Knee Osteoarthritis Diagnosis: Future and Perspectives
Abstract
1. Knee Osteoarthritis as a Public Health Concern
2. Current Therapeutic Strategies and Limitations
3. Diagnoses of Knee Osteoarthritis
3.1. Clinical Practices
3.2. Emerging Diagnostic Methods
3.2.1. Biochemical and Physicochemical Markers
3.2.2. Acoustic Emission Recording
3.2.3. Electrobioimpedance
3.2.4. Near-Infrared Spectrometry
4. Toward Personalized Medicine Through the Implementation of Robust Algorithms
4.1. AI Algorithms in KOA: Diagnostic Accuracy and Clinical Utility
Method | Characteristics | D/C | OA/Pre-OA, Reference (Grading Scale) | Algorithm | Reference | Cost | Advantages | Drawbacks | Development Stage |
---|---|---|---|---|---|---|---|---|---|
Arthroscopy | Se = 75% Sp = 97% Ac = 90% | D | Preoperative diagnoses | - | [74] | $$ | Direct joint visualization; high accuracy; allows simultaneous treatment | Invasive; expensive; surgical risks | Clinically established |
Radiography | Se = 40% (KL I) to 50% (KL IV) Sp = 73% to 93% Ac = 59% to 90% | D | Arthroscopic (Outerbridge II–IV) | - | [75] | $$ | Widely available; low cost; effective for bone changes and joint space analysis | Poor sensitivity in early OA; no cartilage assessment | Standard first-line method |
Ac = 91% (grade I) to > 99% (grade IV) | C | Radiographic OA (KL ≥ II) and Pre-OA (KL I–II) | DL | [77] | |||||
Se = 88% Sp = 88% Ac = 88% | D | Radiographic OA (Ahlback grades II–IV) | (CT) ML | [81] | |||||
MRI | Se = 36% (VCS I) to 54% (VCS III) Sp = 79% to 93% Ac = 61% to 85% | D | Arthroscopic OA (Outerbridge II–IV) | - | [75] | $$$$ | Non-invasive; detects early soft tissue and cartilage changes | High cost; limited access; contraindications for some patients | Clinically established |
Se = 89% Sp = 88% Ac = 89% | D | Radiographic OA (Ahlbach grades II–IV) | ML | [81] | |||||
Biochemical biomarkers | Se = 92% Sp = 90% | D | Arthroscopic pre-OA (Outerbridge grade I/II + normal radiograph + symptomatic knee) | ML | [82] | $$ | Reflect cartilage degradation/synthesis or inflammation; detectable in blood, urine, saliva; used in clinical studies | Often low specificity; influenced by comorbidities and systemic conditions; requires laboratory tests that are invasive or costly | Validated in clinical research, but still limited for routine use. |
AUC = 0.73 using sPllANP + sColl2-1 NO2 + sCOMP + uCTXll AUC = 0.78 when including demographic biomarkers | D | Radiographic OA prediction at 48 months (KL ≥ I) | Multilevel regression | [41] | |||||
AER | Ac = 83–92% for OA detection Ac = 71–72% for healthy, pre-OA, OA classification | C | Pre-OA (pain + KL 0-I) and radiographic OA (KL ≥ II) | ML | [54,87] | $ | Non-invasive; portable; low-cost; can discriminate KOA/pre-KOA from healthy knees with 94% accuracy; directly reflects joint friction | Influenced by BMI, age, physical activity; not yet standardized to assess KOA severity | Highly promising, already validated clinically in pilot studies [54,90]. |
EBI) | Ac = 98% AUC = 1.00 | C | Severity Classification g0 (normal) to g4 (scale not defined) | DL | [77,88] | $ | Non-invasive; data about hydration, edema, cartilage thickness, or synovial viscosity; potential for spatial representation (EIT); portable setups | Lack of tissue specificity; influenced by multiple parameters, spatial information requires modeling (EIT) | Under active development, with a recent study that reported 98% accuracy for OA detection on a small human cohort [88]. |
