The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. NSCLC Cell Lines and Cell Culture
2.2. Tyrosine Kinase Inhibitors, Epidermal Growth Factor Ligands, and FTO Inhibitor
2.3. siRNA Transfection
2.4. qPCR
2.5. Immunoblotting
2.6. Immunofluorescence
2.7. MTT Viability Assay
2.8. Wound Healing Assay
2.9. Transwell Migration Assay
2.10. ATP Assay
2.11. NSCLC Patient Tissues
2.12. Immunohistochemistry
2.13. Statistical Approaches
3. Results
3.1. FTO Upregulation in EGFR-TKI-Resistant Wild-Type EGFR and EGFR-Mutated NSCLC Cells
3.2. FTO Protein Modulation in the Erlotinib-Resistant Wild Type and EGFR-Mutated NSCLC Cells
3.3. FTO Is Highly Expressed in Late-Stage Lung Tumor Tissues
3.4. FTO Is Highly Expressed in Patients That Smoke
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA A Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Rojiani, M.V.; Rojiani, A.M. Non-small cell lung cancer-tumor biology. Cancers 2024, 16, 716. [Google Scholar] [CrossRef]
- Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef] [PubMed]
- American Lung Association Fact Sheet. Available online: https://www.Lung.Org/research/trends-in-lung-disease/lung-cancer-trends-brief/lung-cancer-additional-measures (accessed on 26 April 2025).
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to the 2015 world health organization classification of tumors of the lung, pleura, thymus, and heart. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 1240–1242. [Google Scholar] [CrossRef]
- Rotow, J.; Bivona, T.G. Understanding and targeting resistance mechanisms in nsclc. Nat. Rev. Cancer 2017, 17, 637–658. [Google Scholar] [CrossRef] [PubMed]
- da Cunha Santos, G.; Shepherd, F.A.; Tsao, M.S. Egfr mutations and lung cancer. Annu. Rev. Pathol. 2011, 6, 49–69. [Google Scholar] [CrossRef]
- Malanga, D.; De Marco, C.; Guerriero, I.; Colelli, F.; Rinaldo, N.; Scrima, M.; Mirante, T.; De Vitis, C.; Zoppoli, P.; Ceccarelli, M.; et al. The akt1/il-6/stat3 pathway regulates growth of lung tumor initiating cells. Oncotarget 2015, 6, 42667–42686. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X.; Jin, H. Egfr-tki resistance in nsclc patients: Mechanisms and strategies. Am. J. Cancer Res. 2014, 4, 411–435. [Google Scholar]
- Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (egfr) in lung cancer: An overview and update. J. Thorac. Dis. 2010, 2, 48–51. [Google Scholar]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020, 13, 143. [Google Scholar] [CrossRef]
- Takeda, M.; Nakagawa, K. First- and second-generation egfr-tkis are all replaced to osimertinib in chemo-naive egfr mutation-positive non-small cell lung cancer? Int. J. Mol. Sci. 2019, 20, 146. [Google Scholar] [CrossRef]
- Koch, A.L.; Vellanki, P.J.; Drezner, N.; Li, X.; Mishra-Kalyani, P.S.; Shen, Y.L.; Xia, H.; Li, Y.; Liu, J.; Zirkelbach, J.F.; et al. Fda approval summary: Osimertinib for adjuvant treatment of surgically resected non-small cell lung cancer, a collaborative project orbis review. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 6638–6643. [Google Scholar] [CrossRef]
