Blood Lead (Pb) Levels as a Possible Marker of Cancer Risk in a Prospective Cohort of Women with Non-Occupational Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Measurement of Blood Pb
Quality Control
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Duffus, J.H. “Heavy Metals” a Meaningless Term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Inorganic and Organic Lead Compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 87, 1–471. [Google Scholar]
- World Health Organization (WHO) Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 23 April 2025).
- Levin, R.; Zilli Vieira, C.L.; Rosenbaum, M.H.; Bischoff, K.; Mordarski, D.C.; Brown, M.J. The Urban Lead (Pb) Burden in Humans, Animals and the Natural Environment. Environ. Res. 2021, 193, 110377. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and Molecular Aspects of Lead Toxicity: An Update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef]
- Lacerda, D.; Pestana, I.A.; dos Santos Vergilio, C.; de Rezende, C.E. Global Decrease in Blood Lead Concentrations Due to the Removal of Leaded Gasoline. Chemosphere 2023, 324, 138207. [Google Scholar] [CrossRef]
- Park, W.-J.; Gu, H.-M.; Lee, S.-H. Blood Lead Level and Types of Aviation Fuel in Aircraft Maintenance Crew. Aviat. Space Environ. Med. 2013, 84, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Bawaskar, H.; Bawaskar, P. Blood Lead Level among Fuel Station Workers, Ganesh Idol Painters, Persons with Routine Daily Application Lead Containing Black Pigment to Eyes and Garage Workers. J. Fam. Med. Prim. Care 2020, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Gottesfeld, P.; Pokhrel, A.K. Review: Lead Exposure in Battery Manufacturing and Recycling in Developing Countries and Among Children in Nearby Communities. J. Occup. Environ. Hyg. 2011, 8, 520–532. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Han, W. Recycling and Management of Waste Lead-Acid Batteries: A Mini-Review. Waste Manag. Res. J. A Sustain. Circ. Econ. 2016, 34, 298–306. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E. Sources of Lead Exposure in Various Countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Sarlak, Z.; Hosseini, H.; Garavand, F.; Mohammadi, R.; Rouhi, M. The Occurrence of Lead in Animal Source Foods in Iran in the 2010s Decade: A Systematic Review. Biol. Trace Elem. Res. 2022, 200, 1917–1936. [Google Scholar] [CrossRef]
- Brown, M.J.; Margolis, S. Lead in Drinking Water and Human Blood Lead Levels in the United States. MMWR Suppl. 2012, 61, 1–9. [Google Scholar] [PubMed]
- Landrigan, P.; Baloh, R.; Barthel, W.; Whitworth, R.; Staehling, N.; Rosenblum, B. NEUROPSYCHOLOGICAL DYSFUNCTION IN CHILDREN WITH CHRONIC LOW-LEVEL LEAD ABSORPTION. Lancet 1975, 305, 708–712. [Google Scholar] [CrossRef]
- Harbison, R.D.; Bourgeois, M.M.; Johnson, G.T. (Eds.) Hamilton & Hardy’s Industrial Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Landrigaim, P.J.; Goyer, R.A.; Clarkson, T.W.; Sandler, D.P.; Smith, J.H.; Thun, M.J.; Wedeen, R.P. The Work-Relatedness of Renal Disease. Arch. Environ. Health Int. J. 1984, 39, 225–230. [Google Scholar] [CrossRef]
- Pirkle, J.L.; Schwartz, J.; Landis, J.R.; Harlan, W.R. The relationship between blood lead levels and blood pressure and its cardiovascular risk implications. Am. J. Epidemiol. 1985, 121, 246–258. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Todd, A.C. Lead Poisoning. West J. Med. 1994, 161, 153–159. [Google Scholar] [PubMed]
- Silbergeld, E.K.; Schwartz, J.; Mahaffey, K. Lead and Osteoporosis: Mobilization of Lead from Bone in Postmenopausal Women. Environ. Res. 1988, 47, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.S. Occupationally Derived Chemicals in Breast Milk. Am. J. Ind. Med. 1983, 4, 259–281. [Google Scholar] [CrossRef]
- POUNDS, J. Cellular Metabolism of Lead: A Kinetic Analysis in Cultured Osteoclastic Bone Cells*1. Toxicol. Appl. Pharmacol. 1986, 83, 531–545. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Case Studies in Environmental Medicine (CSEM)—Lead Toxicity; Public Health Service. U.S. Department of Health and Human Services: Atlanta, GA, USA, 1992.
