Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions
Abstract
1. Introduction
1.1. Epidemiology and Genetic Profile of Melanoma
1.2. Rationale for Adjuvant Therapy in High-Risk Melanoma
2. Immune Checkpoint Inhibitors in the Adjuvant Setting
2.1. Mechanisms of Action
2.2. Pembrolizumab in Stage IIB/IIC Melanoma
2.3. Nivolumab in Stage IIB/IIC Melanoma
2.4. Historical Comparators and the Ongoing Challenge of Demonstrating Overall Survival Benefit
2.5. Resistance to Adjuvant Immunotherapy and Its Mechanisms
2.6. Immune-Related Adverse Events, Long-Term Toxicity in the Adjuvant Setting
3. Combination Adjuvant Therapies: Targeted Therapy and Vaccination Strategies with Immunotherapy
3.1. BRAF/MEK Inhibitors in the Adjuvant Setting
3.2. Personalized Cancer Vaccines: KEYNOTE-942 and the Promise of mRNA-4157
4. Biomarkers: Tools for Personalizing Adjuvant Therapy
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gou, X.; Tan, Y.; Fan, Q.; Chen, J. Immunotherapy and delivery systems for melanoma. Hum. Vaccines Immunother. 2024, 20, 2394252. [Google Scholar] [CrossRef]
- Wurcel, V.; Rojas, M.R.; Urrego-Reyes, J.; Rivera, D.M.; Acevedo, R.; Jiang, R.; Jiang, S.; Zhang, S.; Caparros, A.; Krepler, C.; et al. Number needed to treat (NNT) with pembrolizumab as an adjuvant therapy in resected patients with high-risk stage II (IIB and IIC) melanoma and its application to cost of preventing an event (COPE) in Mexico. J. Med. Econ. 2025, 28, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Flaherty, K.T.; Ribas, A.; Long, G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 2017, 14, 463–482. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef]
- Coit, D.G.; Ariyan, C.E. Fifty years of progress in surgical oncology: Melanoma. J. Surg. Oncol. 2022, 126, 888–895. [Google Scholar] [CrossRef]
- Wong, W.G.; Holguin, R.A.P.; A Stahl, K.; Olecki, E.J.; Pameijer, C.; Shen, C. Utilization and survival benefit of adjuvant immunotherapy in resected high-risk stage II melanoma. Surg. Pract. Sci. 2022, 8, 100056. [Google Scholar] [CrossRef]
- Blankenstein, S.A.; van Akkooi, A.C.J. Adjuvant systemic therapy in high-risk melanoma. Melanoma Res. 2019, 29, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Lao, C.D.; Khushalani, N.I.; Angeles, C.; Petrella, T.M. Current State of Adjuvant Therapy for Melanoma: Less Is More, or More Is Better? Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–7. [Google Scholar] [CrossRef]
- Lee, R.; Mandala, M.; Long, G.V.; Eggermont, A.M.; van Akkooi, A.C.; Sandhu, S.; Garbe, C.; Lorigan, P. Adjuvant therapy for stage II melanoma: The need for further studies. Eur. J. Cancer 2023, 189, 112914. [Google Scholar] [CrossRef]
- Poklepovic, A.S.; Luke, J.J. Considering adjuvant therapy for stage II melanoma. Cancer 2019, 126, 1166–1174. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef]
- Vargas, G.M.; Farooq, M.S.; Karakousis, G.C. Adjuvant Therapy for High-Risk Stage II Melanoma: Current Paradigms in Management and Future Directions. Cancers 2024, 16, 2690. [Google Scholar] [CrossRef]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Willsmore, Z.N.; Coumbe, B.G.T.; Crescioli, S.; Reci, S.; Gupta, A.; Harris, R.J.; Chenoweth, A.; Chauhan, J.; Bax, H.J.; McCraw, A.; et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur. J. Immunol. 2021, 51, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, S.; Zhu, S.; Zhu, L.; Guo, W. Advances in Immunotherapy and Targeted Therapy of Malignant Melanoma. Biomedicines 2025, 13, 225. [Google Scholar] [CrossRef]
