Carbon Footprint Impact, of Monoclonal Antibodies for Severe Asthma, Administered in Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Analyzed
2.2. Environmental Impact Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | Carbon Dioxide |
IL | Interleukin |
CS | Systemic CorticoSteroids |
pMDIs | Pressurized metered-dose inhalers |
References
- Rönnebjerg, L.; Axelsson, M.; Kankaanranta, H.; Backman, H.; Rådinger, M.; Lundbäck, B.; Ekerljung, L. Severe Asthma in a General Population Study: Prevalence and Clinical Characteristics. J. Asthma Allergy 2021, 14, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- 2023 GINA Main Report—Global Initiative for Asthma—GINA. Available online: https://ginasthma.org/2023-gina-main-report/ (accessed on 23 November 2023).
- Lommatzsch, M. Remission in Asthma. Curr. Opin. Pulm. Med. 2024, 30, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Lommatzsch, M.; Virchow, J.C. Asthma Remission: A Call for a Globally Standardised Definition. Lancet Respir. Med. 2024, 13, 2–3. [Google Scholar] [CrossRef]
- Canonica, G.W.; Bagnasco, D.; Bondi, B.; Varricchi, G.; Paoletti, G.; Blasi, F.; Heffler, E.; Paggiaro, P.; Braido, F.; Brussino, L.; et al. SANI Clinical Remission Definition: A Useful Tool in Severe Asthma Management. J. Asthma 2024, 61, 1593–1600. [Google Scholar] [CrossRef]
- McGregor, M.C.; Krings, J.G.; Nair, P.; Castro, M. Role of Biologics in Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 433. [Google Scholar] [CrossRef]
- López-Tiro, J.; Contreras-Contreras, A.; Rodríguez-Arellano, M.E.; Costa-Urrutia, P. Economic Burden of Severe Asthma Treatment: A Real-Life Study. World Allergy Organ. J. 2022, 15, 100662. [Google Scholar] [CrossRef]
- Bagnasco, D.; Povero, M.; Pradelli, L.; Brussino, L.; Rolla, G.; Caminati, M.; Menzella, F.; Heffler, E.; Canonica, G.W.; Paggiaro, P.; et al. Economic Impact of Mepolizumab in Uncontrolled Severe Eosinophilic Asthma, in Real Life. World Allergy Organ. J. 2021, 14, 100509. [Google Scholar] [CrossRef]
- Han, J.; Tan, Z.; Chen, M.; Zhao, L.; Yang, L.; Chen, S. Carbon Footprint Research Based on Input–Output Model—A Global Scientometric Visualization Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11343. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.J.K.; Braggins, R.; Steinbach, I.; Smith, J. Costs of Switching to Low Global Warming Potential Inhalers. An Economic and Carbon Footprint Analysis of NHS Prescription Data in England. BMJ Open 2019, 9, e028763. [Google Scholar] [CrossRef]
- Pernigotti, D.; Stonham, C.; Panigone, S.; Sandri, F.; Ferri, R.; Unal, Y.; Roche, N. Reducing Carbon Footprint of Inhalers: Analysis of Climate and Clinical Implications of Different Scenarios in Five European Countries. BMJ Open Respir. Res. 2021, 8, e001071. [Google Scholar] [CrossRef]
- Montoro, J.; Antolín-Amérigo, D.; Izquierdo-Domínguez, A.; Zapata, J.J.; González, G.; Valero, A. Impact of Asthma Inhalers on Global Climate: A Systematic Review of Their Carbon Footprint and Clinical Outcomes in Spain. J. Investig. Allergol. Clin. Immunol. 2023, 33, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Janson, C.; Henderson, R.; Löfdahl, M.; Hedberg, M.; Sharma, R.; Wilkinson, A.J.K. Carbon Footprint Impact of the Choice of Inhalers for Asthma and COPD. Thorax 2020, 75, 82–84. [Google Scholar] [CrossRef]
