FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deswal, R.; Narwal, V.; Dang, A.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef]
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.; Yilmaz, Y. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver. J. Clin. Transl. Hepatol. 2022, 10, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Price, J.K.; Owrangi, S.; Gundu-Rao, N.; Satchi, R.; Paik, J.M. The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients with Type 2 Diabetes. Clin. Gastroenterol. Hepatol. 2024, 22, 1999–2010.e8. [Google Scholar] [CrossRef] [PubMed]
- Kui, Y.; Heng, Z.; Hongling, P. Association between polycystic ovary syndrome and risk of non-alcoholic fatty liver disease: A meta-analysis. Endokrynol. Pol. 2023, 74, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Simons, P.I.H.G.; Brouwers, M.C.G.J. Is cardiovascular disease in PCOS driven by MASLD? Trends Endocrinol. Metab. 2025, 36, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Chatzikalil, E.; Kalopitas, G.; Patoulias, D.; Popovic, D.S.; Metallidis, S.; Kotsa, K.; Germanidis, G.; Koufakis, T. Metabolic Dysfunction-Associated Steatotic Liver Disease and Polycystic Ovary Syndrome: A Complex Interplay. J. Clin. Med. 2024, 13, 4243. [Google Scholar] [CrossRef] [PubMed]
- Paschou, S.A.; Polyzos, S.A.; Anagnostis, P.; Goulis, D.G.; Kanaka-Gantenbein, C.; Lambrinoudaki, I.; Georgopoulos, N.A.; Vryonidou, A. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine 2020, 67, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Salva-Pastor, N.; López-Sánchez, G.N.; Chávez-Tapia, N.C.; Audifred-Salomón, J.R.; Niebla-Cárdenas, D.; Topete-Estrada, R.; Pereznuñez-Zamora, H.; Vidaltamayo-Ramírez, R.; Báez-Arellano, M.E.; Uribe, M.; et al. Polycystic ovary syndrome with feasible equivalence to overweight as a risk factor for non-alcoholic fatty liver disease development and severity in Mexican population. Ann. Hepatol. 2020, 19, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.B.; Seo, S.K.; Yun, B.H.; Cho, S.; Choi, Y.S.; Lee, B.S. Non-alcoholic fatty liver disease in polycystic ovary syndrome women. Sci. Rep. 2021, 11, 7085. [Google Scholar] [CrossRef] [PubMed]
- McPherson, S.; Stewart, S.F.; Henderson, E.; Burt, A.D.; Day, C.P. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010, 59, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Giral, P.; Charlotte, F.; Bruckert, E.; Thibault, V.; Theodorou, I.; Khalil, L.; Turpin, G.; Opolon, P.; Poynard, T. Liver fibrosis in overweight patients. Gastroenterology 2000, 118, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.L.; Carvalho Ld Oliveira, A.C.; Santos, V.N.; Vieira, J.G.; Parise, E.R. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq. Gastroenterol. 2010, 47, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Jabczyk, M.; Nowak, J.; Jagielski, P.; Hudzik, B.; Kulik-Kupka, K.; Włodarczyk, A.; Lar, K.; Zubelewicz-Szkodzińska, B. Metabolic Deregulations in Patients with Polycystic Ovary Syndrome. Metabolites. 2023, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Goulis, D.G.; Kountouras, J.; Mintziori, G.; Chatzis, P.; Papadakis, E.; Katsikis, I.; Panidis, D. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: Assessment of non-invasive indices predicting hepatic steatosis and fibrosis. Hormones 2014, 13, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Guo, Z.; Yu, Q. Hepatic steatosis in women with polycystic ovary syndrome. BMC Endocr. Disord. 2023, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Sprung, V.S.; Pugh, C.J.; Daousi, C.; Irwin, A.; Aziz, N.; Adams, V.L.; Thomas, E.L.; Bell, J.D.; Kemp, G.J.; et al. Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J. Clin. Endocrinol. Metab. 2012, 97, 3709–3716. [Google Scholar] [CrossRef] [PubMed]
