Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Total RNA Preparation and RT-qPCR
2.3. Statistical Analysis
3. Results
3.1. Expression Profiles of Sex Hormone Receptors ERα, ERβ, PR and AR in Gastric Cancers
3.2. Relationship Between Hormone Receptor Expression and Clinical Parameters in Gastric Cancers Including Diffuse and Intestinal GCs
3.3. Correlations Between the Expression of Sex Hormone Nuclear Receptors and Signaling Pathways in GCs
3.4. Expression of Two Membrane Receptors, ERRγ and GPER, in Gastric Cancers
3.5. Expression of Epigenetic Marks/Factors in GCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 2023, 20, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Diaz Del Arco, C.; Estrada Munoz, L.; Ortega Medina, L.; Molina Roldan, E.; Ceron Nieto, M.A.; Garcia Gomez de Las Heras, S.; Fernandez Acenero, M.J. Clinicopathological differences, risk factors and prognostic scores for western patients with intestinal and diffuse-type gastric cancer. World J. Gastrointest. Oncol. 2022, 14, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qu, Y.P.; Hou, P. Pathogenetic mechanisms in gastric cancer. World J. Gastroenterol. 2014, 20, 13804–13819. [Google Scholar] [CrossRef] [PubMed]
- Henson, D.E.; Dittus, C.; Younes, M.; Nguyen, H.; Albores-Saavedra, J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973–2000: Increase in the signet ring cell type. Arch. Pathol. Lab. Med. 2004, 128, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Jezequel, J.; Bessaguet, C.; Verveur, C.; Faycal, J.; Richert, Z.; Metges, J.P.; Volant, A.; Nousbaum, J.B.; Robaszkiewicz, M. Trends in incidence, management, and survival of gastric and cardia carcinomas in the area of Finistere (France) between 1984 and 2003. Eur. J. Gastroenterol. Hepatol. 2010, 22, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.; Lefevre, J.H.; Pichot-Delahaye, V.; Souadka, A.; Piessen, G.; Mariette, C.; Arnaud, J.P.; Balon, J.M.; Bonnetain, F.; Borie, F.; et al. The impact of perioperative chemotherapy on survival in patients with gastric signet ring cell adenocarcinoma: A multicenter comparative study. Ann. Surg. 2011, 254, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Pernot, S.; Voron, T.; Perkins, G.; Lagorce-Pages, C.; Berger, A.; Taieb, J. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J. Gastroenterol. 2015, 21, 11428–11438. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Applanat, M.; Vacher, S.; Pimpie, C.; Chemlali, W.; Derieux, S.; Pocard, M.; Bieche, I. Differential gene expression in growth factors, epithelial mesenchymal transition and chemotaxis in the diffuse type compared with the intestinal type of gastric cancer. Oncol. Lett. 2019, 18, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Applanat, M.; Pimpie, C.; Vacher, S.; Bieche, I.; Pocard, M.; Baud, V. Differential Expression of Genes Involved in Metabolism and Immune Response in Diffuse and Intestinal Gastric Cancers, a Pilot Ptudy. Biomedicines 2022, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Applanat, M.; Pimpie, C.; Vacher, S.; Pocard, M.; Baud, V. High Expression of AhR and Environmental Pollution as AhR-Linked Ligands Impact on Oncogenic Signaling Pathways in Western Patients with Gastric Cancer—A Pilot Study. Biomedicines 2024, 12, 1905. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.A.; Saunders, P.T. Endocrine disruption of oestrogen action and female reproductive tract cancers. Endocr. Relat. Cancer 2014, 21, T13–T31. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yamaguchi, M.; Miyashita, M.; Sasano, H.; Suzuki, T. Diverse role of androgen action in human breast cancer. Endocr. Oncol. 2022, 2, R102–R111. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Ohkura, Y.; Eguchi, H.; Kobayashi, Y.; Akagi, K.; Uchida, K.; Nakachi, K.; Gustafsson, J.A.; Hayashi, S. Estrogen receptor beta is expressed in human stomach adenocarcinoma. J. Cancer Res. Clin. Oncol. 2002, 128, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; He, J.; Zhang, X.; Zhang, Y.J.; Yu, G.Z.; Chen, Y.; Pan, J.; Wang, J.J.; Wang, X. Expression profile and prognostic role of sex hormone receptors in gastric cancer. BMC Cancer 2012, 12, 566. [Google Scholar] [CrossRef] [PubMed]