- Janson, C.; Maslova, E.; Wilkinson, A.; Penz, E.; Papi, A.; Budgen, N.; Vogelmeier, C.F.; Kupczyk, M.; Bell, J.; Menzies-Gow, A. The Carbon Footprint of Respiratory Treatments in Europe and Canada: An Observational Study from the CARBON Programme. Eur. Respir. J. 2022, 60, 2102760. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.J.K.; Maslova, E.; Janson, C.; Radhakrishnan, V.; Quint, J.K.; Budgen, N.; Tran, T.N.; Xu, Y.; Menzies-Gow, A.; Bell, J.P. Greenhouse Gas Emissions Associated with Suboptimal Asthma Care in the UK: The SABINA HealthCARe-Based EnvirONmental Cost of Treatment (CARBON) Study. Thorax 2024, 79, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Kponee-Shovein, K.; Marvel, J.; Ishikawa, R.; Choubey, A.; Kaur, H.; Thokala, P.; Ngom, K.; Fakih, I.; Schatzki, T.; Signorovitch, J. Carbon Footprint and Associated Costs of Asthma Exacerbation Care among UK Adults. J. Med. Econ. 2022, 25, 524–531. [Google Scholar] [CrossRef]
- Bagnasco, D.; Nicola, S.; Testino, E.; Brussino, L.; Pini, L.; Caminati, M.; Piccardo, F.; Canevari, R.F.; Melissari, L.; Ioppi, A.; et al. Long-Term Efficacy of Mepolizumab at 3 Years in Patients with Severe Asthma: Comparison with Clinical Trials and Super Responders. Biomedicines 2023, 11, 2424. [Google Scholar] [CrossRef]
- Bagnasco, D.; Bondi, B.; Caminati, M.; Nicola, S.; Pini, L.; Milanese, M.; Brussino, L.; Senna, G.; Canonica, G.W.; Braido, F. Evaluation of Clinical Remission in Best-Performing Severe Asthmatic Patients Treated for Three Years with Mepolizumab. Biomedicines 2024, 12, 960. [Google Scholar] [CrossRef]
- Pini, L.; Bagnasco, D.; Beghè, B.; Braido, F.; Cameli, P.; Caminati, M.; Caruso, C.; Crimi, C.; Guarnieri, G.; Latorre, M.; et al. Unlocking the Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma: A Three-Year Real-Life Study. J. Clin. Med. 2024, 13, 3013. [Google Scholar] [CrossRef]
- Bel, E.H.D.; Moore, W.C.; Kornmann, O.; Poirier, C.; Kaneko, N.; Smith, S.G.; Martin, N.; Gilson, M.J.; Price, R.G.; Bradford, E.S.; et al. Continued Long-Term Mepolizumab in Severe Eosinophilic Asthma Protects from Asthma Worsening versus Stopping Mepolizumab: COMET Trial. Eur. Respir. J. 2020, 56, 5280. [Google Scholar] [CrossRef]
- Chung, Y.; Katial, R.; Mu, F.; Cook, E.E.; Young, J.; Yang, D.; Betts, K.A.; Carstens, D.D. Real-World Effectiveness of Benralizumab: Results from the ZEPHYR 1 Study. Ann. Allergy Asthma Immunol. 2022, 128, 669–676.e6. [Google Scholar] [CrossRef]
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M. Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017, 376, 2448–2458. [Google Scholar] [CrossRef]
- Charles, D.; Shanley, J.; Temple, S.N.; Rattu, A.; Khaleva, E.; Roberts, G. Real-World Efficacy of Treatment with Benralizumab, Dupilumab, Mepolizumab and Reslizumab for Severe Asthma: A Systematic Review and Meta-Analysis. Clin. Exp. Allergy 2022, 52, 616–627. [Google Scholar] [CrossRef]
- Bhadresha, R. Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. Thorax 2014, 69, 708. [Google Scholar] [CrossRef]
- Anai, M.; Yoshida, C.; Izumi, H.; Muramoto, K.; Saruwatari, K.; Tomita, Y.; Ichiyasu, H.; Sakagami, T. Successful Treatment with Dupilumab for Mucus Plugs in Severe Asthma. Respirol. Case Rep. 2022, 11, e01074. [Google Scholar] [CrossRef] [PubMed]
