F.; Caro-Llopis, A.; León-Cariñena, S.; Tomás-Vila, M. A Novel Mutation of MAGEL2 in a Patient with Schaaf-Yang Syndrome and Hypopituitarism. Int. J. Endocrinol. Metab. 2018, 16, e67329. [Google Scholar] [CrossRef]
- Gregory, L.C.; Shah, P.; Sanner, J.R.F.; Arancibia, M.; Hurst, J.; Jones, W.D.; Spoudeas, H.; Le Quesne Stabej, P.; Williams, H.J.; Ocaka, L.A.; et al. Mutations in MAGEL2 and L1CAM Are Associated With Congenital Hypopituitarism and Arthrogryposis. J. Clin. Endocrinol. Metab. 2019, 104, 5737–5750. [Google Scholar] [CrossRef]
- Karaca, E.; Buyukkaya, R.; Pehlivan, D.; Charng, W.L.; Yaykasli, K.O.; Bayram, Y.; Gambin, T.; Withers, M.; Atik, M.M.; Arslanoglu, I.; et al. Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 2015, 100, E140–E147. [Google Scholar] [CrossRef] [PubMed]
- Verberne, E.A.; Faries, S.; Mannens, M.M.A.M.; Postma, A.V.; van Haelst, M.M. Expanding the phenotype of biallelic RNPC3 variants associated with growth hormone deficiency. Am. J. Med. Genet. Part A 2020, 182, 1952–1956. [Google Scholar] [CrossRef] [PubMed]
- Tahoun, M.; Chandler, J.C.; Ashton, E.; Haston, S.; Hannan, A.; Kim, J.S.; D’Arco, F.; Bockenhauer, D.; Anderson, G.; Lin, M.H.; et al. Mutations in LAMB2 Are Associated With Albuminuria and Optic Nerve Hypoplasia With Hypopituitarism. J. Clin. Endocrinol. Metab. 2020, 105, 595–599. [Google Scholar] [CrossRef]
- Rojek, A.; Obara-Moszynska, M.; Malecka, E.; Slomko-Jozwiak, M.; Niedziela, M. NR0B1 (DAX1) mutations in patients affected by congenital adrenal hypoplasia with growth hormone deficiency as a new finding. J. Appl. Genet. 2013, 54, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Brachet, C.; Kozhemyakina, E.A.; Boros, E.; Heinrichs, C.; Balikova, I.; Soblet, J.; Smits, G.; Vilain, C.; Mathers, P.H. Truncating RAX Mutations: Anophthalmia, Hypopituitarism, Diabetes Insipidus, and Cleft Palate in Mice and Men. J. Clin. Endocrinol. Metab. 2019, 104, 2925–2930. [Google Scholar] [CrossRef]
- Sessa, L.; Rotunno, G.; Sodero, G.; Pane, L.C.; Rendeli, C.; Maresca, G.; Rigante, D.; Cipolla, C. Predictive value of transabdominal pelvic ultrasonography for the diagnosis of central precocious puberty: A single-center observational retrospective study. Clin. Pediatr. Endocrinol. 2024, 33, 199–206. [Google Scholar] [CrossRef]
- Tatsumi, K.; Miyai, K.; Notomi, T.; Kaibe, K.; Amino, N.; Mizuno, Y.; Kohno, H. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat. Genet. 1992, 1, 56–58. [Google Scholar] [CrossRef]
- Pfäffle, R.; Klammt, J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 43–60. [Google Scholar] [CrossRef]
- Sun, Y.; Bak, B.; Schoenmakers, N.; van Trotsenburg, A.S.P.; Oostdijk, W.; Voshol, P.; Cambridge, E.; White, J.K.; le Tissier, P.; Gharavy, S.N.M.; et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 2012, 44, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Joustra, S.D.; Schoenmakers, N.; Persani, L.; Campi, I.; Bonomi, M.; Radetti, G.; Beck-Peccoz, P.; Zhu, H.; Davis, T.M.E.; Sun, Y.; et al. The IGSF1 deficiency syndrome: Characteristics of male and female patients. J. Clin. Endocrinol. Metab. 2013, 98, 4942–4952. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.R.; Guasti, L.; Ruiz-Babot, G.; Mancini, A.; David, A.; Storr, H.L.; A Metherell, L.; Sternberg, M.J.; Cabrera, C.P.; Warren, H.R.; et al. IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol. Med. 2016, 8, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Hoover, A.R.; Dozmorov, I.; Raj, P.; Khan, S.; Molina, E.; Chang, T.C.; de la Morena, M.T.; Cleaver, O.B.; Mendell, J.T.; et al. MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Dev. Cell 2019, 49, 618–631.e5. [Google Scholar] [CrossRef]