- Ryu, W.S.; Kim, J.H.; Jang, Y.J.; Park, S.S.; Um, J.W.; Park, S.H.; Kim, S.J.; Mok, Y.J.; Kim, C.S. Expression of estrogen receptors in gastric cancer and their clinical significance. J. Surg. Oncol. 2012, 106, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Ariazi, E.A.; Clark, G.M.; Mertz, J.E. Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res. 2002, 62, 6510–6518. [Google Scholar] [PubMed]
- Okada, H.; Tokunaga, T.; Liu, X.; Takayanagi, S.; Matsushima, A.; Shimohigashi, Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ. Health Perspect. 2008, 116, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Tiraby, C.; Hazen, B.C.; Gantner, M.L.; Kralli, A. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth. Cancer Res. 2011, 71, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Ijichi, N.; Shigekawa, T.; Ikeda, K.; Horie-Inoue, K.; Fujimura, T.; Tsuda, H.; Osaki, A.; Saeki, T.; Inoue, S. Estrogen-related receptor gamma modulates cell proliferation and estrogen signaling in breast cancer. J. Steroid Biochem. Mol. Biol. 2011, 123, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Maggiolini, M.; Picard, D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J. Endocrinol. 2010, 204, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Bieche, I.; Onody, P.; Laurendeau, I.; Olivi, M.; Vidaud, D.; Lidereau, R.; Vidaud, M. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. Clin. Chem. 1999, 45 Pt 1, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Vacher, S.; Castagnet, P.; Chemlali, W.; Lallemand, F.; Meseure, D.; Pocard, M.; Bieche, I.; Perrot-Applanat, M. High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS ONE 2018, 13, e0190619. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Toiyama, Y.; Hur, K.; Toden, S.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Kusunoki, M.; Boland, C.R.; et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis 2014, 35, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, N.; Ushijima, T.; Tan, P. How to stomach an epigenetic insult: The gastric cancer epigenome. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Xiang, Y.; Fan, L.J.; Yao, A.; Li, H.; Liao, X.H. Long noncoding RNA H19 competitively binds miR-93-5p to regulate STAT3 expression in breast cancer. J. Cell. Biochem. 2019, 120, 3137–3148. [Google Scholar] [CrossRef] [PubMed]
- Alberts, S.R.; Cervantes, A.; van de Velde, C.J. Gastric cancer: Epidemiology, pathology and treatment. Ann. Oncol. 2003, 14 (Suppl. 2), ii31–ii36. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.R.; Stabile, B.E. Extreme aggressiveness and lethality of gastric adenocarcinoma in the very young. Arch. Surg. 2009, 144, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, I.; van Gestel, Y.R.; van Ramshorst, B.; Luyer, M.D.; Bosscha, K.; Nienhuijs, S.W.; Lemmens, V.E.; de Hingh, I.H. Peritoneal carcinomatosis of gastric origin: A population-based study on incidence, survival and risk factors. Int. J. Cancer 2014, 134, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.M.; Chen, L.; Chang, W.C.; Su, S.Y.; Hung, Y.C.; Ma, W.L. Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials. Int. J. Mol. Sci. 2021, 22, 7748. [Google Scholar] [CrossRef] [PubMed]
- Claessens, F.; Tilley, W. Androgen signalling and steroid receptor crosstalk in endocrine cancers. Endocr. Relat. Cancer 2014, 21, E3–E5. [Google Scholar] [CrossRef] [PubMed]
- Ur Rahman, M.S.; Cao, J. Estrogen receptors in gastric cancer: Advances and perspectives. World J. Gastroenterol. 2016, 22, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Kojima, O.; Kawakami, S.; Uehara, Y.; Takahashi, T. The prognosis of patients with gastric cancer possessing sex hormone receptors. Surg. Today 1992, 22, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.H.; Do, I.G.; Jang, J.; Kim, S.T.; Kim, K.M.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kang, W.K.; et al. Anti-tumor efficacy of fulvestrant in estrogen receptor positive gastric cancer. Sci. Rep. 2014, 4, 7592. [Google Scholar] [CrossRef] [PubMed]
- Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 2017, 17, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.L.; Facey, C.O.B.; Boman, B.M. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers 2024, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Giguere, V.; Yang, N.; Segui, P.; Evans, R.M. Identification of a new class of steroid hormone receptors. Nature 1988, 331, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Alaynick, W.A.; Way, J.M.; Wilson, S.A.; Benson, W.G.; Pei, L.; Downes, M.; Yu, R.; Jonker, J.W.; Holt, J.A.; Rajpal, D.K.; et al. ERRgamma regulates cardiac, gastric, and renal potassium homeostasis. Mol. Endocrinol. 2010, 24, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Choi, H.; Oshima, M.; Cheong, J.H.; Kim, S.; Lee, J.H.; Park, Y.S.; Choi, H.S.; Kweon, M.N.; Pack, C.G.; et al. Estrogen-related receptor gamma functions as a tumor suppressor in gastric cancer. Nat. Commun. 2018, 9, 1920. [Google Scholar] [CrossRef] [PubMed]
- Ignatov, T.; Weissenborn, C.; Poehlmann, A.; Lemke, A.; Semczuk, A.; Roessner, A.; Costa, S.D.; Kalinski, T.; Ignatov, A. GPER-1 expression decreases during breast cancer tumorigenesis. Cancer Investig. 2013, 31, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, C.; Ignatov, T.; Nass, N.; Kalinski, T.; Dan Costa, S.; Zenclussen, A.C.; Ignatov, A. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients. Cancer Investig. 2017, 35, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Filardo, E.J. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis. J. Steroid Biochem. Mol. Biol. 2018, 176, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhan, N.; Li, R.; Dong, W. Downregulation of G Protein-Coupled Estrogen Receptor (GPER) is Associated with Reduced Prognosis in Patients with Gastric Cancer. Med. Sci. Monit. 2019, 25, 3115–3126. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.G.; Lebot, M.N.; Sukkarn, B.; Ball, G.; Green, A.R.; Rakha, E.A.; Ellis, I.O.; Storr, S.J. Low expression of G protein-coupled oestrogen receptor 1 (GPER) is associated with adverse survival of breast cancer patients. Oncotarget 2018, 9, 25946–25956. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, C.; Ignatov, T.; Poehlmann, A.; Wege, A.K.; Costa, S.D.; Zenclussen, A.C.; Ignatov, A. GPER functions as a tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells. J. Cancer Res. Clin. Oncol. 2014, 140, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Prossnitz, E.R.; Arterburn, J.B.; Smith, H.O.; Oprea, T.I.; Sklar, L.A.; Hathaway, H.J. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol. 2008, 70, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Terasaka, S.; Kiyama, R. Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ. Pollut. 2011, 159, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Vellore, N.A.; Kasibotla, A.V.; Dwayne, H.J.; Stubblefield, M.A.; Uppu, R.M. Molecular docking of bisphenol A and its nitrated and chlorinated metabolites onto human estrogen-related receptor-gamma. Biochem. Biophys. Res. Commun. 2012, 426, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Pupo, M.; Pisano, A.; Lappano, R.; Santolla, M.F.; De Francesco, E.M.; Abonante, S.; Rosano, C.; Maggiolini, M. Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ. Health Perspect. 2012, 120, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhang, T.; Yang, P.; Li, M.; Yang, Y.; Wang, Y.; Du, J.; Pan, K.; Zhang, K. Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRgamma signals. Toxicol. Vitr. 2015, 30 Pt B, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Applanat, M.; Kolf-Clauw, M.; Michel, C.; Beausoleil, C. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol. Cell Endocrinol. 2018, 475, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Perian, S.; Vanacker, J.M. GPER as a Receptor for Endocrine-Disrupting Chemicals (EDCs). Front. Endocrinol. 2020, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Albanito, L.; Lappano, R.; Madeo, A.; Chimento, A.; Prossnitz, E.R.; Cappello, A.R.; Dolce, V.; Abonante, S.; Pezzi, V.; Maggiolini, M. Effects of atrazine on estrogen receptor alpha- and G protein-coupled γreceptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ. Health Perspect. 