NIRS | Se = 57–89% (45–92% *) Sp = 54–100% (52–85% *) Ac = 69–88% (64–87% *) AUC = 0.77 (0.73 *) | D | Ex vivo, histological evaluation of healthy (OARSI 0–1) vs. OA (OARSI 2–3) | ML | [69] | $$ | Non-invasive; deep tissue penetration; possibly inform about composition (HA, collagen, chondroitin content); potential to guide viscosupplementation decisions | Still insufficient sensitivity for small in vivo variations; most data from ex vivo studies; requires robust modeling and signal interpretation | Early-stage development focused on early OA detection using cadaver knees. While in vivo use for OA is still emerging, NIRS has shown promise in diagnosing chronic lateral ankle instability, suggesting potential for reliable, non-invasive diagnostics [89]. |
4.2. Clinical Implications of AI-Driven Personalized Medicine in KOA
4.3. Challenges and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Murphy, L.; Schwartz, T.A.; Helmick, C.G.; Renner, J.B.; Tudor, G.; Koch, G.; Dragomir, A.; Kalsbeek, W.D.; Luta, G.; Jordan, J.M. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Care Res. 2008, 59, 1207–1213. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis Yuqing. Clin. Geriatr. Med. 2011, 26, 355–369. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The Global Burden of Disease; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Taïhi, I.; Nassif, A.; Isaac, J.; Fournier, B.P.; Ferré, F. Head to knee: Cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int. 2019, 2019, 9310318. [Google Scholar] [CrossRef]
- Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 2015, 11, 21–34. [Google Scholar] [CrossRef]
- Tayfur, A.; Tayfur, B. The Knee. In Functional Exercise Anatomy and Physiology for Physiotherapists; Kaya Utlu, D., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 291–314. [Google Scholar] [CrossRef]
- Palukuru, U.P.; McGoverin, C.M.; Pleshko, N. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 2014, 38, 3–11. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health Multidiscip. Approach 2009, 1, 461–468. [Google Scholar] [CrossRef]
- More, S.; Kotiya, A.; Kotia, A.; Ghosh, S.K.; Spyrou, L.A.; Sarris, I.E. Rheological properties of synovial fluid due to viscosupplements: A review for osteoarthritis remedy. Comput. Methods Programs Biomed. 2020, 196, 105644. [Google Scholar] [CrossRef]
- Moreland, L.W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Res. Ther. 2003, 5, 54. [Google Scholar] [CrossRef]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef]
- Mäkelä, J.T.A.; Han, S.-K.; Herzog, W.; Korhonen, R.K. Very early osteoarthritis changes sensitively fluid flow properties of articular cartilage. J. Biomech. 2015, 48, 3369–3376. [Google Scholar] [CrossRef]
- Pritzker, K.P.H.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.-P.; Revell, P.A.; Salter, D.; Van Den Berg, W.B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef]
- Ray, T.R. Using viscosupplementation to treat knee osteoarthritis. Phys. Sportsmed. 2013, 41, 16–24. [Google Scholar] [CrossRef]
- Balazs, E.A.; Watson, D.; Duff, I.F.; Roseman, S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum. 1967, 10, 357–376. [Google Scholar] [CrossRef]
- Wang, M.G.; Seale, P.; Furman, D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. NPJ Aging 2024, 10, 34. [Google Scholar] [CrossRef]
- Li, G.; Yin, J.; Gao, J.; Cheng, T.S.; Pavlos, N.J.; Zhang, C.; Zheng, M.H. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res. Ther. 2013, 15, 223. [Google Scholar] [CrossRef]
- CDC Official Agenda, 2020 Update. Available online: https://stacks.cdc.gov/view/cdc/87637 (accessed on 19 March 2025).