- Sorino, C.; Iezzi, S.; Ciuffreda, L.; Falcone, I. Immunotherapy in melanoma: Advances, pitfalls, and future perspectives. Front. Mol. Biosci. 2024, 11, 1403021. [Google Scholar] [CrossRef]
- Thomas, D.; Bello, D.M. Adjuvant immunotherapy for melanoma. J. Surg. Oncol. 2021, 123, 789–797. [Google Scholar] [CrossRef]
- Tarhini, A.A. Adjuvant Therapy of Melanoma. Hematol. Oncol. Clin. N. Am. 2021, 35, 73–84. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.-J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; A Ascierto, P.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef]
- Sussman, T.; Ott, P. Adjuvant immunotherapy for melanoma patients: Progress and opportunities. ESMO Open 2024, 9, 102962. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Lee, S.J.; Hodi, F.S.; Rao, U.N.M.; Cohen, G.I.; Hamid, O.; Hutchins, L.F.; Sosman, J.A.; Kluger, H.M.; Eroglu, Z.; et al. Phase III Study of Adjuvant Ipilimumab (3 or 10 mg/kg) Versus High-Dose Interferon Alfa-2b for Resected High-Risk Melanoma: North American Intergroup E1609. J. Clin. Oncol. 2020, 38, 567–575. [Google Scholar] [CrossRef]
- Larkin, J.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Fernandez, A.M.A.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.-J.; Chiarion-Sileni, V.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III/IV Melanoma: 5-Year Efficacy and Biomarker Results from CheckMate 238. Clin. Cancer Res. 2023, 29, 3352–3361. [Google Scholar] [CrossRef]
- Smithy, J.W.; Shoushtari, A.N. Adjuvant PD-1 Blockade in Resected Melanoma: Is Preventing Recurrence Enough? Cancer Discov. 2022, 12, 599–601. [Google Scholar] [CrossRef]
- Bottomley, A.; Coens, C.; Mierzynska, J.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Health-related quality-of-life results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 655–664. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Del Vecchio, M.; Weber, J.; Hoeller, C.; Grob, J.J.; Mohr, P.; Loquai, C.; Dutriaux, C.; Chiarion-Sileni, V.; Mackiewicz, J.; et al. Adjuvant nivolumab in resected stage IIB/C melanoma: Primary results from the randomized, phase 3 CheckMate 76K trial. Nat Med. 2023, 29, 2835–2843. [Google Scholar] [CrossRef]
- Luke, J.J.; Rutkowski, P.; Queirolo, P.; Del Vecchio, M.; Mackiewicz, J.; Chiarion-Sileni, V.; Merino, L.d.l.C.; A Khattak, M.; Schadendorf, D.; Long, G.V.; et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): A randomised, double-blind, phase 3 trial. Lancet 2022, 399, 1718–1729. [Google Scholar] [CrossRef]
- Yoon, C.H.; Ross, M.I.; Gastman, B.R.; Luke, J.J.; Ascierto, P.A.; Long, G.V.; Rutkowski, P.; Khattak, M.; Del Vecchio, M.; Merino, L.d.l.C.; et al. Adjuvant Pembrolizumab in Stage II Melanoma: Outcomes by Primary Tumor Location in the Randomized, Double-Blind, Phase III KEYNOTE-716 Trial. Ann. Surg. Oncol. 2025, 32, 2756–2764. [Google Scholar] [CrossRef]
- Chen, L.N.; Carvajal, R.D. Considerations for adjuvant immunotherapy in stage II melanoma: KEYNOTE-716 and beyond. Ann. Transl. Med. 2023, 11, 368. [Google Scholar] [CrossRef]