- Loos, R.J.; Yeo, G.S. The bigger picture of fto: The first gwas-identified obesity gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.; Lu, Y.; Zhang, Y.; Pu, S.; Xi, H.; Nie, X.; Liu, J.; Yuan, W. Fto—A common genetic basis for obesity and cancer. Front. Genet. 2020, 11, 559138. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Kaklamani, V.; Yi, N.; Sadim, M.; Siziopikou, K.; Zhang, K.; Xu, Y.; Tofilon, S.; Agarwal, S.; Pasche, B.; Mantzoros, C. The role of the fat mass and obesity associated gene (fto) in breast cancer risk. BMC Med. Genet. 2011, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, P.A.; de Carlos Back, L.K.; Sereia, A.F.; Kubelka, C.; Ribeiro, M.C.; Fernandes, B.L.; de Souza, I.R. Interaction between obesity-related genes, fto and mc4r, associated to an increase of breast cancer risk. Mol. Biol. Rep. 2013, 40, 6657–6664. [Google Scholar] [CrossRef]
- Iles, M.M.; Law, M.H.; Stacey, S.N.; Han, J.; Fang, S.; Pfeiffer, R.; Harland, M.; Macgregor, S.; Taylor, J.C.; Aben, K.K.; et al. A variant in fto shows association with melanoma risk not due to bmi. Nat. Genet. 2013, 45, 428–432, 432.e421. [Google Scholar]
- Li, Y.; Su, R.; Deng, X.; Chen, Y.; Chen, J. Fto in cancer: Functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022, 8, 598–614. [Google Scholar] [CrossRef]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; et al. N6-methyladenosine in nuclear rna is a major substrate of the obesity-associated fto. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef]
- Ding, Y.; Qi, N.; Wang, K.; Huang, Y.; Liao, J.; Wang, H.; Tan, A.; Liu, L.; Zhang, Z.; Li, J.; et al. Fto facilitates lung adenocarcinoma cell progression by activating cell migration through mrna demethylation. OncoTargets Ther. 2020, 13, 1461–1470. [Google Scholar] [CrossRef]
- Wang, T.; Kong, S.; Tao, M.; Ju, S. The potential role of rna n6-methyladenosine in cancer progression. Mol. Cancer 2020, 19, 88. [Google Scholar] [CrossRef]
- Liu, J.; Ren, D.; Du, Z.; Wang, H.; Zhang, H.; Jin, Y. M(6)a demethylase fto facilitates tumor progression in lung squamous cell carcinoma by regulating mzf1 expression. Biochem. Biophys. Res. Commun. 2018, 502, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, Y.; Zhang, H.; Qian, Z.; Jia, W.; Gao, Y.; Zheng, H.; Li, B. The m6a demethylase fto promotes the growth of lung cancer cells by regulating the m6a level of usp7 mrna. Biochem. Biophys. Res. Commun. 2019, 512, 479–485. [Google Scholar] [CrossRef]
- Chen, J.; Du, B. Novel positioning from obesity to cancer: Fto, an m(6)a rna demethylase, regulates tumour progression. J. Cancer Res. Clin. Oncol. 2019, 145, 19–29. [Google Scholar] [CrossRef]
- Yang, S.; Wei, J.; Cui, Y.H.; Park, G.; Shah, P.; Deng, Y.; Aplin, A.E.; Lu, Z.; Hwang, S.; He, C.; et al. M(6)a mrna demethylase fto regulates melanoma tumorigenicity and response to anti-pd-1 blockade. Nat. Commun. 2019, 10, 2782. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.F.; Wei, B.; et al. Rna n6-methyladenosine demethylase fto promotes breast tumor progression through inhibiting bnip3. Mol. Cancer 2019, 18, 46. [Google Scholar] [CrossRef]
- Azzam, S.K.; Alsafar, H.; Sajini, A.A. Fto m6a demethylase in obesity and cancer: Implications and underlying molecular mechanisms. Int. J. Mol. Sci. 2022, 23, 3800. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, V.X.; Zhang, Q.; Sze, K.M.; Tian, L.; Huang, H.; Wang, X.; Lee, E.; Lu, J.; Lyu, X.; et al. Targeting the oncogenic m6a demethylase fto suppresses tumourigenesis and potentiates immune response in hepatocellular carcinoma. Gut 2024, 74, 90–102. [Google Scholar] [CrossRef]
- Zhou, S.; Bai, Z.L.; Xia, D.; Zhao, Z.J.; Zhao, R.; Wang, Y.Y.; Zhe, H. Fto regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (cscc) by targeting beta-catenin through mrna demethylation. Mol. Carcinog. 2018, 57, 590–597. [Google Scholar] [CrossRef]