- Fu, Z.; Xi, S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- de Souza, I.D.; de Andrade, A.S.; Dalmolin, R.J.S. Lead-Interacting Proteins and Their Implication in Lead Poisoning. Crit. Rev. Toxicol. 2018, 48, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J.S.; Saxena, G.; Gautam, P.; Kaur, P.; Gill, K.D. Response of Lead-Induced Oxidative Stress and Alterations in Biogenic Amines in Different Rat Brain Regions to Combined Administration of DMSA and MiADMSA. Chem. Biol. Interact. 2007, 170, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Silbergeld, E.K.; Waalkes, M.; Rice, J.M. Lead as a Carcinogen: Experimental Evidence and Mechanisms of Action. Am. J. Ind. Med. 2000, 38, 316–323. [Google Scholar] [CrossRef]
- Silbergeld, E. Facilitative Mechanisms of Lead as a Carcinogen. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2003, 533, 121–133. [Google Scholar] [CrossRef]
- Vagnoni, G.; Bortolotti, E.; Checchi, S.; Saieva, C.; Berti, G.; Doccioli, C.; Caini, S. Lead (Pb) in Biological Samples in Association with Cancer Risk and Mortality: A Systematic Literature Review. Cancer Epidemiol. 2024, 92, 102630. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, W.; Derkacz, R.; Muszyńska, M.; Baszuk, P.; Gronwald, J.; Huzarski, T.; Cybulski, C.; Jakubowska, A.; Falco, M.; Dębniak, T.; et al. Blood Arsenic Levels and the Risk of Familial Breast Cancer in Poland. Int. J. Cancer 2020, 146, 2721–2727. [Google Scholar] [CrossRef]
- Górski, B.; Jakubowska, A.; Huzarski, T.; Byrski, T.; Gronwald, J.; Grzybowska, E.; Mackiewicz, A.; Stawicka, M.; Bębenek, M.; Sorokin, D.; et al. A High Proportion of Founder BRCA1 Mutations in Polish Breast Cancer Families. Int. J. Cancer 2004, 110, 683–686. [Google Scholar] [CrossRef]
- Pan, K.; Tu, R.; Cai, Z.; Huang, Y.; Zhang, C. Association of Blood Lead with Estradiol and Sex Hormone-Binding Globulin in 8-19-Year-Old Children and Adolescents. Front. Endocrinol. 2023, 14, 1096659. [Google Scholar] [CrossRef]
- Poggio, F.; Del Mastro, L.; Bruzzone, M.; Ceppi, M.; Razeti, M.G.; Fregatti, P.; Ruelle, T.; Pronzato, P.; Massarotti, C.; Franzoi, M.A.; et al. Safety of Systemic Hormone Replacement Therapy in Breast Cancer Survivors: A Systematic Review and Meta-Analysis. Breast Cancer Res. Treat. 2022, 191, 269–275. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast Cancer and Hormone Replacement Therapy: Collaborative Reanalysis of Data from 51 Epidemiological Studies of 52,705 Women with Breast Cancer and 108,411 Women without Breast Cancer. Lancet 1997, 350, 1047–1059. [Google Scholar] [CrossRef]