2015, 123, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Shi, P.; Abbas, M.N.; Wang, Y.; Xu, J.; Chen, Y.; Cui, H. Epigenetic modification regulates tumor progression and metastasis through EMT (Review). Int. J. Oncol. 2022, 60, 70. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Erdmann, C.; Chinnaiyan, A.M.; Merajver, S.D.; Kleer, C.G. Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res. 2006, 66, 4095–4099. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Kleer, C.G. Enhancer of Zeste 2 as a marker of preneoplastic progression in the breast. Cancer Res. 2006, 66, 9352–9355. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, F.; Zong, G.; Liu, R.; Zhang, Y.; Luan, Y.; Xu, L.; Xuan, J. Prognostic significance of EZH2 expression in patients with digestive cancers: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 16043–16049. [Google Scholar] [PubMed]
- Endo, H.; Shiroki, T.; Nakagawa, T.; Yokoyama, M.; Tamai, K.; Yamanami, H.; Fujiya, T.; Sato, I.; Yamaguchi, K.; Tanaka, N.; et al. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS ONE 2013, 8, e77070. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Sun, M.; Xia, R.; Zhang, E.B.; Liu, X.H.; Zhang, Z.H.; Xu, T.P.; De, W.; Liu, B.R.; Wang, Z.X. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 2015, 6, e1802. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, J.; Tang, W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim. Biophys. Sin. 2014, 46, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Yeoh, K.G. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015, 149, 1153–1162.e3. [Google Scholar] [CrossRef] [PubMed]
- Da, M.; Ma, J.; Zhang, Y.; Yang, J.; Yao, J.; Huang, B.; Ma, H.; Ge, L. High expression level of long non-coding RNA HOTAIR is associated with poor overall survival in gastric cancer patients: Evidence from meta-analysis. JBUON 2017, 22, 911–918. [Google Scholar] [PubMed]
- Sun, F.; Liang, W.; Qian, J. The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol. Med. Rep. 2019, 20, 3583–3596. [Google Scholar] [CrossRef] [PubMed]
- Raju, G.S.R.; Pavitra, E.; Bandaru, S.S.; Varaprasad, G.L.; Nagaraju, G.P.; Malla, R.R.; Huh, Y.S.; Han, Y.K. HOTAIR: A potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol. Cancer 2023, 30, 65. [Google Scholar] [CrossRef] [PubMed]
- Kogo, R.; Shimamura, T.; Mimori, K.; Kawahara, K.; Imoto, S.; Sudo, T.; Tanaka, F.; Shibata, K.; Suzuki, A.; Komune, S.; et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011, 71, 6320–6326. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013, 32, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Meseure, D.; Drak Alsibai, K.; Nicolas, A.; Bieche, I.; Morillon, A. Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets. Biomed. Res. Int. 2015, 2015, 320214. [Google Scholar] [CrossRef] [PubMed]
- Bhan, A.; Mandal, S.S. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer. Biochim. Biophys. Acta 2015, 1856, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Bhan, A.; Hussain, I.; Ansari, K.I.; Kasiri, S.; Bashyal, A.; Mandal, S.S. Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol. J. Mol. Biol. 2013, 425, 3707–3722. [Google Scholar] [CrossRef] [PubMed]
- Bhan, A.; Hussain, I.; Ansari, K.I.; Bobzean, S.A.; Perrotti, L.I.; Mandal, S.S. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J. Mol. Biol. 2014, 426, 3426–3441. [Google Scholar] [CrossRef] [PubMed]
- Bhan, A.; Hussain, I.; Ansari, K.I.; Bobzean, S.A.; Perrotti, L.I.; Mandal, S.S. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 2014, 141, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yeh, C.R.; Sun, Y.; Lin, C.; Chou, J.; Ou, Z.; Chang, C.; Qi, J.; Yeh, S. Estrogen receptor beta promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 2018, 37, 5037–5053. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Li, S.S. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int. J. Mol. Sci. 2012, 13, 10143–10153. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, A.P.; Mitra, R. Cancer-Associated Fibroblasts: Major Co-Conspirators in Tumor Development. Cancers 2024, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Basak, P.; Chatterjee, S.; Bhat, V.; Su, A.; Jin, H.; Lee-Wing, V.; Liu, Q.; Hu, P.; Murphy, L.C.; Raouf, A. Long Non-Coding RNA H19 Acts as an Estrogen Receptor Modulator that is Required for Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Cell. Physiol. Biochem. 