- Khattak, M.A.; Luke, J.J.; Long, G.V.; Ascierto, P.A.; Rutkowski, P.; Schadendorf, D.; Robert, C.; Grob, J.-J.; Merino, L.d.l.C.; Del Vecchio, M.; et al. Adjuvant pembrolizumab versus placebo in resected high-risk stage II melanoma: Health-related quality of life from the randomized phase 3 KEYNOTE-716 study. Eur. J. Cancer 2022, 176, 207–217. [Google Scholar] [CrossRef]
- Luke, J.J.; Ascierto, P.A.; Khattak, M.A.; de la Cruz Merino, L.; Del Vecchio, M.; Rutkowski, P.; Spagnolo, F.; Mackiewicz, J.; Chiarion-Sileni, V.; Kirkwood, J.M.; et al. Pembrolizumab Versus Placebo as Adjuvant Therapy in Resected Stage IIB or IIC Melanoma: Final Analysis of Distant Metastasis-Free Survival in the Phase III KEYNOTE-716 Study. J. Clin. Oncol. 2024, 42, 1619–1624. [Google Scholar] [CrossRef]
- Pavlick, A.C.; E Ariyan, C.; I Buchbinder, E.; Davar, D.; Gibney, G.T.; Hamid, O.; Hieken, T.J.; Izar, B.; Johnson, D.B.; Kulkarni, R.P.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J. Immunother. Cancer 2023, 11, e006947. [Google Scholar] [CrossRef]
- Weber, J.S.; Schadendorf, D.; Del Vecchio, M.; Larkin, J.; Atkinson, V.; Schenker, M.; Pigozzo, J.; Gogas, H.; Dalle, S.; Meyer, N.; et al. Adjuvant Therapy of Nivolumab Combined with Ipilimumab Versus Nivolumab Alone in Patients with Resected Stage IIIB-D or Stage IV Melanoma (CheckMate 915). J. Clin. Oncol. 2023, 41, 517–527. [Google Scholar] [CrossRef]
- Unger, J.M.; Darke, A.; Othus, M.; Truong, T.G.; Khushalani, N.; Kendra, K.; Lewis, K.D.; Faller, B.; Funchain, P.; Buchbinder, E.I.; et al. Effectiveness of Adjuvant Pembrolizumab vs High-Dose Interferon or Ipilimumab for Quality-of-Life Outcomes in Patients with Resected Melanoma: A Secondary Analysis of the SWOG S1404 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, E.; Zimmer, L.; Hassel, J.C.; Fluck, M.; Eigentler, T.K.; Loquai, C.; Haferkamp, S.; Gutzmer, R.; Meier, F.; Mohr, P.; et al. Adjuvant nivolumab plus ipilimumab or nivolumab alone versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): Final results of a randomised, double-blind, phase 2 trial. Lancet 2022, 400, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Carlino, M.S.; Khattak, A.; Meniawy, T.; Ansstas, G.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet 2024, 403, 632–644. [Google Scholar] [CrossRef]
- Long, G.; Del Vecchio, M.; Hoeller, C.; Weber, J.; Grob, J.; Mohr, P.; Grabbe, S.; Dutriaux, C.; Sileni, V.C.; Mackiewicz, J.; et al. 1077MO Adjuvant nivolumab v placebo in stage IIB/C melanoma: 3-year results from CheckMate 76K. Ann. Oncol. 2024, 35, S713–S714. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 1465–1477. [Google Scholar] [CrossRef]
- Grossmann, K.F.; Othus, M.; Patel, S.P.; Tarhini, A.A.; Sondak, V.K.; Knopp, M.V.; Petrella, T.M.; Truong, T.-G.; Khushalani, N.I.; Cohen, J.V.; et al. Adjuvant Pembrolizumab versus IFNα2b or Ipilimumab in Resected High-Risk Melanoma. Cancer Discov. 2022, 12, 644–653. [Google Scholar] [CrossRef]
- Bleicher, J.; Swords, D.S.; Mali, M.E.; McGuire, L.; Pahlkotter, M.K.; Asare, E.A.; Bowles, T.L.; Hyngstrom, J.R. Recurrence patterns in patients with Stage II melanoma: The evolving role of routine imaging for surveillance. J. Surg. Oncol. 2020, 122, 1770–1777. [Google Scholar] [CrossRef]
- Berger, A.C.; Ollila, D.W.; Christopher, A.; Kairys, J.C.; Mastrangelo, M.J.; Feeney, K.; Dabbish, N.; Leiby, B.; Frank, J.A.; Stitzenberg, K.B.; et al. Patient Symptoms Are the Most Frequent Indicators of Recurrence in Patients with American Joint Committee on Cancer Stage II Melanoma. J. Am. Coll. Surg. 2017, 224, 652–659. [Google Scholar] [CrossRef]