- Overton, C.; Nelson, A.E. Osteoarthritis Treatment Guidelines from Six Professional Societies: Similarities and Differences. Rheum. Dis. Clin. N. Am. 2022, 48, 637–657. [Google Scholar] [CrossRef]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020, 72, 220–233. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Beswick, A.D.; Bertram, W.; Siddiqui, M.A.; Gooberman-Hill, R.; Whitehouse, M.R.; Wylde, V. What proportion of people have long-term pain after total hip or knee replacement? An update of a systematic review and meta-analysis. BMJ Open 2025, 15, e088975. [Google Scholar] [CrossRef]
- Ornetti, P.; Nourissat, G.; Berenbaum, F.; Sellam, J.; Richette, P.; Chevalier, X.; under the aegis of the Osteoarthritis Section of the French Society for Rheumatology (Société Française de Rhumatologie, SFR). Does platelet-rich plasma have a role in the treatment of osteoarthritis? Jt. Bone Spine 2015, 4865, 1-YP-115. [Google Scholar] [CrossRef]
- Huda, W.; Abrahams, R.B. X-Ray-Based Medical Imaging and Resolution. Am. J. Roentgenol. 2015, 204, W393–W397. [Google Scholar] [CrossRef]
- Novakofski, K.D.; Pownder, S.L.; Koff, M.F.; Williams, R.M.; Potter, H.G.; Fortier, L.A. High-Resolution Methods for Diagnosing Cartilage Damage In Vivo. Cartilage 2016, 7, 39–51. [Google Scholar] [CrossRef]
- Menashe, L.; Hirko, K.; Losina, E.; Kloppenburg, M.; Zhang, W.; Li, L.; Hunter, D.J. The diagnostic performance of MRI in osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2012, 20, 13–21. [Google Scholar] [CrossRef]
- Markhardt, B.K.; Huang, B.K.; Spiker, A.M.; Chang, E.Y. Interpretation of Cartilage Damage at Routine Clinical MRI: How to Match Arthroscopic Findings. RadioGraphics 2022, 42, 1457–1473. [Google Scholar] [CrossRef]
- Patel, K.A.; Hartigan, D.E.; Makovicka, J.L.; Dulle, D.L.; Chhabra, A. Diagnostic Evaluation of the Knee in the Office Setting Using Small-Bore Needle Arthroscopy. Arthrosc. Tech. 2018, 7, e17–e21. [Google Scholar] [CrossRef]
- Lopes, C.; Vilaca, A.; Rocha, C.; Mendes, J. Knee positioning systems for X-ray environment: A literature review. Phys. Eng. Sci. Med. 2023, 46, 45–55. [Google Scholar] [CrossRef]
- Chien, A.; Weaver, J.S.; Kinne, E.; Omar, I. Magnetic resonance imaging of the knee. Pol. J. Radiol. 2020, 85, 509–531. [Google Scholar] [CrossRef]
- Inkinen, S.; Liukkonen, J.; Ylärinne, J.H.; Puhakka, P.H.; Lammi, M.J.; Virén, T.; Jurvelin, J.S.; Töyräs, J. Collagen and Chondrocyte Concentrations Control Ultrasound Scattering in Agarose Scaffolds. Ultrasound Med. Biol. 2014, 40, 2162–2171. [Google Scholar] [CrossRef]
- Muñóz Sánchez, J.D.; Mosquera Leyton, V.H. Tomography For Electrical Impedance, An Alternative Method For Monitoring Joint Injuries. Rev. Ing. Solidar. 2020, 16. [Google Scholar] [CrossRef]
- Wijayaratna, U.N.; Kiridena, S.D.; Adams, J.D.; Behrend, C.J.; Anker, J.N. Synovial Fluid pH Sensor for Early Detection of Prosthetic Hip Infections. Adv. Funct. Mater. 2021, 31, 2104124. [Google Scholar] [CrossRef]
- Bertram, K.L.; Banderali, U.; Tailor, P.; Krawetz, R.J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 2016, 10, 148–157. [Google Scholar] [CrossRef]