2018, 51, 1518–1532. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, B.; Li, J.; Su, L.; Yan, M.; Zhu, Z.; Liu, B. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 2014, 5, 2318–2329. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Zhu, J.; Ma, J.; Zhang, J.L.; Zuo, S.; Chen, G.W.; Wang, X.; Pan, Y.S.; Liu, Y.C.; Wang, P.Y. Overexpression of long non-coding RNA H19 is associated with unfavorable prognosis in patients with colorectal cancer and increased proliferation and migration in colon cancer cells. Oncol. Lett. 2017, 14, 2446–2452. [Google Scholar] [CrossRef] [PubMed]
Genes | PT (n = 11) | Tumoral (n = 29) | p-Value a | ADCI (n = 13) | p-Value a | ADK (n = 16) | p-Value a | ADCI vs. ADK p-Value b |
---|---|---|---|---|---|---|---|---|
A, Receptors | ||||||||
ERα | 1 (0.48–2.08) | 1.12 (0.17–3.16) | >0.99 (NS) | 1.90 (0.64–3.16) | 0.01 | 0.69 (0.17–1.22) | 0.04 | 0.0005 |
ERβ | 1 (0–6.51) | 1.13 (0.12–4.44) | >0.99 (NS) | 2.68 (0.68–4.44) | 0.15 (NS) | 0.40 (0.12–2.57) | 0.06 (NS) | 0.002 |
AR | 1 (0.54–2.54) | 0.56 (0.04–1.58) | <0.01 | 0.94 (0.26–1.58) | 0.17 (NS) | 0.25 (0.04–0.76) | <0.0001 | 0.003 |
PR | 1 (0.51–4.53) | 0.86 (0.03–3.22) | >0.99 (NS) | 1.43 (0.62–2.74) | 0.20 (NS) | 0.48 (0.03–3.22) | 0.013 | 0.005 |
ERRγ | 1 (0.04–4.77) | 0.04 (0.00–1.77) | 0.001 | 0.07 (0.01–1.77) | 0.011 | 0.02 (0.00–0.18) | 0.0002 | 0.25 NS |
GPER | 1 (0.13–2) | 0.07 (0.02–0.38) | <0.0001 | 0.08 (0.04–0.38) | <0.0001 | 0.06 (0.02–0.15) | <0.0001 | 0.99 (NS) |
B, Epigenetic | ||||||||
EZH2 | 1 (0.21–2.19) | 3.02 (1.11–9.45) | <0.0001 | 2.51 (1.19–3.81) | 0.03 | 4.34 (1.11–9.45) | <0.0001 | 0.31 NS |
HoTAIR | 0 (0–3.1) | 19.2 (0–67.8) | 0.0002 | 8.40 (0–52.6) | 0.02 | 20.8 (0.25–67.8) | <0.0001 | 0.99 (NS) |
H19 | 1 (0.38–12.3) | 3.54 (0.4–42.3) | 0.12 | 2.5 (1.1–42.3) | 0.48 (NS) | 6.94 (0.4–27.8) | 0.12 | 0.99 (NS) |
DnmT1 | 1 (0.77–1.47) | 1.6 (0.86–2.5) | 0.0007 | 1.5 (1.1–1.75) | 0.10 (NS) | 2.05 (0.9–2.5) | 0.0001 | 0.38 NS |
MALAT | 1 (0.56–2.02) | 0.65 (0.24–1.92) | 0.11 | 0.61 (0.26–1.22) | 0.09 (NS) | 0.69 (0.24–1.92) | 0.39 | 0.99 (NS) |
C, DNA repair | ||||||||
BRCA1 | 1 (0.3–1.70) | 2.38 (1.38–6.86) | <0.0001 | 2 (1.47–3.33) | 0.025 | 3.12 (1.38–6.86) | <0.0001 | 0.12 (NS) |
(A) | ERα | ERβ | PR | AR | ERRγ | GPER |
Gender, Male n = 6) Female (n = 7) | p = 0.23 2.34 (0.6–3.2) 1.71 (0.7–3) | p = 0.36 3 (1.2–4.1) 1.2 (0.7–4.4) | p = 0.31 1.64 (0.6–2.7) 1.33 (0.6–2) | p = 0.73 0.85 (0.5–1.2) 0.96 (0.3–1.6) | p = 0.001 0.02 (0.01–0.06) 0.24 (0.07–1.8) | p = 0.11 0.07 (0.04–0.1) 0.09 (0.04–0.4) |
Age <60 years (n = 8) >60 years (n = 5) | p = 0.62 2.23 (0.6–3.2) 1.76 (0.75–2.5) | p = 0.13 3.6 (0.7–4.4). 1.17 (0.7–3.4) | p = 0.59 1.5 (0.6–1.97) 1.43 (0.9–2.7) | p = 0.52 0.98 (0.3–1.6) 0.76 (0.5–1.1) | p = 0.94 0.09 (0.01–0.9) 0.07 (0.01–1.8) | p = 0.59 0.08 (0.04–0.4) 0.08 (0.04–0.4) |
Tumor invasion T1-T2 (n = 2) T3-T4 (n = 11) | p = 0.53 1.73 (1.7–1.8) 2.14 (0.6–3.2) | p = 0.18 1.1 (1–1.2) 3.4 (0.7–4.4) | p = 0.63 1.16 (0.9–1.4) 1.63 (0.6–2.7) | p = 0.51 1.03 (1–1.1) 0.87 (0.3–2.7) | p = 0.15 0.15 (0.07–0.2) 0.06 (0.01–1.8) | p > 0.999 0.08 0.08 (0.04–0.4) |
Vascular invasion negative (n = 3) positive (n = 10) | p = 0.57 2.33 (1.1–3.2) 1.83 (0.6–3.2) | p = 0.37 3.52 (2.5–4.1) 1.93 (0.7–4.4) | p = 0.49 1.38 (0.6–1.7) 1.53 (0.6–2.7) | p = 0.94 1.02 (0.3–1.2) 0.90 (0.5–1.2) | p = 0.37 0.04 (0.01–0.1) 0.12 (0.01–0.8) | p = 0.45 0.07 (0.04–0.1) 0.08 (0.04–0.4) |
Lymphatic invasion negative (n = 1) positive (n = 12) | ND 2.33 1.83 (0.6–3.2) | ND 4.11 3.6 (0.7–4.4) | ND 1.38 1.53 (0.62–2.7) | ND 2.02 0.90 (0.3–1.6) | ND 0.01 0.1 (0.01–1.8) | ND 0.07 0.08 (0.04–0.4) |
Peritoneal metastasis negative (n = 9) positive (n = 4) | p = 0.15 2.14 (0.6–3.2) 1.19 (0.7–2.3) | p = 0.55 2.68 (1–4.4) 2.1 (0.7–4.1) | p = 0.05 1.66 (0.6–2.7) 1.09 (0.6–1.4) | p = 0.60 0.94 (0.5–1.6) 0.78 (0.3–1) | p = 0.33 0.06 (0.01–0.6) 0.51 (0.01–1.8) | p = 0.68 0.08 (0.04–0.12) 0.22 (0.04–0.4) |