- Zielińska, M.K.; Ciążyńska, M.; Sulejczak, D.; Rutkowski, P.; Czarnecka, A.M. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025, 15, 269. [Google Scholar] [CrossRef]
- Topper, M.J.; Vaz, M.; Chiappinelli, K.B.; Shields, C.E.D.; Niknafs, N.; Yen, R.-W.C.; Wenzel, A.; Hicks, J.; Ballew, M.; Stone, M.; et al. Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell 2017, 171, 1284–1300.e21. [Google Scholar] [CrossRef]
- Booth, L.; Roberts, J.L.; Poklepovic, A.; Kirkwood, J.; Dent, P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 2017, 8, 83155–83170. [Google Scholar] [CrossRef]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.-M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Enk, A.H.; Hassel, J.C. Prognostic Biomarkers in Evolving Melanoma Immunotherapy. Am. J. Clin. Dermatol. 2024, 26, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Chen, J.Q.; Liu, C.; Malu, S.; Creasy, C.; Tetzlaff, M.T.; Xu, C.; McKenzie, J.A.; Zhang, C.; Liang, X.; et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016, 6, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Patrinely, J.R.; Baker, L.X.; Davis, E.J.; Song, H.; Ye, F.; Johnson, D.B. Outcomes after progression of disease with anti-PD-1/PDL1 therapy for advanced melanoma. Cancer 2020, 126, 3448–3455. [Google Scholar] [CrossRef]
- Olson, D.J.; Eroglu, Z.; Brockstein, B.; Poklepovic, A.S.; Bajaj, M.; Babu, S.; Hallmeyer, S.; Velasco, M.; Lutzky, J.; Higgs, E.; et al. Pembrolizumab Plus Ipilimumab Following Anti-PD-1/L1 Failure in Melanoma. J. Clin. Oncol. 2021, 39, 2647–2655. [Google Scholar] [CrossRef]
- van Akkooi, A.C.; Hauschild, A.; Long, G.V.; Mandala, M.; Kicinski, M.; Govaerts, A.-S.; Klauck, I.; Ouali, M.; Lorigan, P.C.; Eggermont, A.M. COLUMBUS-AD: Phase III Study of Adjuvant Encorafenib + Binimetinib in Resected Stage IIB/IIC BRAF V600-Mutated Melanoma. Future Oncol. 2023, 19, 2017–2027. [Google Scholar] [CrossRef]
- Ntemou, E.; Delgouffe, E.; Goossens, E. Immune Checkpoint Inhibitors and Male Fertility: Should Fertility Preservation Options Be Considered before Treatment? Cancers 2024, 16, 1176. [Google Scholar] [CrossRef]
- Imai, A.; Ichigo, S.; Takagi, H.; Ushida, S.; Abe, S.; Matsunami, K. Female Fertility Following Immune Checkpoint Inhibitor Therapy. Biomed. J. Sci. Tech. Res. 2023, 53, 45230–45251. [Google Scholar] [CrossRef]
- Garutti, M.; Lambertini, M.; Puglisi, F. Checkpoint inhibitors, fertility, pregnancy, and sexual life: A systematic review. ESMO Open 2021, 6, 100276. [Google Scholar] [CrossRef] [PubMed]
- Su, H.I.; Lacchetti, C.; Letourneau, J.; Partridge, A.H.; Qamar, R.; Quinn, G.P.; Reinecke, J.; Smith, J.F.; Tesch, M.; Wallace, W.H.; et al. Fertility Preservation in People with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2025, 43, 1488–1515. [Google Scholar] [CrossRef]
- Hauschild, A.; Dummer, R.; Santinami, M.; Atkinson, V.; Mandala, M.; Merelli, B.; Chiarion-Sileni, V.; Haydon, A.M.; Schachter, J.; Schadendorf, D.; et al. Long-term follow up for adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma: Final results of the COMBI-AD study. J. Clin. Oncol. 2024, 42, 9500. [Google Scholar] [CrossRef]