- Ge, M.; Sun, W.; Xu, T.; Yang, R.; Zhang, K.; Li, J.; Zhao, Z.; Gong, M.; Fu, W. Multi-omics analysis of synovial tissue and fluid reveals differentially expressed proteins and metabolites in osteoarthritis. J. Transl. Med. 2025, 23, 285. [Google Scholar] [CrossRef]
- Ma, J.; Niu, D.-S.; Wan, N.-J.; Qin, Y.; Guo, C.-J. Elevated chemerin levels in synovial fluid and synovial. Int. J. Clin. Exp. Pathol. 2015, 8, 13393. [Google Scholar]
- Boffa, A.; Merli, G.; Andriolo, L.; Lattermann, C.; Salzmann, G.M.; Filardo, G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021, 13, 82S–103S. [Google Scholar] [CrossRef]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. Value of biomarkers in osteoarthritis: Current status and perspectives. Ann. Rheum. Dis. 2013, 72, 1756–1763. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Matharu, Z.; Rahimian, A.; Revzin, A. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens. Bioelectron. 2015, 64, 43–50. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, Q.; Xu, L. Non-Invasive Electrochemical Biosensors for TNF-α Cytokines Detection in Body Fluids. Front. Bioeng. Biotechnol. 2021, 9, 701045. [Google Scholar] [CrossRef]
- Valverde, A.; Serafín, V.; Montero-Calle, A.; González-Cortés, A.; Barderas, R.; Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Carbon/Inorganic Hybrid Nanoarchitectures as Carriers for Signaling Elements in Electrochemical Immunosensors: First Biosensor for the Determination of the Inflammatory and Metastatic Processes Biomarker RANK-ligand. ChemElectroChem 2020, 7, 810–820. [Google Scholar] [CrossRef]
- Liem, Y.; Judge, A.; Li, Y.; Sharif, M. Biochemical, Clinical, Demographic and Imaging Biomarkers for Disease Progression in Knee Osteoarthritis. Biomark. Med. 2022, 16, 633–645. [Google Scholar] [CrossRef]
- Kraus, V.B.; Collins, J.E.; Hargrove, D.; Losina, E.; Nevitt, M.; Katz, J.N.; Wang, S.X.; Sandell, L.J.; Hoffmann, S.C.; Hunter, D.J. Predictive validity of biochemical biomarkers in knee osteoarthritis: Data from the FNIH OA Biomarkers Consortium. Ann. Rheum. Dis. 2017, 76, 186–195. [Google Scholar] [CrossRef]
- Tanishi, N.; Yamagiwa, H.; Hayami, T.; Mera, H.; Koga, Y.; Omori, G.; Endo, N. Relationship between radiological knee osteoarthritis and biochemical markers of cartilage and bone degradation (urine CTX-II and NTX-I): The Matsudai Knee Osteoarthritis Survey. J. Bone Miner. Metab. 2009, 27, 605–612. [Google Scholar] [CrossRef]
- Hick, A.-C.; Malaise, M.; Loeuille, D.; Conrozier, T.; Maugars, Y.; Pelousse, F.; Tits, C.; Henrotin, Y. Cartilage Biomarkers Coll2-1 and Coll2-1NO2 Are Associated with Knee OA MRI Features and Are Helpful in Identifying Patients at Risk of Disease Worsening. Cartilage 2021, 13, 1637S–1647S. [Google Scholar] [CrossRef]
- Hoch, J.M.; Mattacola, C.G.; Medina McKeon, J.M.; Howard, J.S.; Lattermann, C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2011, 19, 1396–1404. [Google Scholar] [CrossRef]
- Shigemori, M.; Takei, S.; Imanaka, H.; Maeno, N.; Hokonohara, M.; Miyata, K. Diagnostic significance of increased serum hyaluronic acid in juvenile rheumatoid arthritis. Pediatr. Int. 2002, 44, 394–399. [Google Scholar] [CrossRef]