- Gałczyńska, D.; Daniluk, J.; Buczek-Kutermak, A.; Pruś, P.; Pluta, D. Decoding the Relationship Between Polycystic Ovary Syndrome and Hormonal Dependencies of Anti-Müllerian Hormone and Other Markers. Biomedicines 2025, 13, 1341. [Google Scholar] [CrossRef]
- Blanco-Grau, A.; Gabriel-Medina, P.; Rodriguez-Algarra, F.; Villena, Y.; Lopez-Martínez, R.; Augustín, S.; Pons, M.; Cruz, L.M.; Rando-Segura, A.; Enfedaque, B.; et al. Assessing Liver Fibrosis Using the FIB4 Index in the Community Setting. Diagnostics 2021, 11, 2236. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, E.A.; Mózes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.H.; et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.; Olson, M.C.; Samir, A.E.; Venkatesh, S.K. Liver fibrosis assessment: MR and US elastography. Abdom. Radiol. 2022, 47, 3037–3050. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Sohaib, M.; Anwaar, W.; Ahmed, A.; Khalid, N.T.; Tariq, H.; Jamil, M.I. Correlation Between Transient Elastography and Non-invasive Biomarker Scores for the Detection of Liver Fibrosis. Cureus 2024, 16, e72892. [Google Scholar] [CrossRef] [PubMed]
- Gulumsek, E.; Pekoz, B.C.; Koc, A.S.; Aslan, M.Z.; Ali Ozturk, H.; Arici, F.N.; Sumbul, H.E. Liver Stiffness Is Increased in Polycystic Ovary Syndrome and Related with Complement C1q/Tumor Necrosis Factor-Related Protein 3 Levels: A Point Shear Wave Elastography Study. Ultrasound Q. 2020, 37, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Migacz, M.; Pluta, D.; Barański, K.; Krajewski, B.; Madej, P.; Holecki, M. Using non-invasive indicators to screen the PCOS population for liver disease—A single-centre study. Endokrynol. Pol. 2025, 76, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Chuah, K.H.; Rajaram, R.B.; Lim, L.L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulou, E.; Thymis, J.; Lampsas, S.; Pavlidis, G.; Katogiannis, K.; Vlachomitros, D.; Katsanaki, E.; Kostelli, G.; Pililis, S.; Pliouta, L.; et al. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J. Clin. Med. 2025, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J. Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, e11, Erratum in Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Spremović Rađenović, S.; Pupovac, M.; Andjić, M.; Bila, J.; Srećković, S.; Gudović, A.; Dragaš, B.; Radunović, N. Prevalence, Risk Factors, and Pathophysiology of Nonalcoholic Fatty Liver Disease (NAFLD) in Women with Polycystic Ovary Syndrome (PCOS). Biomedicines 2022, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.; Spongberg, C.; Martinino, A.; Giovinazzo, F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Sung, Y.A.; Hong, Y.S.; Song, D.K.; Jung, H.; Jeong, K.; Chung, H.; Lee, H. Non-alcoholic fatty liver disease is associated with hyperandrogenism in women with polycystic ovary syndrome. Sci. Rep. 2023, 13, 13397. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Ciresi, A.; Bianco, J.; Geraci, V.; Boemi, R.; Galvano, L.; Magliozzo, F.; Merlino, G.; Craxì, A.; Giordano, C. Insulin resistance and hyperandrogenism drive steatosis and fibrosis risk in young females with PCOS. PLoS ONE 2017, 12, e0186136. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): A Comprehensive Review from NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef] [PubMed]