- Khattak, A.; Carlino, M.; Meniawy, T.; Ansstas, G.; Medina, T.; Taylor, M.H.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; et al. Abstract CT001: A personalized cancer vaccine, mRNA-4157, combined with pembrolizumab versus pembrolizumab in patients with resected high-risk melanoma: Efficacy and safety results from the randomized, open-label Phase 2 mRNA-4157-P201/Keynote-942 trial. Cancer Res. 2023, 83, CT001. [Google Scholar] [CrossRef]
- Greenhaw, B.N.; Covington, K.R.; Kurley, S.J.; Yeniay, Y.; Cao, N.A.; Plasseraud, K.M.; Cook, R.W.; Hsueh, E.C.; Gastman, B.R.; Wei, M.L. Molecular risk prediction in cutaneous melanoma: A meta-analysis of the 31-gene expression profile prognostic test in 1479 patients. J. Am. Acad. Dermatol. 2020, 83, 745–753. [Google Scholar] [CrossRef]
- Amaral, T.M.; Hoffmann, M.-C.; Sinnberg, T.; Niessner, H.; Sülberg, H.; Eigentler, T.K.; Garbe, C. Clinical validation of a prognostic 11-gene expression profiling score in prospectively collected FFPE tissue of patients with AJCC v8 stage II cutaneous melanoma. Eur. J. Cancer 2020, 125, 38–45. [Google Scholar] [CrossRef]
- Amaral, T.; Sinnberg, T.; Chatziioannou, E.; Niessner, H.; Leiter, U.; Keim, U.; Forschner, A.; Dwarkasing, J.; Tjien-Fooh, F.; Wever, R.; et al. Identification of stage I/II melanoma patients at high risk for recurrence using a model combining clinicopathologic factors with gene expression profiling (CP-GEP). Eur. J. Cancer 2022, 182, 155–162. [Google Scholar] [CrossRef]
- Adeuyan, O.; Gordon, E.R.; Kenchappa, D.; Bracero, Y.; Singh, A.; Espinoza, G.; Geskin, L.J.; Saenger, Y.M. An update on methods for detection of prognostic and predictive biomarkers in melanoma. Front. Cell Dev. Biol. 2023, 11, 1290696. [Google Scholar] [CrossRef] [PubMed]
- Dantoing, E.; Piton, N.; Salaün, M.; Thiberville, L.; Guisier, F. Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. Int. J. Mol. Sci. 2021, 22, 6288. [Google Scholar] [CrossRef]
- Mihaila, R.I.; Gheorghe, A.S.; Zob, D.L.; Stanculeanu, D.L. The Importance of Predictive Biomarkers and Their Correlation with the Response to Immunotherapy in Solid Tumors—Impact on Clinical Practice. Biomedicines 2024, 12, 2146. [Google Scholar] [CrossRef]
- Farma, J.M.; Olszanski, A.J.; Messina, J.L.; Sondak, V.K. Annals of Surgical Oncology Practice Guidelines Series: Adjuvant and Neoadjuvant Therapy for Melanoma. Ann. Surg. Oncol. 2024, 32, 3–11. [Google Scholar] [CrossRef]
- Moncrieff, M.D.; Lo, S.N.; Scolyer, R.A.; Heaton, M.J.; Nobes, J.P.; Snelling, A.P.; Carr, M.J.; Nessim, C.; Wade, R.; Peach, A.H.; et al. Clinical Outcomes and Risk Stratification of Early-Stage Melanoma Micrometastases from an International Multicenter Study: Implications for the Management of American Joint Committee on Cancer IIIA Disease. J. Clin. Oncol. 2022, 40, 3940–3951. [Google Scholar] [CrossRef] [PubMed]
- Donia, M.; Jespersen, H.; Jalving, M.; Lee, R.; Eriksson, H.; Hoeller, C.; Hernberg, M.; Gavrilova, I.; Kandolf, L.; Liszkay, G.; et al. Adjuvant immunotherapy in the modern management of resectable melanoma: Current status and outlook to 2028. ESMO Open 2025, 10, 104295. [Google Scholar] [CrossRef] [PubMed]
- ESMO Daily Reporter, Questions Still Remain on Optimal Adjuvant Therapy in Advanced Melanoma. 2024. Available online: https://dailyreporter.esmo.org/esmo-congress-2024/latest-news/questions-still-remain-on-optimal-adjuvant-therapy-in-advanced-melanoma (accessed on 9 July 2025).