TNM I-II (n = 5) III-IV (n = 8) | p = 0.22 2.36 (0.6–3.2) 1.73 (0.7–2.5) | p = 0.17 3.74 (1.2–4.4) 1.92 (0.7–4.1) | p = 0.53 1.66 (0.6–1.97) 1.35 (0.6–2.7) | p = 0.52 0.94 (0.5–1.6) 0.86 (0.3–1.2) | p = 0.83 0.06 (0.01–0.6) 0.1 (0.01–1.8) | p = 0.37 0.09 (0.07–0.12) 0.07 (0.04–0.4) |
(B) | ERα | ERβ | PR | AR | ERRγ | GPER |
Gender, Male (n = 7) Female (n = 9) | p = 0.78 0.77 (0.2–1.2) 0.68 (0.4–1.2) | p = 0.92 0.38 (0.1–2.2) 0.42 (0.2–2.6) | p = 0.78 0.49 (0.1–1.1) 0.47 (0.03–3.2) | p = 0.42 0.25 (0.04–0.7) 0.15 (0.1–0.8) | p > 0.999 0.04 (0–0.06) 0.15 (0.1–0.8) | p = 0.98 0.07 (0.03–0.1) 0.06 (0.02–0.1) |
Age <60 years (n = 1) >60 years (n = 15) | ND 1.16 0.7 (0.2–1.2) | ND 2.22 0.4 (0.1–2.6) | ND 0.7 0.2 (0.04–0.8) | ND 1.14 0.5 (0.03–3.2) | ND 0.04 0.02 (0–0.2) | ND 0.14 0.06 (0–0.2) |
Tumor invasion, T T1-T2 (n = 4) T3-T4 (n = 12) | p = 0.22 0.33 (0.2–1.2) 0.73 (0.4–1.2) | p = 0.26 0.25 (0.1–2.6) 0.51 (0.2–2.2) | p = 0.21 0.26 (0.1–0.5) 0.53 (0.03–3.2) | p = 0.07 0.14 (0.04–0.2) 0.46 (0.1–0.8) | p = 0.31 0.05 (0–0.2) 0.02 (0–0.1) | p = 0.34 0.04 (0.03–0.1) 0.06 (0.02–0.1) |
Vascular invasion, Negative (n = 6) Positive (n = 10) | p = 0.19 0.88 (0.5–1.2) 0.61 (0.2–1.2) | p = 0.09 0.9 (0.2–2.6) 0.36 (0.1–2.2) | p = 0.58 0.48 (0.1–3.2) 0.43 (0.03–1.1) | p = 0.54 0.23 (0.1–0.8) 0.31 (0.04–0.7) | p = 0.44 0.04 (0–0.02) 0.02 (0–0.07) | p = 0.13 0.09 (0–0.2) 0.05 (0–0.01) |
Lymphatic invasion, Negative (n = 10) Positive (n = 5) | p = 0.009 * 0.50 (0.2–1.2) 1.09 (0.9–1.2 | p = 0.37 0.37 (0.1–2.6) 0.6 (0.3–2.2) | p = 0.003 * 0.26 (0.03–0.6) 1.14 (0.5–3.2) | p = 0.03 * 0.17 (0.04–0.6) 0.66 (0.4–0.8) | p = 0.74 0.02 (0–0.2) 0.04 (0–0.09) | p = 0.017 * 0.05 (0.02–0.1) 0.14 (0.05–0.15) |
Peritoneal metastasis negative (n = 15) positive (n = 1) | ND 0.68 (0.2–1.2) 1.16 | ND 0.39 (0.1–2.6) 2.22 | ND 0.47 (0.03–3.2) 1.14 | ND 0.24 (0.04–0.8) 0.66 | ND 0.02 (0–0.2) 0.04 | ND 0.06 (0–0.1) 0.14 |
TNM I-II (n = 11) III-IV (n = 5) | p = 0.006 * 0.53 (0.2–1.2) 1.09 (0.9–1.2) | p = 0.51 0.39 (0.1–2.6) 0.6 (0.3–2.2) | p = 0.002 * 0.26 (0.03–0.6) 1.14 (0.5–3.2) | p = 0.002 * 0.18 (0.04–0.6) 0.66 (0.4–0.8) | p = 0.80 0.02 (0–0.2) 0.04 (0–0.09) | p = 0.024 0.05 (0.02–0.12) 0.14 (0.05–0.15) |
Genes | ERα | ERβ | AR | PR | ||||
---|---|---|---|---|---|---|---|---|
r | p-Value a | r | p-Value a | r | p-Value a | r | p-Value a | |
Hormone receptors | ||||||||
ERα | 1 | <0.0001 | 0.516 | 0.07 | 0.615 | 0.024 | 0.826 | 0.001 |
ERβ | 0.516 | 0.07 | 1 | <0.0001 | −0.038 | 0.90 | 0.414 | 0.16 |
AR | 0.615 | 0.024 | −0.038 | 0.90 | 1 | <0.0001 | 0.373 | 0.21 |
PR | 0.826 | 0.001 | 0.414 | 0.16 | 0.373 | 0.21 | 1 | <0.0001 |
ERRγ | −0.434 | 0.14 | −0.499 | 0.08 | 0.099 | 0.75 | −0.370 | 0.21 |
GPER | −0.011 | 0.97 | −0.311 | 0.30 | 0.480 | 0.09 | −0.007 | 0.98 |
AhR | −0.072 | 0.81 | −0.487 | 0.09 | 0.198 | 0.52 | 0.134 | 0.66 |
Growth factors | ||||||||
IGF1 | 0.654 | 0.015 | 0.132 | 0.67 | 0.516 | 0.07 | 0.707 | 0.007 |
IGF1R | 0.396 | 0.18 | −0.259 | 0.39 | 0.549 | 0.055 | 0.580 | 0.04 |
FGF7 | 0.791 | 0.001 | 0.632 | 0.02 | 0.236 | 0.44 | 0.880 | 0.0001 |
FGFR1 | 0.934 | <0.0001 | 0.621 | 0.02 | 0.621 | 0.02 | 0.735 | 0.004 |
EMT and migration | ||||||||
VIM | 0.802 | 0.001 | 0.165 | 0.60 | 0.571 | 0.04 | 0.685 | 0.015 |
CDH1 | −0.055 | 0.86 | −0.42 | 0.15 | 0 | 1 | 0.204 | 0.50 |
ZEB2 | 0.885 | <0.001 | 0.446 | 0.11 | 0.434 | 0.14 | 0.865 | 0.0001 |
SNAIL1 | 0.472 | 0.11 | −0.258 | 0.40 | −0.357 | 0.23 | −0.231 | 0.44 |
SLUG | 0.718 | 0.007 | 0.228 | 0.450 | 0.318 | 0.286 | 0.804 | 0.001 |
RUNX3 | 0.462 | 0.11 | 0.562 | 0.05 | −0.143 | 0.64 | 0.602 | 0.03 |
CXCL12 | 0.907 | <0.001 | 0.581 | 0.04 | 0.719 | 0.005 | 0.642 | 0.02 |
Cell proliferation and migration | ||||||||
MMP2 | 0.698 | 0.008 | 0.289 | 0.34 | 0.269 | 0.34 | 0.690 | 0.01 |
MMP9 | 0.203 | 0.50 | 0.400 | 0.18 | −0.341 | 0.25 | 0.522 | 0.01 |
MKI67 | −0.259 | 0.40 | −0.204 | 0.51 | −0.171 | 0.58 | −0.147 | 0.88 |
P53 | 0.253 | 0.40 | 0.209 | 0.49 | −0.297 | 0.32 | 0.569 | 0.045 |
P16 | 0.019 | 0.95 | −0.132 | 0.66 | −0.187 | 0.54 | 0.153 | 0.61 |
Epigenetic | ||||||||
EZH2 | −0.280 | 0.36 | −0.368 | 0.21 | −0.187 | 0.55 | 0.124 | 0.69 |
HOTAIR | −0.315 | 0.30 | −0.569 | 0.04 | 0.022 | 0.94 | −0.341 | 0.25 |
H19 | 0.25 | 0.42 | 0.30 | 0.32 | −0.011 | 0.98 | 0.52 | 0.07 |