- Aljawad, M.; Yoshida, E.M.; Uhanova, J.; Marotta, P.; Chandok, N. Percutaneous liver biopsy practice patterns among Canadian hepatologists. Can. J. Gastroenterol. 2013, 27, e31–e34. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; S Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Jiang, S.W.; Hu, A.R.; Zhou, A.W.; Hu, T.; Li, H.S.; Fan, Y.; Lin, K. Non-invasive diagnosis of non-alcoholic fatty liver disease: Current status and future perspective. Heliyon 2024, 10, e27325. [Google Scholar] [CrossRef] [PubMed]
- Cusi, K.; Isaacs, S.; Barb, D.; Basu, R.; Caprio, S.; Garvey, W.T.; Kashyap, S.; Mechanick, J.I.; Mouzaki, M.; Nadolsky, K.; et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr. Pract. 2022, 28, 528–562. [Google Scholar] [CrossRef] [PubMed]
- Bercoff, J.; Tanter, M.; Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1492–1494, Erratum in IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Chimoriya, R.; Piya, M.K.; Simmons, D.; Ahlenstiel, G.; Ho, V. The Use of Two-Dimensional Shear Wave Elastography in People with Obesity for the Assessment of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Yoneda, M.; Imajo, K.; Nakajima, A. Elastography Techniques for the Assessment of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 4039. [Google Scholar] [CrossRef] [PubMed]
- Canivet, C.M.; Costentin, C.; Irvine, K.M.; Delamarre, A.; Lannes, A.; Sturm, N.; Oberti, F.; Patel, P.J.; Decaens, T.; Irles-Depé, M.; et al. Validation of the new 2021 EASL algorithm for the noninvasive diagnosis of advanced fibrosis in NAFLD. Hepatology 2023, 77, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Chitturi, S.; Wong, V.W.; Chan, W.K.; Wong, G.L.; Wong, S.K.; Sollano, J.; Ni, Y.H.; Liu, C.J.; Lin, Y.C.; Lesmana, L.A.; et al. The asia-pacific working party on non-alcoholic fatty liver disease guidelines 2017-Part 2: Management and special groups. J. Gastroenterol. Hepatol. 2018, 33, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Terrault, N.; Chan, W.; Cedars, M.I.; Huddleston, H.G.; Duwaerts, C.C.; Balitzer, D.; Gill, R.M. Polycystic ovary syndrome (PCOS) is associated with NASH severity and advanced fibrosis. Liver Int. 2020, 40, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Falzarano, C.; Lofton, T.; Osei-Ntansah, A.; Oliver, T.; Southward, T.; Stewart, S.; Andrisse, S. Nonalcoholic Fatty Liver Disease in Women and Girls with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2022, 107, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Taranto, D.O.L.; Guimarães, T.C.M.; Couto, C.A.; Cândido, A.L.; Azevedo, R.C.S.; Mattos, F.S.; Elias, M.L.C.; Reis, F.M.; Rocha, A.L.L.; Faria, L.C. Nonalcoholic fatty liver disease in women with polycystic ovary syndrome: Associated factors and noninvasive fibrosis staging in a single Brazilian center. Arch. Endocrinol. Metab. 2020, 64, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Ishiba, H.; Sumida, Y.; Tanaka, S.; Yoneda, M.; Hyogo, H.