- Davis, S.R.; Bell, R.J.; Robinson, P.J.; Handelsman, D.J.; Gilbert, T.; Phung, J.; Desai, R.; Lockery, J.E.; Woods, R.L.; Wolfe, R.S.; et al. Testosterone and Estrone Increase From the Age of 70 Years: Findings From the Sex Hormones in Older Women Study. J. Clin. Endocrinol. Metab. 2019, 104, 6291–6300. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.N.; Lee, W.R. Distribution of Lead-203 in Human Peripheral Blood in Vitro. Occup. Environ. Med. 1980, 37, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.L.; Mahaffey, K.R.; Mizon, K.J.; Korsch, M.J.; Cameron, M.A.; Vimpani, G. Contribution of Tissue Lead to Blood Lead in Adult Female Subjects Based on Stable Lead Isotope Methods. J. Lab. Clin. Med. 1995, 125, 703–712. [Google Scholar] [PubMed]
- Hu, H.; Shih, R.; Rothenberg, S.; Schwartz, B.S. The Epidemiology of Lead Toxicity in Adults: Measuring Dose and Consideration of Other Methodologic Issues. Environ. Health Perspect. 2007, 115, 455–462. [Google Scholar] [CrossRef]
- Barbosa, F.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef]
- Kelly, R.S.; Lundh, T.; Porta, M.; Bergdahl, I.A.; Palli, D.; Johansson, A.S.; Botsivali, M.; Vineis, P.; Vermeulen, R.; Kyrtopoulos, S.A.; et al. Blood erythrocyte concentrations of cadmium and lead and the risk of B-cell non-Hodgkin’s lymphoma and multiple myeloma: A nested case-control study. PLoS ONE 2013, 8, e81892. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Barry, V.; Anttila, A.; Sallmen, M.; Mueller, W.; Ritchie, P.; McElvenny, D.M.; Straif, K. Cancer incidence among workers with blood lead measurements in two countries. Occup. Environ. Med. 2019, 76, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, Q. Association between blood heavy metal concentrations and skin cancer in the National Health and Nutrition Examination Survey, 2011-2018. Environ. Sci. Pollut. Res. Int. 2023, 30, 108681–108693. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.M.; Yang, Y.Z.; Huang, B.Y.; Zhang, Y.; Wu, Y.; Wan, Z.; Ma, L. A cross-sectional study of the association between heavy metals and pan-cancers associated with sex hormones in NHANES 1999-2018. Environ. Sci. Pollut. Res. Int. 2023, 30, 61005–61017. [Google Scholar] [CrossRef] [PubMed]
- Deubler, E.L.; Gapstur, S.M.; Diver, W.R.; Gaudet, M.M.; Hodge, J.M.; Stevens, V.L.; McCullough, M.L.; Haines, L.G.; Levine, K.E.; Teras, L.R. Erythrocyte levels of cadmium and lead and risk of B-cell non-Hodgkin lymphoma and multiple myeloma. Int. J. Cancer 2020, 147, 3110–3118. [Google Scholar] [CrossRef] [PubMed]
- Anttila, A.; Heikkilä, P.; Pukkala, E.; Nykyri, E.; Kauppinen, T.; Hernberg, S.; Hemminki, K. Excess lung cancer among workers exposed to lead. Scand. J. Work Environ. Health 1995, 21, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Long, T.; Wang, R.; Feng, Y.; Hu, H.; Xu, Y.; Wei, Y.; Wang, F.; Guo, H.; Zhang, X.; et al. Plasma metals and cancer incidence in patients with type 2 diabetes. Sci. Total Environ. 2021, 758, 143616. [Google Scholar] [CrossRef] [PubMed]