- Cao, D.; Ma, X.; Cai, J.; Luan, J.; Liu, A.J.; Yang, R.; Cao, Y.; Zhu, X.; Zhang, H.; Chen, Y.X.; et al. ZBTB20 is required for anterior pituitary development and lactotrope specification. Nat. Commun. 2016, 7, 11121. [Google Scholar] [CrossRef]
- Niall, H.D. Revised primary structure for human growth hormone. Nat. New Biol. 1971, 230, 90–91. [Google Scholar] [CrossRef]
- Brooks, A.J.; Waters, M.J. The growth hormone receptor: Mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 2010, 6, 515–525. [Google Scholar] [CrossRef]
- Lanning, N.J.; Carter-Su, C. Recent advances in growth hormone signaling. Rev. Endocr. Metab. Disord. 2006, 7, 225–235. [Google Scholar] [CrossRef]
- Rowlinson, S.W.; Yoshizato, H.; Barclay, J.L.; Brooks, A.J.; Behncken, S.N.; Kerr, L.M.; Millard, K.; Palethorpe, K.; Nielsen, K.; Clyde-Smith, J.; et al. An agonist-induced conformational change in the growth hormone receptor determines the choice of signalling pathway. Nat. Cell Biol. 2008, 10, 740–747. [Google Scholar] [CrossRef]
- Boisclair, Y.R.; Rhoads, R.P.; Ueki, I.; Wang, J.; Ooi, G.T. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: An important but forgotten component of the circulating IGF system. J. Endocrinol. 2001, 170, 63–70. [Google Scholar] [CrossRef]
- Johannsson, G.; Kopchick, J.J. GH deficiency and insensitivity in children and adults. Rev. Endocr. Metab. Disord. 2021, 22, 1–2. [Google Scholar] [CrossRef]
- Laron, Z.; Pertzelan, A.; Mannheimer, S. Genetic pituitary dwarfism with high serum concentation of growth hormone—A new inborn error of metabolism? Isr. J. Med. Sci. 1966, 2, 152–155. [Google Scholar] [PubMed]
- Godowski, P.J.; Leung, D.W.; Meacham, L.R.; Galgani, J.P.; Hellmiss, R.; Keret, R.; Rotwein, P.S.; Parks, J.S.; Laron, Z.; Wood, W.I. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl. Acad. Sci. USA 1989, 86, 8083–8087. [Google Scholar] [CrossRef] [PubMed]
- Iida, K.; Takahashi, Y.; Kaji, H.; Nose, O.; Okimura, Y.; Abe, H.; Chihara, K. Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. J. Clin. Endocrinol. Metab. 1998, 83, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Aalbers, A.M.; Chin, D.; Pratt, K.L.; Little, B.M.; Frank, S.J.; Hwa, V.; Rosenfeld, R.G. Extreme elevation of serum growth hormone-binding protein concentrations resulting from a novel heterozygous splice site mutation of the growth hormone receptor gene. Horm. Res. 2009, 71, 276–284. [Google Scholar] [CrossRef]
- David, A.; Hwa, V.; Metherell, L.A.; Netchine, I.; Camacho-Hübner, C.; Clark, A.J.; Rosenfeld, R.G.; Savage, M.O. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr. Rev. 2011, 32, 472–497. [Google Scholar] [CrossRef]
- Blum, W.F.; Cotterill, A.M.; Postel-Vinay, M.C.; Ranke, M.B.; Savage, M.O.; Wilton, P. Improvement of diagnostic criteria in growth hormone insensitivity syndrome: Solutions and pitfalls. Pharmacia Study Group on Insulin-like Growth Factor I Treatment in Growth Hormone Insensitivity Syndromes. Acta Paediatr. 1994, 399, 117–124. [Google Scholar] [CrossRef]