- Shih, P.-C.; Lee, Y.-H.; Tsou, H.-K.; Wei, J.C.-C. Recent targets of osteoarthritis research. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101851. [Google Scholar] [CrossRef]
- Pelletier, J.-P.; Raynauld, J.-P.; Caron, J.; Mineau, F.; Abram, F.; Dorais, M.; Haraoui, B.; Choquette, D.; Martel-Pelletier, J. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 2095–2101. [Google Scholar] [CrossRef]
- Smith, J.W.; Martins, T.B.; Gopez, E.; Johnson, T.; Hill, H.R.; Rosenberg, T.D. Significance of C-reactive protein in osteoarthritis and total knee arthroplasty outcomes. Ther. Adv. Musculoskelet. Dis. 2012, 4, 315–325. [Google Scholar] [CrossRef]
- Ivanochko, N.K.; Gatti, A.A.; Stratford, P.W.; Maly, M.R. Predicting Change in Knee Cartilage from Interactions of Cumulative Loading with Cartilage Turnover Biomarkers: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2022, 30, S35–S36. [Google Scholar] [CrossRef]
- Miao, C.; Zhou, W.; Wang, X.; Fang, J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front. Pharmacol. 2021, 12, 685623. [Google Scholar] [CrossRef]
- Mascaro, B.; Prior, J.; Shark, L.-K.; Selfe, J.; Cole, P.; Goodacre, J. Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints. Med. Eng. Phys. 2009, 31, 1013–1022. [Google Scholar] [CrossRef]
- Kalo, K.; Niederer, D.; Sus, R.; Sohrabi, K.; Groß, V.; Vogt, L. Reliability of Vibroarthrography to Assess Knee Joint Sounds in Motion. Sensors 2020, 20, 1998. [Google Scholar] [CrossRef]
- Nichols, C.J.; Özmen, G.C.; Richardson, K.; Inan, O.T.; Ewart, D. Classifying Pre-Radiographic Osteoarthritis of the Knee Using Wearable Acoustics Sensing at the Point of Care. IEEE Sens. J. 2023, 23, 29619–29629. [Google Scholar] [CrossRef]
- Nevalainen, M.T.; Veikkola, O.; Thevenot, J.; Tiulpin, A.; Hirvasniemi, J.; Niinimäki, J.; Saarakkala, S.S. Acoustic emissions and kinematic instability of the osteoarthritic knee joint: Comparison with radiographic findings. Sci. Rep. 2021, 11, 19558. [Google Scholar] [CrossRef]
- Abasi, S.; Aggas, J.R.; Garayar-Leyva, G.G.; Walther, B.K.; Guiseppi-Elie, A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Meas. Sci. Au J. 2022, 2, 495–516. [Google Scholar] [CrossRef]
- Becher, C.; Ricklefs, M.; Willbold, E.; Hurschler, C.; Abedian, R. Electromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials. Cartilage 2016, 7, 62–69. [Google Scholar] [CrossRef]
- Changoor, A.; Garon, M.; Quenneville, E.; Bull, S.B.; Gordon, K.; Savard, P.; Buschmann, M.D.; Hurtig, M.B. Non-invasive Electroarthrography Measures Load-Induced Cartilage Streaming Potentials via Electrodes Placed on Skin Surrounding an Articular Joint. Cartilage 2021, 13, 375S–385S. [Google Scholar] [CrossRef]
- Scandurra, G.; Cardillo, E.; Giusi, G.; Ciofi, C.; Alonso, E.; Giannetti, R. Portable Knee Health Monitoring System by Impedance Spectroscopy Based on Audio-Board. Electronics 2021, 10, 460. [Google Scholar] [CrossRef]
- Krishnan, G.H.; Nanda, A.; Natarajan, A. Synovial fluid density measurement for diagnosis of arthritis. Biomed. Pharmacol. J. 2014, 7, 221–224. [Google Scholar] [CrossRef]
- Hersek, S.; Toreyin, H.; Teague, C.N.; Millard-Stafford, M.L.; Jeong, H.K.; Bavare, M.M.; Wolkoff, P.; Sawka, M.N.; Inan, O.T. Wearable Vector Electrical Bioimpedance System to Assess Knee Joint Health. IEEE Trans. Biomed. Eng. 2017, 64, 2353–2360. [Google Scholar] [CrossRef]