- Yan, F.; Al-Kali, A.; Zhang, Z.; Liu, J.; Pang, J.; Zhao, N.; He, C.; Litzow, M.R.; Liu, S. A dynamic n(6)-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res. 2018, 28, 1062–1076. [Google Scholar] [CrossRef]
- Zheng, Q.K.; Ma, C.; Ullah, I.; Hu, K.; Ma, R.J.; Zhang, N.; Sun, Z.G. Roles of n6-methyladenosine demethylase fto in malignant tumors progression. OncoTargets Ther. 2021, 14, 4837–4846. [Google Scholar] [CrossRef]
- Jeschke, J.; Collignon, E.; Al Wardi, C.; Krayem, M.; Bizet, M.; Jia, Y.; Garaud, S.; Wimana, Z.; Calonne, E.; Hassabi, B.; et al. Downregulation of the fto m(6)a rna demethylase promotes emt-mediated progression of epithelial tumors and sensitivity to wnt inhibitors. Nat. Cancer 2021, 2, 611–628. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.T.; Jacobs, R.J.; Moravec, D.N.; Uppada, S.B.; Botting, G.M.; Nlend, M.; Puri, N. Alternative signaling pathways as potential therapeutic targets for overcoming egfr and c-met inhibitor resistance in non-small cell lung cancer. PLoS ONE 2013, 8, e78398. [Google Scholar] [CrossRef] [PubMed]
- Osude, C.; Lin, L.; Patel, M.; Eckburg, A.; Berei, J.; Kuckovic, A.; Dube, N.; Rastogi, A.; Gautam, S.; Smith, T.J.; et al. Mediating egfr-tki resistance by vegf/vegfr autocrine pathway in non-small cell lung cancer. Cells 2022, 11, 1694. [Google Scholar] [CrossRef] [PubMed]
- Racherla, K.S.; Dovalovsky, K.; Patel, M.; Harper, E.; Barnard, J.; Nasifuzzaman, S.M.; Smith, M.; Sikand, R.; Drinka, E.; Puri, N. Prmt-1 and p120-catenin as emt mediators in osimertinib resistance in nsclc. Cancers 2023, 15, 3461. [Google Scholar] [CrossRef]
- Rastogi, I.; Rajanna, S.; Webb, A.; Chhabra, G.; Foster, B.; Webb, B.; Puri, N. Mechanism of c-met and egfr tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2016, 477, 937–944. [Google Scholar] [CrossRef]
- Iderzorig, T.; Kellen, J.; Osude, C.; Singh, S.; Woodman, J.A.; Garcia, C.; Puri, N. Comparison of emt mediated tyrosine kinase inhibitor resistance in nsclc. Biochem. Biophys. Res. Commun. 2018, 496, 770–777. [Google Scholar] [CrossRef]
- Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc. 2008, 5, 811–815. [Google Scholar] [CrossRef]
- Nan, X.; Xie, C.; Yu, X.; Liu, J. Egfr tki as first-line treatment for patients with advanced egfr mutation-positive non-small-cell lung cancer. Oncotarget 2017, 8, 75712–75726. [Google Scholar] [CrossRef]
- Pitman, R.T.; Fong, J.T.; Billman, P.; Puri, N. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner. PLoS ONE 2012, 7, e38444. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jia, B.; Zhang, Q.; Zhang, Y. Meclofenamic acid restores gefinitib sensitivity by downregulating breast cancer resistance protein and multidrug resistance protein 7 via fto/m6a-demethylation/c-myc in non-small cell lung cancer. Front. Oncol. 2022, 12, 870636. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yan, J.; Li, Q.; Li, J.; Gong, S.; Zhou, H.; Gan, J.; Jiang, H.; Jia, G.F.; Luo, C.; et al. Meclofenamic acid selectively inhibits fto demethylation of m6a over alkbh5. Nucleic Acids Res. 2015, 43, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Schrank, Z.; Chhabra, G.; Lin, L.; Iderzorig, T.; Osude, C.; Khan, N.; Kuckovic, A.; Singh, S.; Miller, R.J.; Puri, N. Current molecular-targeted therapies in nsclc and their mechanism of resistance. Cancers 2018, 10, 224. [Google Scholar] [CrossRef]
- Gao, L.; Wang, A.; Chen, Y.; Cai, X.; Li, Y.; Zhao, J.; Zhang, Y.; Zhang, W.; Zhu, J.; Zeng, Y.; et al. Fto facilitates cancer metastasis by modifying the m(6)a level of fap to induce integrin/fak signaling in non-small cell lung cancer. Cell Commun. Signal. CCS 2023, 21, 311. [Google Scholar] [CrossRef]