- Kofoed, E.M.; Hwa, V.; Little, B.; Woods, K.A.; Buckway, C.K.; Tsubaki, J.; Pratt, K.L.; Bezrodnik, L.; Jasper, H.; Tepper, A.; et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 2003, 349, 1139–1147. [Google Scholar] [CrossRef]
- Klammt, J.; Neumann, D.; Gevers, E.F.; Andrew, S.F.; Schwartz, I.D.; Rockstroh, D.; Colombo, R.; Sanchez, M.A.; Vokurkova, D.; Kowalczyk, J.; et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat. Commun. 2018, 9, 2105. [Google Scholar] [CrossRef] [PubMed]
- Villa, P.; Cipolla, C.; Amar, I.; Sodero, G.; Pane, L.C.; Ingravalle, F.; Pontecorvi, A.; Scambia, G. Bone mineral density and body mass composition measurements in premenopausal anorexic patients: The impact of lean body mass. J. Bone Miner. Metab. 2024, 42, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.E.; Haapaniemi, E.; Russell, M.A.; Caswell, R.; Allen, H.L.; De Franco, E.; McDonald, T.J.; Rajala, H.; Ramelius, A.; Barton, J.; et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 2014, 46, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Milner, J.D.; Vogel, T.P.; Forbes, L.; Ma, C.A.; Stray-Pedersen, A.; Niemela, J.E.; Lyons, J.J.; Engelhardt, K.R.; Zhang, Y.; Topcagic, N.; et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 2015, 125, 591–599. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Baltimore, D. NF-kappa B: Ten years after. Cell 1996, 87, 13–20. [Google Scholar] [CrossRef]
- Wu, S.; Walenkamp, M.J.; Lankester, A.; Bidlingmaier, M.; Wit, J.M.; De Luca, F. Growth hormone and insulin-like growth factor I insensitivity of fibroblasts isolated from a patient with an I{kappa}B{alpha} mutation. J. Clin. Endocrinol. Metab. 2010, 95, 1220–1228. [Google Scholar] [CrossRef]
- Adriani, M.; Garbi, C.; Amodio, G.; Russo, I.; Giovannini, M.; Amorosi, S.; Matrecano, E.; Cosentini, E.; Candotti, F.; Pignata, C. Functional interaction of common gamma-chain and growth hormone receptor signaling apparatus. J. Immunol. 2006, 177, 6889–6895. [Google Scholar] [CrossRef]
- Maharaj, A.V.; Ishida, M.; Rybak, A.; Elfeky, R.; Andrews, A.; Joshi, A.; Elmslie, F.; Joensuu, A.; Kantojärvi, K.; Jia, R.Y.; et al. QSOX2 Deficiency-induced short stature, gastrointestinal dysmotility and immune dysfunction. Nat. Commun. 2024, 15, 8420. [Google Scholar] [CrossRef]
- Ursini, M.V.; Gaetaniello, L.; Ambrosio, R.; Matrecano, E.; Apicella, A.J.; Salerno, M.C.; Pignata, C. Atypical X-linked SCID phenotype associated with growth hormone hyporesponsiveness. Clin. Exp. Immunol. 2002, 129, 502–509. [Google Scholar] [CrossRef]
- Avila, M.; Dyment, D.A.; Sagen, J.V.; St-Onge, J.; Moog, U.; Chung, B.H.Y.; Mo, S.; Mansour, S.; Albanese, A.; Garcia, S.; et al. Clinical reappraisal of SHORT syndrome with PIK3R1 mutations: Toward recommendation for molecular testing and management. Clin. Genet. 2016, 89, 501–506. [Google Scholar] [CrossRef]
- Aarskog, D.; Ose, L.; Pande, H.; Eide, N. Autosomal dominant partial lipodystrophy associated with Rieger anomaly, short stature, and insulinopenic diabetes. Am. J. Med. Genet. 1983, 15, 29–38. [Google Scholar] [CrossRef]