- Gajre, S.S.; Singh, U.; Saxena, R.K.; Anand, S. Electrical impedance signal analysis in assessing the possibility of non-invasive diagnosis of knee osteoarthritis. J. Med. Eng. Technol. 2007, 31, 288–299. [Google Scholar] [CrossRef]
- Neves, E.B.; Pino, A.V.; De Almeida, R.M.V.R.; De Souza, M.N. Knee bioelectric impedance assessment in healthy/with osteoarthritis subjects. Physiol. Meas. 2010, 31, 207–219. [Google Scholar] [CrossRef]
- Morita, Y.; Kondo, H.; Tomita, N.; Suzuki, S. A feasibility study for evaluation of mechanical properties of articular cartilage with a two-electrode electrical impedance method. J. Orthop. Sci. 2012, 17, 272–280. [Google Scholar] [CrossRef]
- Tomicic, V.; Cornejo, R. Lung monitoring with electrical impedance tomography: Technical considerations and clinical applications. J. Thorac. Dis. 2019, 11, 3122–3135. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, R.; Harrison, C. Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; ACM: New York, NY, USA, 2016; pp. 843–850. [Google Scholar] [CrossRef]
- Afara, I.; Prasadam, I.; Crawford, R.; Xiao, Y.; Oloyede, A. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthr. Cartil. 2012, 20, 1367–1373. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, X.; Li, L.; Yu, C.; Nie, L.; Tian, W.; Zhang, H.; Huang, S.; Zang, H. Understanding hyaluronic acid induced variation of water structure by near-infrared spectroscopy. Sci. Rep. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Linus, A.; Tanska, P.; Sarin, J.K.; Nippolainen, E.; Tiitu, V.; Mäkelä, J.A.; Töyräs, J.; Korhonen, R.K.; Mononen, M.E.; Afara, I.O. Visible and Near-Infrared Spectroscopy Enables Differentiation of Normal and Early Osteoarthritic Human Knee Joint Articular Cartilage. Ann. Biomed. Eng. 2023, 51, 2245–2257. [Google Scholar] [CrossRef]
- Sarin, J.K.; Te Moller, N.C.R.; Mancini, I.A.D.; Brommer, H.; Visser, J.; Malda, J.; Van Weeren, P.R.; Afara, I.O.; Töyräs, J. Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo. Sci. Rep. 2018, 8, 13409. [Google Scholar] [CrossRef]
- Bertoncelli, C.M.; Altamura, P.; Bagui, S.; Bagui, S.; Vieira, E.R.; Costantini, S.; Monticone, M.; Solla, F.; Bertoncelli, D. Predicting osteoarthritis in adults using statistical data mining and machine learning. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221104935. [Google Scholar] [CrossRef]
- Jamshidi, A.; Pelletier, J.-P.; Martel-Pelletier, J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat. Rev. Rheumatol. 2019, 15, 49–60. [Google Scholar] [CrossRef]
- Cigdem, O.; Deniz, C.M. Artificial intelligence in knee osteoarthritis: A comprehensive review for 2022. Osteoarthr. Imaging 2023, 3, 100161. [Google Scholar] [CrossRef]
- Nickinson, R.; Darrah, C.; Donell, S. Accuracy of clinical diagnosis in patients undergoing knee arthroscopy. Int. Orthop. 2010, 34, 39–44. [Google Scholar] [CrossRef]