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Yoneda, M.; et al. The novel cutoff points for the FIB4 index categorized by age increase the diagnostic accuracy in NAFLD: A multi-center study. J. Gastroenterol. 2018, 53, 1225, Erratum in J. Gastroenterol. 2018, 53, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Ganie, M.A.; Masoodi, I.; Jana, M.; Shalimar Gupta, N.; Sofi, N.Y. Fibroscan as a non-invasive predictor of hepatic steatosis in women with polycystic ovary syndrome. Indian J. Med. Res. 2020, 151, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef] [PubMed]
Index/Parameter | Phenotype | p-Value | |||
---|---|---|---|---|---|
A | B | C | D | ||
Body mass index [kg/m2] 17-OH-P [ng/mL] Free testosterone [pg/mL] | 25.47 ± 5.40 | 26.90 ± 7.79 | 24.59 ± 4.69 | 25.07 ± 5.35 | 0.3 |
1.02 ± 0.45 | 1.28 ± 0.64 | 1.55 ± 0.79 | 1.23 ± 0.70 | <0.0001 | |
2.24 ± 1.64 | 1.86 ± 1.08 | 1.81 ± 1.18 | 1.07 ± 0.66 | <0.0001 | |
Total testosterone [ng/mL] Androstenedione [ng/mL] | 0.41 ± 0.17 | 0.35 ± 0.12 | 0.39 ± 0.17 | 0.25 ± 0.11 | <0.0001 |
1.77 ± 0.71 | 1.86 ± 1.75 | 2.45 ± 1.62 | 1.60 ± 0.75 | <0.0001 | |
DHEAS [µg/dL] AMH [ng/mL] Insulin 0′ [µU/mL] Glucose 0′ [mg/dL] | 323.80 ± 118.47 | 334.36 ± 93.99 | 364.36 ± 163.11 | 227.71 ± 72.34 | <0.0001 |
7.56 ± 6.50 | 4.07 ± 3.11 | 5.31 ± 3.07 | 6.13 ± 3.53 | <0.0001 | |
8.95 ± 5.16 | 10.56 ± 7.69 | 7.08 ± 4.78 | 8.36 ± 7.54 | <0.0001 | |
85.60 ± 6.04 | 91.20 ± 12.97 | 85.41 ± 6.32 | 86.22 ± 6.35 | <0.0001 | |
Total cholesterol [mg/dL] LDL [mg/dL] | 178.32 ± 33.69 | 170.83 ± 29.80 | 162.82 ± 28.22 | 181.91 ± 33.20 | <0.0001 |
100.60 ± 29.23 | 98.22 ± 23.41 | 90.94 ± 26.10 | 102.06 ± 25.71 | 0.0005 | |
HDL [mg/dL] | 58.46 ± 14.77 | 53.05 ± 14.05 | 55.70 ± 10.79 | 61.14 ± 13.74 | 0.001 |
Triglyceride [mg/dL] | 96.88 ± 48.95 | 97.87 ± 43.21 | 81.56 ± 23.09 | 96.40 ± 58.74 | <0.0001 |
HOMA-IR [-] | 1.92 ± 1.15 | 2.45 ± 2.17 | 1.52 ± 1.06 | 1.80 ± 1.66 | 0.04 |
FIB-4 [-] | 0.42 ± 0.14 | 0.50 ± 0.15 | 0.42 ± 0.14 | 0.44 ± 0.14 | <0.0001 |
Fibrosis Index [-] | 49; 34.7% | 24; 17.0% | 19; 13.5% | 28; 19.8% | <0.0001 |
Index/Parameter | Levels of Statistical Significance Between Phenotypes [p] | |||||
---|---|---|---|---|---|---|
A vs. B | A vs. C | A vs. D | B vs. C | B vs. D | C vs. D | |
Body mass index [kg/m2] 17-OH-P [ng/mL] Free testosterone [pg/mL] | 1 | 1 | 1 | 0.5 | 1 | 1 |
0.001 | <0.0001 | 0.2 | 0.2 | 0.7 | 0.002 | |
1 | 0.4 | <0.0001 | 1 | <0.0001 | <0.0001 | |
Total testosterone [ng/mL] Androstenedione [ng/mL] | 0.06 | 1 | <0.0001 | 1 | <0.0001 | <0.0001 |
0.03 | 0.3 | 0.02 | <0.0001 | 1 | <0.0001 | |
DHEAS [µg/dL] AMH [ng/mL] Insulin 0′ [µU/mL] Glucose 0′ [mg/dL] | 1 | 0.6 | <0.001 | 1 | <0.0001 | <0.0001 |
<0.0001 | 0.001 | 0.5 | <0.0001 | <0.0001 | 0.2 | |
1 | 0.01 | 0.1 | <0.0001 | 0.007 | 1 | |
0.0005 | 1 | 1 | <0.001 | 0.01 | 1 | |
Total cholesterol [mg/dL] LDL [mg/dL] | 0.7 | <0.0001 | 1 | 0.03 | 0.04 | <0.0001 |
1 | 0.01 | 1 | 0.01 | 1 | <0.001 | |
HDL [mg/dL] | 0.03 | 1 | 0.6 | 0.7 | <0.0001 | 0.02 |
Triglyceride [mg/dL] | 1 | 0.4 | 1 | 0.06 | 0.2 | 1 |
HOMA-IR [-] | 0.9 | 0.01 | 0.2 | <0.0001 | 0.002 | 1 |
FIB-4 [-] | <0.0001 | 1 | 0.7 | <0.0001 | 0.001 | 1 |
Fibrosis Index [-] | <0.001 | <0.0001 | 0.005 | 0.4 | 0.5 | 0.1 |
Index/Parameter | Phenotype | p-Value | |||
---|---|---|---|---|---|
A | B | C | D | ||