- Fofanova-Gambetti, O.V.; Hwa, V.; Wit, J.M.; Domene, H.M.; Argente, J.; Bang, P.; HögLer, W.; Kirsch, S.; Pihoker, C.; Chiu, H.K.; et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: Results from the international acid-labile subunit consortium. J. Clin. Endocrinol. Metab. 2010, 95, 4184–4191. [Google Scholar] [CrossRef]
- Walenkamp, M.J.E.; Karperien, M.; Pereira, A.M.; Hilhorst-Hofstee, Y.; van Doorn, J.; Chen, J.W.; Mohan, S.; Denley, A.; Forbes, B.; van Duyvenvoorde, H.A.; et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J. Clin. Endocrinol. Metab. 2005, 90, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Bonapace, G.; Concolino, D.; Formicola, S.; Strisciuglio, P. A novel mutation in a patient with insulin-like growth factor 1 (IGF1) deficiency. J. Med. Genet. 2003, 40, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Netchine, I.; Azzi, S.; Houang, M.; Seurin, D.; Perin, L.; Ricort, J.M.; Daubas, C.; Legay, C.; Mester, J.; Herich, R.; et al. Partial primary deficiency of insulin-like growth factor (IGF)-I activity associated with IGF1 mutation demonstrates its critical role in growth and brain development. J. Clin. Endocrinol. Metab. 2009, 94, 3913–3921. [Google Scholar] [CrossRef] [PubMed]
- Woods, K.A.; Camacho-Hübner, C.; Savage, M.O.; Clark, A.J. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 1996, 335, 1363–1367. [Google Scholar] [CrossRef]
- Fuqua, J.S.; Derr, M.; Rosenfeld, R.G.; Hwa, V. Identification of a novel heterozygous IGF1 splicing mutation in a large kindred with familial short stature. Horm. Res. Paediatr. 2012, 78, 59–66. [Google Scholar] [CrossRef]
- Begemann, M.; Zirn, B.; Santen, G.; Wirthgen, E.; Soellner, L.; Büttel, H.M.; Schweizer, R.; van Workum, W.; Binder, G.; Eggermann, T. Paternally Inherited IGF2 Mutation and Growth Restriction. N. Engl. J. Med. 2015, 373, 349–356. [Google Scholar] [CrossRef]
- Binder, G.; Seidel, A.K.; Martin, D.D.; Schweizer, R.; Schwarze, C.P.; Wollmann, H.A.; Eggermann, T.; Ranke, M.B. The endocrine phenotype in silver-russell syndrome is defined by the underlying epigenetic alteration. J. Clin. Endocrinol. Metab. 2008, 93, 1402–1407. [Google Scholar] [CrossRef]
- Domené, H.M.; Hwa, V.; Jasper, H.G.; Rosenfeld, R.G. Acid-labile subunit (ALS) deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 101–113. [Google Scholar] [CrossRef]
- Domené, H.M.; Scaglia, P.A.; Martínez, A.S.; Keselman, A.C.; Karabatas, L.M.; Pipman, V.R.; Bengolea, S.V.; Guida, M.C.; Ropelato, M.G.; Ballerini, M.G.; et al. Heterozygous IGFALS gene variants in idiopathic short stature and normal children: Impact on height and the IGF system. Horm. Res. Paediatr. 2013, 80, 413–423. [Google Scholar] [CrossRef]
- Marouli, E.; Graff, M.; Medina-Gomez, C.; Lo, K.S.; Wood, A.R.; Kjaer, T.R.; Fine, R.S.; Lu, Y.; Schurmann, C.; Highland, H.M.; et al. Rare and low-frequency coding variants alter human adult height. Nature 2017, 542, 186–190. [Google Scholar] [CrossRef]
- Dauber, A.; Muñoz-Calvo, M.T.; Barrios, V.; Domené, H.M.; Kloverpris, S.; Serra-Juhé, C.; Desikan, V.; Pozo, J.; Muzumdar, R.; Martos-Moreno, G.Á.; et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol. Med. 2016, 8, 363–374. [Google Scholar] [CrossRef]