- Unrine, J.M.; Slone, S.A.; Sanderson, W.; Johnson, N.; Durbin, E.B.; Shrestha, S.; Hahn, E.J.; Feltner, F.; Huang, B.; Christian, W.J.; et al. A case-control study of trace-element status and lung cancer in Appalachian Kentucky. PLoS ONE 2019, 14, e0212340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.; Yin, X.; Yang, X.; Yuan, Z.; Wu, Q.; Jin, L.; Chen, X.; Lu, M.; Ye, W. Trace elements in hair or fingernail and gastroesophageal cancers: Results from a population-based case-control study. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Caini, S.; Cozzolino, F.; Saieva, C.; Aprea, M.C.; De Bonfioli Cavalcabo’, N.; Ermini, I.; Assedi, M.; Biagiotti, D.; Trane, C.; Facchini, L.; et al. Serum heavy metals and breast cancer risk: A case-control study nested in the Florence cohort of the EPIC (European Prospective Investigation into Cancer and nutrition) study. Sci. Total Environ. 2023, 861, 160568. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, N.F.; Rodríguez-Barranco, M.; Huerta, J.M.; Gil, F.; Olmedo, P.; Molina-Montes, E.; Guevara, M.; Zamora-Ros, R.; Jiménez-Zabala, A.; Colorado-Yohar, S.M.; et al. Breast cancer risk for the joint exposure to metals and metalloids in women: Results from the EPIC-Spain cohort. Sci. Total Environ. 2024, 912, 168816. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Unaffected | Cases | Mean Pb Level 14.49 µg/L, SD 7.79 | Univariate Cancer Risk HR; (95% CI); p | Multivariate Cancer Risk HR; (95% CI); p |
---|---|---|---|---|---|
Blood Pb levels by quartiles µg/L | |||||
Q1 2.58–9.39 | 672 (22.95%) | 33 (1.2%) | 7.48 ± 1.34 | ||
Q2 9.4–12.58 | 672 (22.95%) | 60 (2.14%) | 10.95 ± 0.90 | HR 1.52; 95% CI (0.99–2.33); p = 0.05 | HR 1.48; 95% CI (1.06–2.08); p = 0.02 |
Q3 12.59–17.17 | 672 (22.95%) | 73 (2.495%) | 14.75 ± 1.39 | HR 1.66; 95% CI (1.1–2.5); p = 0.015 | HR 1.57; 95% CI (1.03–2.39); p = 0.03 |
Q4 17.18–96.27 | 677 (22.95%) | 68 (2.32%) | 24.35 ± 8.84 | HR 1.48; 95% CI (0.97–2.24); p = 0.06 | HR 1.34; 95% CI (0.87–2.06); p = 0.18 |
Blood arsenic levels by quartiles µg/L | |||||
Q1 <0.599 | 688 (23.5%) | 40 (1.37%) | 13.66 ± 7.84 | ||
Q2 0.60–0.81 | 676 (23.09%) | 51 (1.7%) | 13.85 ± 6.80 | HR 1.23; 95% CI (0.81–1.86); p = 0.31 | HR 1.20; 95% CI (0.79–1.82); p = 0.38 |
Q3 0.81–1.24 | 668 (22.8%) | 70 (2.4%) | 15.13 ± 7.47 | HR 1.71; 95% CI (1.16–2.53); p = 0.006 | HR 1.68; 95% CI (1.14–2.49); p = 0.008 |
Q4 >1.243 | 661 (22.6%) | 73 (2.495%) | 15.31 ± 8.79 | HR 1.89; 95% CI (1.28- 2.78); p = 0.001 | HR 1.85; 95% CI (1.26–2.74); p = 0.001 |
Cancers in first degree relatives | |||||
No | 463 (15.8%) | 37 (1.3%) | 14.10 ± 7.78 | ||
Yes | 2230 (76.2%) | 197 (6.7%) | 14.57 ± 7.79 | HR 1.11; 95% CI (0.80–1.62); p = 0.46 | HR 1.11; 95% CI (0.78–1.59); p = 0.53 |
Oral contraceptives | |||||
No | 1983 (67.75%) | 188 (6.41%) | 15.07 ± 7.74 | ||
Yes | 710 (24.26%) | 46 (1.58%) | 12.83 ± 7.72 | HR 0.86; 95% CI (0.62–1.19); p = 0.38 | HR 0.89; 95% CI (0.64–1.25); p = 0.52 |
Oophorectomy | |||||
No | 2527 (86.33%) | 216 (7.37%) | 14.38 ± 7.73 | ||