DNMT1 | −0.23 | 0.45 | −0.13 | 0.66 | −0.34 | 0.25 | −0.03 | 0.93 |
DNArepair BRCA1 | −0.467 | 0.10 | −0.357 | 0.23 | −0.247 | 0.42 | −0.163 | 0.59 |
Genes | ERα | ERβ | AR | PR | ||||
---|---|---|---|---|---|---|---|---|
r | p-Value a | r | p-Value a | r | p-Value a | r | p-Value a | |
ERα | 1 | < 0.0001 | 0.675 | 0.005 | 0.771 | 0.001 | 0.755 | 0.001 |
ERβ | 0.675 | 0.005 | 1 | <0.0001 | 0.274 | 0.31 | 0.303 | 0.25 |
AR | 0.771 | 0.001 | 0.274 | 0.31 | 1 | <0.0001 | 0.846 | <0.0001 |
PR | 0.755 | 0.001 | 0.303 | 0.25 | 0.846 | <0.0001 | 1 | <0.0001 |
ERRγ | 0.274 | 0.03 | 0.321 | 0.23 | 0.115 | 0.67 | 0.335 | 0.20 |
GPER | 0.871 | <0.0001 | 0.621 | 0.01 | 0.771 | 0.001 | 0.846 | <0.0001 |
AhR | −0.011 | 0.68 | −0.144 | 0.59 | −0.018 | 0.69 | −0.221 | 0.41 |
Growth factors | ||||||||
IGF1 | 0.794 | 0.0004 | 0.339 | 0.20 | 0.962 | <0.0001 | 0.962 | <0.0001 |
IGF1R | 0.601 | 0.015 | 0.140 | 0.61 | 0.602 | 0.015 | 0.497 | 0.06 |
FGF7 | 0.819 | 0.0001 | 0.322 | 0.22 | 0.964 | <0.0001 | 0.924 | <0.0001 |
FGFR1 | 0.713 | 0.002 | 0.227 | 0.34 | 0.895 | <0.0001 | 0.892 | <0.0001 |
EMT and migration | ||||||||
CDH1 | −0.353 | 0.20 | −0.034 | 0.90 | −0.308 | 0.24 | −0.429 | 0.09 |
VIM | 0.592 | 0.02 | 0.037 | 0.89 | 0.821 | 0.0002 | 0.728 | 0.002 |
ZEB2 | 0.813 | 0.0001 | 0.349 | 0.18 | 0.907 | 0.0001 | 0.779 | 0.004 |
SNAIL1 | 0.365 | 0.16 | 0.090 | 0.72 | 0.322 | 0.22 | 0.319 | 0.23 |
SLUG | 0.440 | 0.08 | −0.135 | 0.64 | 0.631 | 0.01 | 0.422 | 0.10 |
RUNX3 | −0.068 | 0.80 | 0.360 | 0.17 | −0.404 | 0.12 | 0.699 | 0.003 |
CXCL12 | −0.772 | 0.001 | −0.270 | 0.31 | 0.921 | <0.0001 | 0.834 | <0.0001 |
Cell proliferation and migration | ||||||||
MMP2 | 0.605 | 0.01 | 0.076 | 0.78 | 0.831 | <0.0001 | 0.699 | 0.003 |
MMP9 | −0.087 | 0.75 | −0.061 | 0.82 | −0.302 | 0.26 | −0.450 | 0.07 |
MKI67 | −0.691 | 0.003 | −0.350 | 0.18 | −0.771 | <0.0001 | −0.794 | 0.0001 |
p53 | −0.789 | 0.0004 | −0.459 | 0.07 | −0.734 | 0.002 | −0.625 | 0.01 |
p16 | 0.284 | 0.23 | 0.044 | 0.88 | 0.442 | 0.09 | 0.411 | 0.11 |
Epigenetic | ||||||||
EZH2 | −0.526 | 0.04 | −0.135 | 0.62 | −0.718 | 0.04 | −0.818 | 0.0001 |
HOTAIR | −0.152 | 0.57 | 0.049 | 0.86 | −0.060 | 0.82 | −0.057 | 0.83 |
H19 | 0.830 | 0.0001 | 0.49 | 0.054 | −0.880 | <0.0001 | 0.82 | 0.0002 |
DNArepair BRCA1 | −0.059 | 0.83 | 0.131 | 0.63 | −0.025 | 0.93 | −0.258 | 0.33 |
(A) (Diffuse GC) | (B) (Intestinal GC) | |||||||
---|---|---|---|---|---|---|---|---|
Genes | ERRγ | GPER | ERRγ | GPER | ||||
r | p-Value a | r | p-Value a | r | p-Value a | r | p-Value a | |
Hormone receptors | ||||||||
ERα | −0.434 | 0.14 | −0.011 | 0.97 | 0.274 | 0.03 | 0.871 | <0.0001 |
ERβ | −0.499 | 0.08 | −0.311 | 0.30 | 0.321 | 0.23 | 0.621 | 0.01 |
AR | 0.099 | 0.75 | 0.480 | 0.09 | 0.115 | 0.67 | 0.771 | 0.001 |
PR | −0.370 | 0.21 | −0.007 | 0.98 | 0.335 | 0.20 | 0.846 | <0.0001 |
ERRγ | 1 | <0.0001 | −0.567 | 0.04 | 1 | <0.0001 | 0.494 | 0.005 |
GPER | −0.567 | 0.04 | 1 | <0.0001 | 0.494 | 0.05 | 1 | <0.0001 |
AhR | 0.309 | 0.30 | −0.085 | 0.78 | −0.617 | 0.01 | −0.405 | 0.14 |
Growth factors | ||||||||
IGF1 | −0.291 | 0.33 | −0.103 | 0.74 | 0.188 | 0.48 | 0.912 | <0.0001 |
IGF1R | 0.396 | 0.18 | 0.013 | 0.96 | 0.182 | 0.50 | 0.561 | 0.02 |
FGF7 | −0.555 | 0.05 | −0.419 | 0.15 | 0.112 | 0.68 | 0.838 | <0.0001 |
FGFR1 | −0.156 | 0.12 | 0.044 | 0.88 | −0.044 | 0.87 | 0.727 | 0.001 |
EMT and migration | ||||||||
CDH1 | −0.253 | 0.37 | −0.066 | 0.83 | −0.550 | 0.03 | −0.362 | 0.17 |
VIM | 0.214 | 0.48 | −0.146 | 0.63 | −0.339 | 0.20 | 0.506 | 0.05 |
ZEB2 | 0.264 | 0.38 | −0.030 | 0.91 | 0.05 | 0.85 | 0.709 | 0.002 |
SNAIL1 | −0.298 | 0.32 | −0.569 | 0.04 | −0.379 | 0.15 | 0.238 | 0.37 |
SLUG | −0.266 | 0.38 | −0.266 | 0.53 | −0.398 | 0.13 | 0.223 | 0.40 |
RUNX3 | −0.308 | 0.31 | −0.338 | 0.26 | −0.284 | 0.28 | −0.310 | 0.24 |
CXCL12 | 0.270 | 0.37 | 0.239 | 0.44 | 0.182 | 0.50 | 0.741 | 0.001 |
Cell proliferation and migration | ||||||||
MMP2 | −0.720 | 0.01 | −0.333 | 0.27 | −0.284 | 0.28 | 0.530 | 0.03 |
MMP9 | −0.104 | 0.73 | 0.528 | 0.06 | −0.5 | 0.08 | −0.317 | 0.23 |
MKI67 | 0.011 | 0.93 | −0.393 | 0.18 | −0.424 | 0.10 | −0.797 | 0.0002 |
p53 | −0.35 | 0.24 | −0.25 | 0.41 | −0.262 | 0.29 | −0.711 | 0.002 |