- Fujimoto, M.; Hwa, V.; Dauber, A. Novel Modulators of the Growth Hormone—Insulin-Like Growth Factor Axis: Pregnancy-Associated Plasma Protein-A2 and Stanniocalcin-2. J. Clin. Res. Pediatr. Endocrinol. 2017, 9 (Suppl. S2), 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Cho, Y.H.; Derr, M.A.; Rosenfeld, R.G.; Hwa, V.; Cowell, C.T. Severe short stature caused by novel compound heterozygous mutations of the insulin-like growth factor 1 receptor (IGF1R). J. Clin. Endocrinol. Metab. 2012, 97, E243–E247. [Google Scholar] [CrossRef] [PubMed]
- Abuzzahab, M.J.; Schneider, A.; Goddard, A.; Grigorescu, F.; Lautier, C.; Keller, E.; Kiess, W.; Klammt, J.; Kratzsch, J.; Osgood, D.; et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 2003, 349, 2211–2222. [Google Scholar] [CrossRef]
- Klammt, J.; Kiess, W.; Pfäffle, R. IGF1R mutations as cause of SGA. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Van Duyvenvoorde, H.A.; van Setten, P.A.; Walenkamp, M.J.; van Doorn, J.; Koenig, J.; Gauguin, L.; Oostdijk, W.; Ruivenkamp, C.A.; Losekoot, M.; Wade, J.D.; et al. Short stature associated with a novel heterozygous mutation in the insulin-like growth factor 1 gene. J. Clin. Endocrinol. Metab. 2010, 95, E363–E367. [Google Scholar] [CrossRef]
- Jung, H.J.; Suh, Y. Regulation of IGF -1 signaling by microRNAs. Front. Genet. 2015, 5, 472. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, Y.A.; Ko, J.M.; Shin, C.H.; Lee, Y.J. Clinical and genetic features of childhood-onset congenital combined pituitary hormone deficiency: A retrospective, single-center cohort study. Ann. Pediatr. Endocrinol. Metab. 2024, 29, 379–386. [Google Scholar] [CrossRef]
- Prodam, F.; Caputo, M.; Mele, C.; Marzullo, P.; Aimaretti, G. Insights into non-classic and emerging causes of hypopituitarism. Nat. Rev. Endocrinol. 2021, 17, 114–129. [Google Scholar] [CrossRef]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H.; Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef] [PubMed]
- Binder, G.; Reinehr, T.; Ibáñez, L.; Thiele, S.; Linglart, A.; Woelfle, J.; Saenger, P.; Bettendorf, M.; Zachurzok, A.; Gohlke, B.; et al. GHD Diagnostics in Europe and the US: An Audit of National Guidelines and Practice. Horm. Res. Paediatr. 2019, 92, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Binder, G.; Rappold, G.A. SHOX Deficiency Disorders. In GeneReviews®; Adam, M.P., Ed.; University of Washington: Seattle, WA, USA, 2005. [Google Scholar]
- Bunyan, D.J.; Hobbs, J.I.; Duncan-Flavell, P.J.; Howarth, R.J.; Beal, S.; Baralle, D.; Thomas, N.S. SHOX Whole Gene Duplications Are Overrepresented in SHOX Haploinsufficiency Phenotype Cohorts. Cytogenet. Genome Res. 2022, 162, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T. SHOX: Pseudoautosomal homeobox containing gene for short stature and dyschondrosteosis. Growth Horm. IGF Res. 1999, 9 (Suppl. B), 53–58. [Google Scholar] [CrossRef]
- Danowitz, M.; Grimberg, A. Clinical Indications for Growth Hormone Therapy. Adv. Pediatr. 2022, 69, 203–217. [Google Scholar] [CrossRef]
- Sodero, G.; Arzilli, F.; Malavolta, E.; Lezzi, M.; Comes, F.; Villirillo, A.; Rigante, D.; Cipolla, C. Efficacy and Safety of Growth Hormone (GH) Therapy in Patients with SHOX Gene Variants. Children 2025, 12, 325. [Google Scholar] [CrossRef]
- Alatzoglou, K.S.; Dattani, M.T. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum. Dev. 2009, 85, 705–712. [Google Scholar] [CrossRef]