Yes | 166 (5.67%) | 18 (0.63%) | 16.20 ± 8.49 | HR 1.26; 95% CI (0.78–2.05); p = 0.33 | HR 1.17; 95% CI (0.72–1.92); p = 0.51 |
Hormone replacement therapy | |||||
No | 2127 (72.66%) | 176 (6.02%) | 14.24 ± 7.63 | ||
Yes | 566 (19.33%) | 58 (1.98%) | 15.45 ± 8.29 | HR 1.21; 95% CI (0.9–1.63); p = 0.2 | HR 1.11; 95% CI (0.82–1.51); p = 0.49 |
Smoking status | |||||
No | 1392 (47.55%) | 119 (4.065%) | 13.45 ± 7.06 | ||
Yes | 1301 (44.44%) | 115 (3.945%) | 15.61 ± 8.36 | HR 0.98; 95% CI (0.76–1.27); p = 0.9 | HR 0.96; 95% CI (0.74–1.25); p = 0.78 |
Age | |||||
<50 | 1154 (39.42%) | 63 (2.15%) | 11.69 ± 6.20 | ||
≥50 | 1539 (52.58%) | 171 (5.85%) | 16.49 ± 8.18 | HR 1.61; 95% CI (1.21–2.16); p = 0.001 | HR 1.49; 95% CI (0.771.38); p = 0.019 |
Cancer Site | n | Cases (%) | Mean Pb Level µg/L, SD |
---|---|---|---|
None | 2693 | 14.34 ± 7.60 | |
Any cancer | 239 | 100 | 16.28 ± 9.56 |
Breast | 116 | 48.5 | 16.69 ± 10.79 |
Lung | 11 | 4.6 | 22.50 ± 10.65 |
Uterus | 14 | 5.8 | 17.65 ± 11.06 |
Leukemia | 4 | 1.7 | 17.90 ± 11.27 |
Lymphoma | 5 | 2 | 17.08 ± 1.37 |
Bladder | 4 | 1.7 | 17.07 ± 5.32 |
Thyroid | 12 | 5 | 16.75 ± 7.88 |
Ovarian | 15 | 6.3 | 15.91 ± 8.35 |
Cervix | 7 | 2.9 | 15.74 ± 9.18 |
Myeloma | 3 | 1.2 | 15.17 ± 5.41 |
Melanoma | 8 | 3.3 | 14.74 ± 6.80 |
Liver | 1 | 0.5 | 14.21 |
Stomach | 5 | 2 | 13.77 ± 6.73 |
Skin | 9 | 3.8 | 13.59 ± 5.43 |
Glioma | 1 | 0.5 | 13.50 |
Chondroma | 1 | 0.5 | 13.35 |
Colon | 14 | 5.8 | 13.31 ± 7.90 |
Parotid gland | 1 | 0.5 | 12.56 |
Kidney | 5 | 2 | 12.04 ± 3.69 |
Abdominal cavity | 1 | 0.5 | 11.11 |
Pancreas | 2 | 0.9 | 10.6 ± 2.81 |
Univariate COX Regression | Multivariate COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|
Blood Pb Level µg/L | Cases | Unaffected | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Q1 2.58–9.39 | 33 (4.7%) | 672 (95.3%) | — | — | — | — | — | — |
Q2 9.4–12.58 | 60 (8.2%) | 672 (91.8%) | 1.52 | 0.99–2.33 | 0.05 | 1.48 | 0.96–2.27 | 0.07 |
Q3 12.59–17.17 | 73 (9.8%) | 672 (90.2%) | 1.66 | 1.1–2.5 | 0.015 | 1.57 | 1.03–2.38 | 0.03 |
Q4 17.18–96.27 | 68 (8.8%) | 677 (91.2%) | 1.48 | 0.97–2.24 | 0.06 | 1.34 | 0.87–2.06 | 0.18 |
Q1 2.58–9.39 vs. Q2–Q4 9.4–96.27 | 201 (9%) | 2021 (91%) | 1.55 | 1.07–2.25 | 0.018 | 1.46 | 1.006–2.13 | 0.046 |
Univariate COX Regression | Multivariate COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|
Pb Level µg/L | Cases | Unaffected | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Q1 2.58–9.39 | 17 (2.46) | 672 (97.54%) | — | — | — | — | — | — |
Q2 9.4–12.58 | 31 (4.4%) | 672 (95.6%) | 1.55 | 0.85–2.80 | 0.14 | 1.53 | 0.84–2.77 | 0.16 |
Q3 12.59–17.17 | 31 (4.4%) | 672 (95.6%) | 1.40 | 0.77–2.53 | 0.26 | 1.37 | 0.74–2.50 | 0.30 |
Q4 17.18–96.27 | 37 (5.1%) | 677 (94.9%) | 1.58 | 0.88- 2.82 | 0.11 | 1.42 | 0.78–2.59 | 0.24 |
Q1 2.58–9.39 vs. Q2–Q4 9.4–96.27 | 99 (4.66%) | 2021 (95.34%) | 1.51 | 0.90–2.53 | 0.11 | 1.44 | 0.85–2.44 | 0.17 |