- Muñoz-García, N.; Cordero-Ampuero, J.; Madero-Jarabo, R. Diagnostic Accuracy of Magnetic Resonance Images and Weight-Bearing Radiographs in Patients With Arthroscopic-Proven Medial Osteoarthritis of the Knee. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2020, 13, 117954412093836. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Clarke, H.D.; Spangehl, M.J.; Bingham, J.S.; Etzioni, D.A.; Neville, M.R. Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons? J. Arthroplast. 2020, 35, 2423–2428. [Google Scholar] [CrossRef]
- Mahum, R.; Rehman, S.U.; Meraj, T.; Rauf, H.T.; Irtaza, A.; El-Sherbeeny, A.M.; El-Meligy, M.A. A Novel Hybrid Approach Based on Deep CNN Features to Detect Knee Osteoarthritis. Sensors 2021, 21, 6189. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, Z.; Jiao, Y.; Niethammer, M. iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022; Proceedings, Part V. Springer: Berlin/Heidelberg, Germany, 2022; pp. 464–474. [Google Scholar] [CrossRef]
- Tiulpin, A.; Klein, S.; Bierma-Zeinstra, S.M.A.; Thevenot, J.; Rahtu, E.; Meurs, J.V.; Oei, E.H.G.; Saarakkala, S. Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data. Sci. Rep. 2019, 9, 20038. [Google Scholar] [CrossRef]
- Nelson, A.E.; Fang, F.; Arbeeva, L.; Cleveland, R.J.; Schwartz, T.A.; Callahan, L.F.; Marron, J.S.; Loeser, R.F. A machine learning approach to knee osteoarthritis phenotyping: Data from the FNIH Biomarkers Consortium. Osteoarthr. Cartil. 2019, 27, 994–1001. [Google Scholar] [CrossRef]
- Angelone, F.; Ciliberti, F.K.; Tobia, G.P.; Jónsson, H.; Ponsiglione, A.M.; Gislason, M.K.; Tortorella, F.; Amato, F.; Gargiulo, P. Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients: A Radiomics-Based Study. Inf. Syst. Front. 2025, 27, 51–73. [Google Scholar] [CrossRef]
- Ahmed, U.; Anwar, A.; Savage, R.S.; Thornalley, P.J.; Rabbani, N. Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis of osteoarthritis of the knee and typing and progression of arthritic disease. Arthritis Res. Ther. 2016, 18, 250. [Google Scholar] [CrossRef]
- Nielsen, R.L.; Monfeuga, T.; Kitchen, R.R.; Egerod, L.; Leal, L.G.; Schreyer, A.T.H.; Gade, F.S.; Sun, C.; Helenius, M.; Simonsen, L.; et al. Data-driven identification of predictive risk biomarkers for subgroups of osteoarthritis using interpretable machine learning. Nat. Commun. 2024, 15, 2817. [Google Scholar] [CrossRef]
- Boer, C.G. Osteoarthritis year in review 2024: Genetics, genomics, and epigenetics. Osteoarthr. Cartil. 2024, 33, 50–57. [Google Scholar] [CrossRef]
- Ruiz-Romero, C.; Blanco, F.J. Proteomics role in the search for improved diagnosis, prognosis and treatment of osteoarthritis. Osteoarthr. Cartil. 2010, 18, 500–509. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Sheng, Y.; Zhang, Y.; Qiu, C.; Li, M.; Cheng, Y.; Li, S.; Wang, Y.; Wu, C. Identification and verification of four candidate biomarkers for early diagnosis of osteoarthritis by machine learning. Heliyon 2024, 10, e35121. [Google Scholar] [CrossRef]
- Richardson, K.L.; Nichols, C.J.; Stegeman, R.G.; Zachs, D.P.; Tuma, A.; Heller, J.A.; Schnitzer, T.; Peterson, E.J.; Lim, H.H.; Etemadi, M.; et al. Validating Joint Acoustic Emissions Models as a Generalizable Predictor of Joint Health. IEEE Sens. J. 2024, 24, 17219–17230. [Google Scholar] [CrossRef]