- Samlowski, W.; A Silver, M.; Hohlbauch, A.; Zhang, S.; Scherrer, E.; Fukunaga-Kalabis, M.; Krepler, C.; Jiang, R. Real-world Clinical Outcomes of Patients with Stage IIB or IIC Cutaneous Melanoma Treated at US Community Oncology Clinics. Future Oncol. 2022, 18, 3755–3767. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, E.K.; O’dOnoghue, C.; Boland, G.; Bowles, T.; Delman, K.A.; Hieken, T.J.; Moncrieff, M.; Wong, S.; White, R.L.; Karakousis, G.; et al. Society of Surgical Oncology Consensus Statement: Assessing the Evidence for and Utility of Gene Expression Profiling of Primary Cutaneous Melanoma. Ann. Surg. Oncol. 2024, 32, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
Trial Name | Agents Compared | Stage(s) | Main Findings | (Reference Number) |
---|---|---|---|---|
EORTC 18071 | Ipilimumab vs. Placebo | III | ↑ RFS and OS with ipilimumab (10 mg/kg); high toxicity | [10,13,15,21,22,23,24] |
E1609 | Ipilimumab (3 and 10 mg/kg) vs. Interferon | IIIB–IV | Ipilimumab 3 mg/kg improved OS over interferon; less toxic than 10 mg/kg | [10,21,22,24,25] |
CheckMate 238 | Nivolumab vs. Ipilimumab | IIIB–IV | Nivolumab superior in RFS, lower toxicity | [10,13,21,22,24,26,27] |
EYNOTE-054 | Pembrolizumab vs. Placebo | IIIA–IIIC | ↑ RFS, ↑ DMFS; crossover allowed | [13,15,21,24,28] |
CheckMate 76K | Nivolumab vs. Placebo | IIB–IIC | ↓ risk of recurrence by 58% | [29] |
KEYNOTE-716 | Pembrolizumab vs. Placebo | IIB–IIC | ↑ RFS and DMFS | [9,10,15,21,24,27,30,31,32,33,34,35] |
CheckMate 915 | Nivolumab + Ipilimumab vs. Nivolumab | IIIB–IV | No added benefit from combination, ↑ toxicity | [10,21,22,24,36] |
SWOG S1404 | Pembrolizumab vs. Interferon/Ipilimumab | III-IV | ↑ RFS for pembrolizumab; OS trend not significant | [10,21,24,27,37] |
IMMUNED | Nivolumab + Ipilimumab vs. Nivolumab vs. Placebo | IV | Combination > Nivolumab > placebo for RFS | [24,38] |
KEYNOTE-942 (phase 2b) | mRNA-4157/V940 + Pembrolizumab vs. Pembrolizumab | IIIB–IV | ↓ recurrence by 44% with vaccine+ pembrolizumab | [39] |
Therapeutic Strategy | Key Elements | Clinical Impact |
---|---|---|
Adjuvant Immunotherapy (PD-1 Inhibitors) | KEYNOTE-716 and CheckMate 76K demonstrated improved RFS and DMFS using pembrolizumab and nivolumab in stage IIB/IIC melanoma. Regulatory approvals granted. OS benefit unconfirmed. | New adjuvant standard of care for high-risk stage II melanoma; reduces recurrence, but long-term survival benefit remains unclear. |
Immunotherapy + BRAF/MEK Inhibitors | Ongoing trials (e.g., COLUMBUS AD, KEYVIBE-101) assess synergy of PD-1 inhibitors with BRAF/MEK inhibitors to enhance antigen presentation and reduce immunosuppression in BRAF-mutant melanoma. | Potentially effective and less toxic than dual checkpoint blockade. May expand treatment to molecularly selected patients. |