- Blunden, C.; Nasomyont, N.; Backeljauw, P. Growth Hormone Therapy for Turner Syndrome. Pediatr. Endocrinol. Rev. 2018, 16 (Suppl. S1), 80–90. [Google Scholar] [CrossRef]
- Rigante, D.; Frediani, B.; Galeazzi, M.; Cantarini, L. From the Mediterranean to the sea of Japan: The transcontinental odyssey of autoinflammatory diseases. BioMed Res. Int. 2013, 2013, 485103. [Google Scholar] [CrossRef]
- Rigante, D. A systematic approach to autoinflammatory syndromes: A spelling booklet for the beginner. Expert Rev. Clin. Immunol. 2017, 13, 571–597. [Google Scholar] [CrossRef]
- De Luca, E.; Guerriero, C.; Capozio, G.; Peris, K.; Rigante, D. Cold-Induced Urticaria in Children. Skinmed 2021, 19, 339–348. [Google Scholar]
- Rigante, D.; Cipolla, C.; Rossodivita, A. Recombinant human growth hormone in neonatal-onset multisystem inflammatory disease. Clin. Pediatr. Endocrinol. 2018, 27, 101–105. [Google Scholar] [CrossRef]
- Cantarini, L.; Iacoponi, F.; Lucherini, O.; Obici, L.; Brizi, M.; Cimaz, R.; Rigante, D.; Benucci, M.; Sebastiani, G.; Brucato, A.; et al. Validation of a diagnostic score for the diagnosis of autoinflammatory diseases in adults. Int. J. Immunopathol. Pharmacol. 2011, 24, 695–702. [Google Scholar] [CrossRef]
- Ter Haar, N.M.; van Delft, A.L.J.; Annink, K.V.; van Stel, H.; Al-Mayouf, S.M.; Amaryan, G.; Anton, J.; Barron, K.S.; Benseler, S.; A Brogan, P.; et al. In silico validation of the Autoinflammatory Disease Damage Index. Ann. Rheum. Dis. 2018, 77, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D. The Golden Card of Interleukin-1 Blockers in Systemic Inflammasomopathies of Childhood. Int. J. Mol. Sci. 2025, 26, 1872. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Ruiz, R.; Urbano-Ruiz, C.; García-Berrocal, M.B.; Marcos-Vadillo, E.; Isidoro-García, M.; Martín-Alonso, M.M.; Bajo-Delgado, A.F.; Prieto-Matos, P.; López-Siguero, J.P. Clinical and Genetic Characterization of a Cohort of Small-for-Gestational-Age Patients: Cost-Effectiveness of Whole-Exome Sequencing and Effectiveness of Treatment with GH. J. Clin. Med. 2024, 13, 4006. [Google Scholar] [CrossRef] [PubMed]
Gene | Syndrome/IGHD Type | Inheritance | Clinical and Labwork Features |
---|---|---|---|
GH1 | IGHD IA | AR | Severe GHD starting in infancy, undetectable GH, anti-GH antibodies, poor GH therapy response, use of IGF-1 therapy |
GH1 | IGHD IB | AR | Low GH on stimulation test, milder phenotype, no anti-GH antibodies, low IGF-1/IGFBP-3, pituitary hypoplasia |
GH1 | IGHD II | AD | Variable phenotype, dominant-negative exon 3 splicing effect, in some cases also combined pituitary hormone deficiencies can be found |
GH1 | Kowarski syndrome | AD | Bioinactive GH, high GH but low IGF-1/IGFBP-3, good response to GH therapy |
GHRHR | IGHD IB | AR | Similar to GH1 IB: low GH, low IGF-1/IGFBP-3, pituitary hypoplasia, no anti-GH antibodies |
GHSR | Partial IGHD | AD or AR | Short stature, constitutional growth/puberty delay, variable GH/IGF-1 levels |
BTK | IGHD III | X-linked recessive | GH deficiency with X-linked agammaglobulinemia |
SOX3 | IGHD III | X-linked recessive | IGHD with cognitive impairment, corpus callosum anomalies, pituitary abnormalities |