- Al-Nabulsi, J.; Ahmad, M.A.-S.; Hasaneiah, B.; AlZoubi, F. Diagnosis of Knee Osteoarthritis Using Bioimpedance & Deep Learning. In Proceedings of the 2024 Second Jordanian International Biomedical Engineering Conference (JIBEC), Amman, Jordan, 27–28 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Saliba, I.; Hardy, A.; Denoulet, J.; Feruglio, S. Preliminary Development of an Opto-electronic System for Ankle Instability Assessment. In Proceedings of the 6th International Conference on Bio-engineering for Smart Technologies, Paris, France, 14–16 May 2025. [Google Scholar]
- Goossens, Q.; Locsin, M.; Gharehbaghi, S.; Brito, P.; Moise, E.; Ponder, L.A.; Inan, O.T.; Prahalad, S. Knee acoustic emissions as a noninvasive biomarker of articular health in patients with juvenile idiopathic arthritis: A clinical validation in an extended study population. Pediatr. Rheumatol. 2023, 21, 59. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Artificial Intelligence-Enabled Device Software Functions: Lifecycle Management and Marketing Submission Recommendations; US Food and Drug Administration: Rockville, MD, USA, 2025. [Google Scholar]
- European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024. Laying down Harmonised Rules on Artificial Intelligence and Amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act). Off. J. Eur. Union 2024, PE/24/2024/REV/1. Available online: https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng (accessed on 19 March 2025).
Types | Functions in KOA | Measured in | Relevance | References | |
---|---|---|---|---|---|
Cartilage markers | |||||
CTXII | Type II collagen | Type II collagen degradation | Urine | Related to symptomatic and radiologic aggravation | [41,42,43] |
Coll2-1 NO2 | Type II collagen | Type II collagen degradation | Serum and Urine | Evolution related to symptomatic aggravation | [41,44] |
PIIANP | Type II collagen | Cartilage turnover | Serum | Baseline related to radiography, evolution related to symptomatic aggravation | [41] |
COMP | Extracellular matrix protein | Cartilage degradation | Serum | Baseline related to radiographic aggravation | [41,45] |
Proteases | |||||
HA | Glycosaminoglycans | Maintain high fluid viscosity | Serum | Baseline related to radiographic aggravation | [41,42,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favreau, H.; Chennen, K.; Feruglio, S.; Perennes, E.; Anton, N.; Vandamme, T.; Jessel, N.; Poch, O.; Conzatti, G. Knee Osteoarthritis Diagnosis: Future and Perspectives. Biomedicines 2025, 13, 1644. https://doi.org/10.3390/biomedicines13071644
Favreau H, Chennen K, Feruglio S, Perennes E, Anton N, Vandamme T, Jessel N, Poch O, Conzatti G. Knee Osteoarthritis Diagnosis: Future and Perspectives. Biomedicines. 2025; 13(7):1644. https://doi.org/10.3390/biomedicines13071644
Chicago/Turabian StyleFavreau, Henri, Kirsley Chennen, Sylvain Feruglio, Elise Perennes, Nicolas Anton, Thierry Vandamme, Nadia Jessel, Olivier Poch, and Guillaume Conzatti. 2025. "Knee Osteoarthritis Diagnosis: Future and Perspectives" Biomedicines 13, no. 7: 1644. https://doi.org/10.3390/biomedicines13071644
APA StyleFavreau, H., Chennen, K., Feruglio, S., Perennes, E., Anton, N., Vandamme, T., Jessel, N., Poch, O., & Conzatti, G. (2025). Knee Osteoarthritis Diagnosis: Future and Perspectives. Biomedicines, 13(7), 1644. https://doi.org/10.3390/biomedicines13071644