p16 | −0.22 | 0.46 | −0.44 | 0.14 | −0.646 | 0.007 | 0.225 | 0.40 |
Epigenetic | ||||||||
EZH2 | 0.077 | 0.80 | −0.415 | 0.16 | −0.419 | 0.11 | −0.727 | 0.001 |
HOTAIR | 0.172 | 0.58 | −0.006 | 0.98 | 0.292 | 0.27 | −0.118 | 0.66 |
H19 | −0.39 | 0.19 | −0.34 | 0.26 | 0.16 | 0.54 | 0.820 | 0.0002 |
DNMT1 | −0.17 | 0.57 | −0.56 | 0.049 | −0.50 | 0.049 | −0.54 | 0.033 |
BRCA1 | −0.116 | 0.71 | −0.422 | 0.15 | −0.671 | 0.005 | −0.288 | 0.28 |
(A) | EZH2 | H19 | HOTAIR | DNMT1 |
Gender, Male (n = 6) Female (n = 7) | p = 0.73 2.11 (1.2–3.8) 2.5 (1.7–3.4) | p = 0.23 4.86 (1.1–42.3) 1.8 (1.2–6.2) | p = 0.23 3.9 (0–21.5) 36 (0–52.6) | p = 0.86 1.4 (1–1.7) 1.5 (1–1.7 |
Age <60 years (n = 8) >60 years (n = 5) | p = 0.03 2.12 (1.2–2.7) 3.1 (1.7–3.8) | p > 0.999 3 (1.1–6.2) 1.8 (1.2–42.3) | p = 0.12 2.58 (0–42) 19.5 (4–52) | p = 0.10 1.34 (1–1.7) 1.6 (1.3–1.7 |
Tumor invasion T1-T2 (n = 2) T3-T4 (n = 11) | p = 0.15 3.16 (2.9–3.4) 2.24 (1.2–3.8) | p = 0.31 1.53 (1.3–1.8) 3.54 (1.1–42.3) | p = 0.013 51.7 (51–52.6) 4.1 (0–42.3) | p = 0.14 1.7 (1.6–1.7) 1.4 (1–1.7) |
Vascular invasion negative (n = 3) positive (n = 10) | p = 0.049 1.4 (1.2–2.2) 2.7 (1.5–3.8) | p = 0.29 1.77 (1.07–3.8) 3 (1.2–42.3) | p = 0.81 3.7 (1.4–36.1) 14 (0–52.6) | p = 0.39 1.33 (1.02–1.6) 1.52 (1–1.75) |
Lymphatic invasion negative (n = 1) positive (n = 12) | ND 1.38 2.6 (1.2–3.8) | ND 3.83 2.4 (1.07–42.3) | ND 1.44 14 (0–52.6) | ND 1 1.52 (1–1.75) |
Peritoneal metastasis negative (n = 9) positive (n = 4) | p = 0.26 2.7 (1.2–3.8) 1.9 (1.4–2.8) | p = 0.82 2.48 (1.07–43.3) 2.8 (1.2–6.2) | p = 0.50 4.1 (0–52.6) 27.8 (1.4–42.3) | p = 0.08 1.17 (1–1.6) 1.33 |
TNM I-II (n = 5) III-IV (n = 8) | p = 0.17 2 (1.2–2.7) 2.8 (1.4–3.8) | p = 0.72 2.48 (1.07–5.9) 2.82 (1.2–42.3) | p = 0.03 0 (0.2–21.5) 27.8 (1.4–52.6) | p = 0.75 1.36 (1.1–1.68) 1.55 (1–1.75) |
(B) | EZH2 | H19 | HOTAIR | DNMT1 |
Gender, Male (n = 7) Female (n = 9) | p = 0.41 3.55 (1.4–5.5) 5.54 (1.1—9.4) | p = 0.83 11.1 (0.4–27.8) 5.4 (0.98–25.1) | p = 0.54 13.7 (2.5–62.1) 22.4 (0.2–67.8) | p = 0.35 1.6 (0.9–2.5) 2.1 (1.2–2.5) |
Age < 60 years (n = 1) > 60 years (n = 15) | ND 1.46 5.1 (1.1–9.4) | ND 25.8 5.4 (0.4–25.1) | ND 62.1 19.2 (0.2–27.8) | ND 1.31 2.1 (0.9–2.5) |
Tumor invasion, T T1-T2 (n = 4) T3-T4 (n = 12) | p = 0.13 5.81 (5.1–6.1) 3.51 (1.1–9.4) | p = 0.013 1.1 (0.4–2.9) 10.97 (1–27.8) | p = 0.40 18.1 (0.25–28.5) 20.8 (2.5–67.8) | p = 0.77 1.8 (1.4–2.4) 2.1 (0.9–2.5) |
Vascular invasion, Negative (n = 6) Positive (n = 10) | p = 0.63 5.66 (1.1–9.5) 3.55 (1.4–9.5) | p = 0.71 4.2 (1.6–25.1) 9.64 (0.4–27.8) | p = 0.49 16.5 (0.2–61) 25.1 (2.5–67.8) | p = 0.95 2.13 (1.2–2.5) 1.99 (0.9–2.5) |
Lymphatic invasion, Negative (n = 10) Positive (n = 5) | p = 0.005 5.53 (3.3–9.4) 1.46 (1.1–3.5) | p < 0.001 2.2 (0.4–10.8) 15.9 (11.1–27.8) | p = 0.86 20.8 (0.2–67.8) 28.2 (2.5–62.1) | p = 0.05 2.2 (1.4–2.5) 1.3 (1.2–2.4) |
Peritoneal metastasis negative (n = 15) positive (n = 1) | ND 5.1 (1.1–9.4) 1.46 | ND 5.4 (0.4–25.1) 25.8 | ND 19.2 (0.2–67.8) 62.1 | ND 2.1 (0.9–2.5) 1.31 |
TNM I-II (n = 11) III-IV (n = 5) | p = 0.013 5.53 (1.4–9.4) 1.46 (1.1–3.5) | p = 0.002 2.87 (0.4–12.5) 15.9 (11.1–27.9) | p = 0.83 19.2 (0.2–67.8) 28.1 (2.5–62.1) | p = 0.14 2.15 (0.9–2.5) 1.32 (1.2–2.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimpie, C.; Schninzler, A.; Pocard, M.; Baud, V.; Perrot-Applanat, M. Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study. Biomedicines 2025, 13, 1815. https://doi.org/10.3390/biomedicines13081815
Pimpie C, Schninzler A, Pocard M, Baud V, Perrot-Applanat M. Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study. Biomedicines. 2025; 13(8):1815. https://doi.org/10.3390/biomedicines13081815
Chicago/Turabian StylePimpie, Cynthia, Anne Schninzler, Marc Pocard, Véronique Baud, and Martine Perrot-Applanat. 2025. "Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study" Biomedicines 13, no. 8: 1815. https://doi.org/10.3390/biomedicines13081815
APA StylePimpie, C., Schninzler, A., Pocard, M., Baud, V., & Perrot-Applanat, M. (2025). Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study. Biomedicines, 13(8), 1815. https://doi.org/10.3390/biomedicines13081815