- Xiao, P.; Liu, Y.K.; Han, W.; Hu, Y.; Zhang, B.Y.; Liu, W.L. Exosomal delivery of fto confers gefitinib resistance to recipient cells through abcc10 regulation in an m6a-dependent manner. Mol. Cancer Res. MCR 2021, 19, 726–738. [Google Scholar] [CrossRef]
- Ferenc, K.; Pilzys, T.; Garbicz, D.; Marcinkowski, M.; Skorobogatov, O.; Dylewska, M.; Gajewski, Z.; Grzesiuk, E.; Zabielski, R. Intracellular and tissue specific expression of fto protein in pig: Changes with age, energy intake and metabolic status. Sci. Rep. 2020, 10, 13029. [Google Scholar] [CrossRef]
- Gulati, P.; Avezov, E.; Ma, M.; Antrobus, R.; Lehner, P.; O’Rahilly, S.; Yeo, G.S. Fat mass and obesity-related (fto) shuttles between the nucleus and cytoplasm. Biosci. Rep. 2014, 34, e00144. [Google Scholar] [CrossRef]
- Aas, R.W.; Haveraaen, L.; Sagvaag, H.; Thorrisen, M.M. The influence of alcohol consumption on sickness presenteeism and impaired daily activities. The wirus screening study. PLoS ONE 2017, 12, e0186503. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, G.; Xu, H.; Dong, W.; Dong, Z.; Qiu, Z.; Zhang, Z.; Li, F.; Huang, Y.; Li, Y.; et al. Tumors exploit fto-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021, 33, 1221–1233.e1211. [Google Scholar] [CrossRef]
- Ren, X.; Tang, X.; Huang, T.; Hu, Z.; Wang, Y.; Zhou, Y. Fto plays a crucial role in gastrointestinal cancer and may be a target for immunotherapy: An updated review. Front. Oncol. 2023, 13, 1241357. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xia, W.; Dong, Z.; Yang, C.G. Chemical inhibitors targeting the oncogenic m(6)a modifying proteins. Acc. Chem. Res. 2023, 56, 3010–3022. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhao, J.; Han, L.; Xu, M.; Wang, K.; Shi, J.; Dong, Z. Retrospective study of gene signatures and prognostic value of m6a regulatory factor in non-small cell lung cancer using tcga database and the verification of fto. Aging 2020, 12, 17022–17037. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence | Melting Point | DNA Bases |
---|---|---|---|
FTO | F: GAATTCTATCAGCAGTGGCAGCTG | 58 °C | 24 |
R: AGCCATGCTTGTGCAGTGTG | 58.9 °C | 20 | |
GAPDH | F: ATGACATCAAGAAGGTGGTG | 52.4 °C | 20 |
R: CAGGAAATGAGCTTGACAAA | 50.9 °C | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastogi, A.; Qiu, R.; Campoli, R.; Altayeh, U.; Arriaga, S.; Khan, M.J.; Saravanaguru Vasanthi, S.; Hillwig, R.; Puri, N. The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance. Biomedicines 2025, 13, 1653. https://doi.org/10.3390/biomedicines13071653
Rastogi A, Qiu R, Campoli R, Altayeh U, Arriaga S, Khan MJ, Saravanaguru Vasanthi S, Hillwig R, Puri N. The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance. Biomedicines. 2025; 13(7):1653. https://doi.org/10.3390/biomedicines13071653
Chicago/Turabian StyleRastogi, Aayush, Rong Qiu, Rachel Campoli, Usama Altayeh, Sarai Arriaga, Muhammad J. Khan, Subaranjana Saravanaguru Vasanthi, Robert Hillwig, and Neelu Puri. 2025. "The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance" Biomedicines 13, no. 7: 1653. https://doi.org/10.3390/biomedicines13071653
APA StyleRastogi, A., Qiu, R., Campoli, R., Altayeh, U., Arriaga, S., Khan, M. J., Saravanaguru Vasanthi, S., Hillwig, R., & Puri, N. (2025). The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance. Biomedicines, 13(7), 1653. https://doi.org/10.3390/biomedicines13071653