Univariate COX Regression | Multivariate COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|
Pb Level µg/L | Cases | Unaffected | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Q1 2.58–9.39 | 12 (2.3%) | 492 (97.7%) | — | — | — | — | — | — |
Q2 9.4–12.58 | 23 (6.6%) | 322 (93.4%) | 2.5 | 1.24–5.03 | 0.01 | 2.49 | 1.23–5.04 | 0.01 |
Q3 12.59–17.17 | 19 (8.5%) | 204 (91.5%) | 2.9 | 1.41–6.04 | 0.003 | 3.04 | 1.46–6.30 | 0.002 |
Q4 17.18–96.27 | 9 (6.2%) | 136 (93.8%) | 2.1 | 0.89–5.05 | 0.08 | 2.12 | 0.88–5.11 | 0.09 |
Q1 2.58–9.39 vs. Q2–Q4 9.4–96.27 | 51 (7.15%) | 662 (92.85%) | 2.56 | 1.36–4.81 | 0.003 | 2.59 | 1.37–4.89 | 0.003 |
Univariate COX Regression | Multivariate COX Regression * | |||||||
---|---|---|---|---|---|---|---|---|
Pb Level µg/L | Cases | Unaffected | HR | 95% CI | p-Value | HR | 95% CI | p-Value |
Q1 2.58–9.39 | 8 (1.6%) | 492 (98.4%) | — | — | — | — | — | — |
Q2 9.4–12.58 | 19 (5.5%) | 322 (94.5%) | 3.08 | 1.34–7.05 | 0.007 | 3.20 | 1.39–7.359 | 0.006 |
Q3 12.59–17.17 | 9 (4.2%) | 204 (95.8%) | 2.13 | 0.82–5.55 | 0.11 | 2.23 | 0.85–5.85 | 0.10 |
Q4 17.18–96.27 | 6 (4.2%) | 136 (95.8%) | 2.10 | 0.72–6.10 | 0.16 | 2.018 | 0.688–5.92 | 0.20 |
Q1 2.58–9.39 vs. Q2–Q4 9.4–96.27 | 34 (4.8%) | 662 (95.2%) | 2.57 | 1.18–5.57 | 0.016 | 2.64 | 1.21–5.76 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubiński, K.; Lener, M.R.; Marciniak, W.; Pawłowski, J.; Sadzikowska, J.; Kiljańczyk, A.; Matuszczak, M.; Baszuk, P.; Pietrzak, S.; Derkacz, R.; et al. Blood Lead (Pb) Levels as a Possible Marker of Cancer Risk in a Prospective Cohort of Women with Non-Occupational Exposure. Biomedicines 2025, 13, 1587. https://doi.org/10.3390/biomedicines13071587
Lubiński K, Lener MR, Marciniak W, Pawłowski J, Sadzikowska J, Kiljańczyk A, Matuszczak M, Baszuk P, Pietrzak S, Derkacz R, et al. Blood Lead (Pb) Levels as a Possible Marker of Cancer Risk in a Prospective Cohort of Women with Non-Occupational Exposure. Biomedicines. 2025; 13(7):1587. https://doi.org/10.3390/biomedicines13071587
Chicago/Turabian StyleLubiński, Krzysztof, Marcin R. Lener, Wojciech Marciniak, Jakub Pawłowski, Julia Sadzikowska, Adam Kiljańczyk, Milena Matuszczak, Piotr Baszuk, Sandra Pietrzak, Róża Derkacz, and et al. 2025. "Blood Lead (Pb) Levels as a Possible Marker of Cancer Risk in a Prospective Cohort of Women with Non-Occupational Exposure" Biomedicines 13, no. 7: 1587. https://doi.org/10.3390/biomedicines13071587
APA StyleLubiński, K., Lener, M. R., Marciniak, W., Pawłowski, J., Sadzikowska, J., Kiljańczyk, A., Matuszczak, M., Baszuk, P., Pietrzak, S., Derkacz, R., Bryśkiewicz, M., Cybulski, C., Gronwald, J., Dębniak, T., Huzarski, T., Narod, S. A., Scott, R. J., & Lubiński, J. (2025). Blood Lead (Pb) Levels as a Possible Marker of Cancer Risk in a Prospective Cohort of Women with Non-Occupational Exposure. Biomedicines, 13(7), 1587. https://doi.org/10.3390/biomedicines13071587