Body mass index [kg/m2] 17-OH-P [ng/mL] Free testosterone [pg/mL] | 24.51 ± 6.24 | 30.35 ± 10.81 | 22.18 ± 1.78 | 24.49 ± 6.16 | 0.09 |
1.06 ± 0.50 | 0.85 ± 0.46 | 1.27 ± 0.66 | 1.43 ± 1.01 | 0.09 | |
2.13 ± 1.28 | 1.65 ± 0.84 | 1.57 ± 0.63 | 0.95 ± 0.24 | 0.0001 | |
Total testosterone [ng/mL] Androstenedione [ng/mL] | 0.40 ± 0.18 | 0.37 ± 0.10 | 0.39 ± 1.69 | 0.24 ± 0.15 | <0.0001 |
1.79 ± 0.73 | 1.29 ± 0.23 | 1.69 ± 0.46 | 1.38 ± 0.53 | 0.001 | |
DHEAS [µg/dL] AMH [ng/mL] Insulin 0′ [µU/mL] Glucose 0′ [mg/dL] | 304.11 ± 111.64 | 347.96 ± 87.04 | 398.85 ± 171.88 | 215.70 ± 72.53 | <0.0001 |
7.43 ± 4.83 | 3.30 ± 2.85 | 5.70 ± 2.14 | 7.61 ± 3.26 | <0.0001 | |
8.25 ± 5.54 | 10.71 ± 3.82 | 5.15 ± 3.62 | 7.10 ± 3.79 | <0.0001 | |
85.25 ± 6.51 | 79.23 ± 7.71 | 82.52 ± 3.96 | 83.51 ± 4.43 | 0.04 | |
Total cholesterol [mg/dL] LDL [mg/dL] | 172.86 ± 28.59 | 144.25 ± 25.58 | 154.79 ± 6.70 | 211.68 ± 29.82 | <0.0001 |
95.49 ± 25.95 | 75.87 ± 21.80 | 83.88 ± 12.70 | 120.26 ± 28.66 | <0.0001 | |
HDL [mg/dL] | 59.37 ± 14.58 | 49.41 ± 9.34 | 58.66 ± 9.05 | 66.06 ± 12.99 | <0.0001 |
Triglyceride [mg/dL] | 89.96 ± 50.17 | 94.85 ± 23.95 | 61.22 ± 17.55 | 126.96 ± 91.14 | 0.0002 |
HOMA-IR [-] | 1.76 ± 1.24 | 2.04 ± 0.54 | 1.08 ± 0.82 | 1.49 ± 0.82 | <0.0001 |
FIB-4 [-] | 0.41 ± 0.16 | 0.42 ± 0.14 | 0.44 ± 0.06 | 0.38 ± 0.14 | 0.4 |
Index/Parameter | Levels of Statistical Significance Between Phenotypes [p] | |||||
---|---|---|---|---|---|---|
A vs. B | A vs. C | A vs. D | B vs. C | B vs. D | C vs. D | |
Body mass index [kg/m2] 17-OH-P [ng/mL] Free testosterone [pg/mL] | 0.2 | 1 | 1 | 0.1 | 0.3 | 1 |
1 | 1 | 1 | 0.1 | 0.2 | 1 | |
1 | 1 | <0.001 | 1 | 0.02 | 0.05 | |
Total testosterone [ng/mL] Androstenedione [ng/mL] | 1 | 1 | 0.002 | 1 | 0.01 | 0.003 |
0.007 | 1 | 0.01 | 0.08 | 1 | 0.1 | |
DHEAS [µg/dL] AMH [ng/mL] Insulin 0′ [µU/mL] Glucose 0′ [mg/dL] | 0.8 | 1 | 0.007 | 1 | 0.0002 | <0.001 |
<0.001 | 1 | 1 | 0.02 | <0.0001 | 0.6 | |
0.008 | 0.06 | 1 | <0.0001 | 0.006 | 0.3 | |
0.03 | 1 | 1 | 1 | 0.4 | 1 | |
Total cholesterol [mg/dL] LDL [mg/dL] | 0.001 | 0.3 | <0.001 | 1 | <0.0001 | <0.0001 |
0.03 | 0.8 | 0.001 | 1 | <0.0001 | <0.0001 | |
HDL [mg/dL] | 0.009 | 1 | 0.1 | 0.06 | <0.0001 | 0.4 |
Triglyceride [mg/dL] | 0.5 | 0.03 | 0.2 | 0.001 | 1 | <0.001 |
HOMA-IR [-] | 0.03 | 0.03 | 1 | <0.0001 | 0.02 | 0.2 |
FIB-4 [-] | 1 | 1 | 1 | 1 | 1 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migacz, M.; Pluta, D.; Barański, K.; Kujszczyk, A.; Kochanowicz, M.; Holecki, M. FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome. Biomedicines 2025, 13, 1878. https://doi.org/10.3390/biomedicines13081878
Migacz M, Pluta D, Barański K, Kujszczyk A, Kochanowicz M, Holecki M. FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome. Biomedicines. 2025; 13(8):1878. https://doi.org/10.3390/biomedicines13081878
Chicago/Turabian StyleMigacz, Maciej, Dagmara Pluta, Kamil Barański, Anna Kujszczyk, Marta Kochanowicz, and Michał Holecki. 2025. "FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome" Biomedicines 13, no. 8: 1878. https://doi.org/10.3390/biomedicines13081878
APA StyleMigacz, M., Pluta, D., Barański, K., Kujszczyk, A., Kochanowicz, M., & Holecki, M. (2025). FIB-4 Score as a Predictor of Eligibility for Elastography Exam in Patients with Polycystic Ovary Syndrome. Biomedicines, 13(8), 1878. https://doi.org/10.3390/biomedicines13081878