Immunotherapy + Personalized Neoantigen Vaccines (mRNA-4157) | KEYNOTE-942 showed that adding mRNA-4157 vaccine to pembrolizumab significantly reduced recurrence and improved RFS/DMFS. Designed to generate immune responses against patient-specific tumor neoantigens. | Represents a personalized and scalable strategy with promising efficacy and tolerability; may define future of adjuvant melanoma therapy. |
Immunotherapy-Related Domain | Key Elements | Clinical Impact |
---|---|---|
Mechanisms of resistance | Includes tumor-intrinsic changes (e.g., PTEN loss, β2-microglobulin mutations), T-cell exhaustion, immunosuppressive microenvironment, (Tregs, myeloid-derived suppressor cells), and clonal evolution and loss of immunogenic neoantigens in tumor. | Limits durability of response. Understanding mechanisms can guide second-line treatments and patient stratification. |
Investigational strategies to overcome resistance | Emerging strategies include PI3K-β and HDAC inhibitors, microbiome modulation (FMT), dual checkpoint blockade (e.g., nivolumab + relatlimab), and neoantigen vaccines; immunomodulatory strategies such as TLR and STING agonists have shown promise in preclinical models and early-phase clinical trials. These are not yet FDA-approved for adjuvant melanoma. | May re-sensitize tumors to therapy and improve outcomes in resistant melanoma. Validation in prospective trials needed. |
Immune-related adverse events (irAEs) | Common irAEs include colitis, hepatitis, and endocrinopathies (often permanent). Long-term hormone therapy often required. | Warrants careful patient counseling and monitoring. May limit widespread adoption of adjuvant immunotherapy in lower-risk patients. |
Biomarkers for patient selection | No single validated biomarker. They can be categorized as tissue-based biomarkers (e.g., PD-L1, TMB, GEP, TIL), blood-based biomarkers (ctDNA, immune cell subsets, cytokines, and serum proteins), and other biomarkers such as gut microbiota. ctDNA and gene expression-profiling tools (MelaGenix, CP-GEP) show promise. PD-L1 expression is inconsistent, due to biological and technical variability. | May enable precision medicine and reduce overtreatment, but real-world implementation is challenged by lack of standardization and validation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prkačin, I.; Brkić, A.; Pondeljak, N.; Mokos, M.; Gaćina, K.; Šitum, M. Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions. Biomedicines 2025, 13, 1894. https://doi.org/10.3390/biomedicines13081894
Prkačin I, Brkić A, Pondeljak N, Mokos M, Gaćina K, Šitum M. Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions. Biomedicines. 2025; 13(8):1894. https://doi.org/10.3390/biomedicines13081894
Chicago/Turabian StylePrkačin, Ivana, Ana Brkić, Nives Pondeljak, Mislav Mokos, Klara Gaćina, and Mirna Šitum. 2025. "Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions" Biomedicines 13, no. 8: 1894. https://doi.org/10.3390/biomedicines13081894
APA StylePrkačin, I., Brkić, A., Pondeljak, N., Mokos, M., Gaćina, K., & Šitum, M. (2025). Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions. Biomedicines, 13(8), 1894. https://doi.org/10.3390/biomedicines13081894