Gene | Inheritance | Phenotype | Clinical and Labwork Features |
---|---|---|---|
LHX3 | AR | CPHD | Sensorineural deafness, cervical spine anomalies, short neck, normal/enlarged or hypoplastic anterior pituitary |
LHX4 | AD | IGHD → CPHD | Cerebellar anomalies (e.g., Arnold–Chiari anomaly), anterior pituitary hypoplasia, ectopic posterior pituitary |
HESX1 | AD or AR | IGHD → CPHD | Developmental delay, anterior pituitary hypoplasia, ectopic posterior pituitary, septo-optic dysplasia |
OTX2 | AD or AR | IGHD/CPHD | Microcephaly, microphthalmia or anophthalmia, developmental delay, cleft palate, anterior pituitary hypoplasia |
SOX3 | X-linked | IGHD → CPHD | Cognitive impairment, corpus callosum dysgenesis, pituitary abnormalities |
SOX2 | AD (rarely AR) | CPHD | Optic nerve hypoplasia, micropenis, hearing loss, GI and CNS malformations |
GLI2 | AD | CPHD | Holoprosencephaly spectrum, cleft lip/palate, polydactyly, renal/anal anomalies, anterior pituitary hypoplasia |
GLI3 | AD | CPHD | Pallister–Hall syndrome, hypothalamic hamartoma, postaxial polydactyly, hypoplastic anterior pituitary |
FGF8 | AR | CPHD | Septo-optic dysplasia, Moebius syndrome, microcephaly, midline defects |
FGFR1 | AD | CPHD | Anterior pituitary hypoplasia, corpus callosum agenesis, ocular anomalies |
PROKR2 | AD | CPHD | Clubfeet, syringomyelia, epilepsy, microcephaly, anterior pituitary hypoplasia |
CDON | AD | CPHD | GH, ACTH, TSH deficiencies; absent stalk, ectopic posterior pituitary |
ARNT2 | AR | CPHD | ADH deficiency, delayed myelination, microcephaly, urogenital anomalies |
ROBO1 | AD | CPHD | Central hypothyroidism, strabismus, ptosis |
TBC1D32 | AR | IGHD → CPHD | Facial dysmorphism, retinal dystrophy, developmental delay |
HMGA2 | AD | CPHD | Severe GHD, ectopic posterior pituitary |
ALMS1 | AR | GHD (CPHD syndromic) | Alström syndrome, GHD in 50% of the cases |
IFT172 | AR | GHD (CPHD syndromic) | Retinopathy, metaphyseal dysplasia, renal issues |
PITX2 | AD | CPHD (Rieger syndrome) | Ocular and dental anomalies |
EIF2S3 | X-linked recessive | CPHD | Glucose metabolism disorders, intellectual disability, microcephaly |
MAGEL2 | Paternal allele mutation | CPHD (syndromic) | Prader–Willi features: hypotonia, obesity, developmental delay, joint contractures |
L1CAM | X-linked recessive | CPHD (syndromic) | Hydrocephalus, VSD, scoliosis, developmental delay |
GRP161 | AR | CPHD | Ptosis, alopecia, syndactyly, nail hypoplasia, ectopic posterior pituitary |
RNPC3 | AR | CPHD | GH/TSH deficiency, cataracts, developmental delay, intellectual disability, |
LAMB2 | AR | GHD (syndromic) | Renal dysfunction; optic nerve and anterior pituitary hypoplasia |
TCF7L1 | AD (variable) | IGHD | Low IGF-1, isolated GHD |
RAX | AR | CPHD | Anophthalmia, cleft lip/palate, absent pituitary |
POU1F1 | AR or AD | IGHD → CPHD | GHD + TSH and prolactin deficiency; highly variable onset and phenotype |
PROP1 | AR | IGHD → CPHD | GH, prolactin, TSH ± LH/FSH ± ACTH deficiency; micropenis |
IGSF1 | X-linked | IGHD (partial CPHD) | Central hypothyroidism, macroorchidism, delayed puberty |
ZBTB20 | AD (variable) | IGHD | Proportionate short stature, delayed growth |
KCNQ1 | AR or AD | GHD | Short stature, insulin and growth hormone disfunction, hearing loss |
DAX1 | X-linked | CGHD | Hypogonadotropic hypogonadism, hypothalamic–pituitary dysfunction, short stature |
Gene | Inheritance | Syndrome/Medical Condition | Clinical and Labwork Features |
---|---|---|---|
GHR | AR or AD | Laron syndrome | Proportionate short stature, midface hypoplasia, frontal bossing, normal/elevated GH, low IGF-1, IGFBP-3, and ALS |
STAT5B | AR or AD | GHI with immune dysfunction | Postnatal growth failure, immune dysregulation, pulmonary fibrosis, delayed puberty, elevated GH, low IGF-1 |
STAT3 | AD | Autoimmune syndrome with growth failure | Short stature, multisystem autoimmunity (e.g., type 1 diabetes), impaired STAT1/STAT5 signaling |
IKBKB | AD | GHI with NF-κB pathway defects | Growth retardation, partial GH/IGF-1 insensitivity, immune dysfunction |
IL2RG | X-linked recessive | X-linked SCID with GHI | Severe IGF-1 resistance, poor GH response, immune deficiency |
PIK3R1 | AD | “SHORT” syndrome | Short stature, joint hyperextensibility, ocular depression, Rieger anomaly, teething delay, immune dysfunction |
Gene | Inheritance | IGF Pathway Alteration | Clinical and Labwork Features |
---|---|---|---|
IGF1 | AR (homozygous or compound heterozygous) | IGF-1 synthesis defect | Severe pre/postnatal growth failure, microcephaly, developmental delay, hearing loss, low IGF-1 with normal IGFBP-3/ALS |
IGF2 | Pathogenic variants are paternally inherited | IGF-2 synthesis defect | Growth restriction, dysmorphic features, confirmed link with Silver–Russell syndrome |
IGFALS | AR | Ternary complex defect | Short stature, delayed puberty, hyperinsulinism, low IGF-1/IGFBP-3/ALS |
PAPPA2 | AR | Ternary complex defect | Short stature, microcephaly, skeletal anomalies, elevated total IGF-1, IGFBP-3, ALS; low free IGF-1 |
STC2 | Only experimental data | Ternary complex regulator | Mouse studies: overexpression leads to short stature; loss-of-function mutations lead to tall stature |
IGF1R | AD or AR (heterozygous, compound heterozygous) | IGF-1 resistance | Severe pre/postnatal growth failure, microcephaly, elevated IGF-1, poor response to GH therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arzilli, F.; De Fortuna, G.; Cammisa, I.; Vagnozzi, L.; Sodero, G.; Rigante, D.; Cipolla, C. Diagnostic Challenges of Short Stature and Growth Hormone Insufficiency Across Different Genetic Etiologies. Biomedicines 2025, 13, 1937. https://doi.org/10.3390/biomedicines13081937
Arzilli F, De Fortuna G, Cammisa I, Vagnozzi L, Sodero G, Rigante D, Cipolla C. Diagnostic Challenges of Short Stature and Growth Hormone Insufficiency Across Different Genetic Etiologies. Biomedicines. 2025; 13(8):1937. https://doi.org/10.3390/biomedicines13081937
Chicago/Turabian StyleArzilli, Federica, Giulia De Fortuna, Ignazio Cammisa, Luca Vagnozzi, Giorgio Sodero, Donato Rigante, and Clelia Cipolla. 2025. "Diagnostic Challenges of Short Stature and Growth Hormone Insufficiency Across Different Genetic Etiologies" Biomedicines 13, no. 8: 1937. https://doi.org/10.3390/biomedicines13081937
APA StyleArzilli, F., De Fortuna, G., Cammisa, I., Vagnozzi, L., Sodero, G., Rigante, D., & Cipolla, C. (2025). Diagnostic Challenges of Short Stature and Growth Hormone Insufficiency Across Different Genetic Etiologies. Biomedicines, 13(8), 1937. https://doi.org/10.3390/biomedicines13081937