- Porsbjerg, C.M.; Dunican, E.; Lugogo, N.L.; Castro, M.; Papi, A.; Backer, N.V.; Brightling, C.E.; Bourdin, A.; Virchow, J.C.; Zhang, M.; et al. Dupilumab Reduces Mucus Plugging and Volume: Phase 4 VESTIGE Trial. Eur. Respir. J. 2024, 64, OA3649. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Harel, S.; Swanson, B.N.; Brian, W.; Chen, Z.; Rice, M.S.; Amin, N.; Ardeleanu, M.; Radin, A.; Shumel, B.; et al. Dupilumab Suppresses Type 2 Inflammatory Biomarkers across Multiple Atopic, Allergic Diseases. Clin. Exp. Allergy 2021, 51, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Vultaggio, A.; Aliani, M.; Altieri, E.; Bracciale, P.; Brussino, L.; Caiaffa, M.F.; Cameli, P.; Canonica, G.W.; Caruso, C.; Centanni, S.; et al. Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma Patients Treated for 96-Weeks: Data from the ANANKE Study. Respir. Res. 2023, 24, 135. [Google Scholar] [CrossRef]
- Bagnasco, D.; Bondi, B.; Brussino, L.; Nicola, S.; Cameli, P.; Tiotiu, A.; Guida, G.; Gollinucci, C.; Visca, D.; Spanevello, A.; et al. Dupilumab Effectiveness in Patients with Severe Allergic Asthma Non-Responsive to Omalizumab. J. Pers. Med. 2025, 15, 43. [Google Scholar] [CrossRef]
- Tennison, I.; Roschnik, S.; Ashby, B.; Boyd, R.; Hamilton, I.; Oreszczyn, T.; Owen, A.; Romanello, M.; Ruyssevelt, P.; Sherman, J.D.; et al. Health Care’s Response to Climate Change: A Carbon Footprint Assessment of the NHS in England. Lancet Planet. Health 2021, 5, e84–e92. [Google Scholar] [CrossRef]
- Home—SDU Health. Available online: https://www.sduhealth.org.uk/ (accessed on 13 January 2025).
- The Association of the British Pharmaceutical Industry. Available online: https://www.abpi.org.uk/ (accessed on 13 January 2025).
- Sustainable Healthcare Coalition Pathways Calculator|Pathways Calculator. Available online: https://shcpathways.org/ (accessed on 13 January 2025).
- Ricoveri Ospedalieri in Italia: Il Rapporto SDO 2020. Available online: https://www.epicentro.iss.it/sdo/rapporto-sdo-2020 (accessed on 13 January 2025).
- O’Driscoll, R.; Stettler, M.E.J.; Molden, N.; Oxley, T.; ApSimon, H.M. Real World CO2 and NOx Emissions from 149 Euro 5 and 6 Diesel, Gasoline and Hybrid Passenger Cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef]
- La Sorprendente Geografia Delle Emissioni Di CO2 Delle Auto in Italia—LifeGate. Available online: https://www.lifegate.it/facile-emissioni-co2-regioni (accessed on 4 April 2025).
- Rail Environment|ORR Data Portal. Available online: https://dataportal.orr.gov.uk/statistics/infrastructure-and-environment/rail-environment/ (accessed on 4 April 2025).
- Jeong, D.; Kim, Y.S.; Cho, S.; Hwang, I. A Case Study of CO2 Emissions from Beef and Pork Production in South Korea. J. Anim. Sci. Technol. 2023, 65, 427–440. [Google Scholar] [CrossRef]
- Lee, D.Y.; Mariano, E.; Choi, Y.; Park, J.M.; Han, D.; Kim, J.S.; Park, J.W.; Namkung, S.; Li, Q.; Li, X.; et al. Environmental Impact of Meat Protein Substitutes: A Mini-Review. Food Sci. Anim. Resour. 2025, 45, 62. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Kennedy, D. Enteric Virus Survival during Household Laundering and Impact of Disinfection with Sodium Hypochlorite. Appl. Environ. Microbiol. 2007, 73, 4425–4428. [Google Scholar] [CrossRef] [PubMed]
- Il Reale Impatto Climatico Dello Streaming Video—About Netflix. Available online: https://about.netflix.com/it/news/the-true-climate-impact-of-streaming? (accessed on 4 April 2025).
- Falciano, A.; Cimini, A.; Masi, P.; Moresi, M. Carbon Footprint of a Typical Neapolitan Pizzeria. Sustainability 2022, 14, 3125. [Google Scholar] [CrossRef]
- Tirumalasetty, J.; Miller, S.A.; Prescott, H.C.; DeTata, S.; Arroyo, A.C.; Wilkinson, A.J.K.; Rabin, A.S. Greenhouse Gas Emissions and Costs of Inhaler Devices in the US. JAMA 2024, 332, 1017–1019. [Google Scholar] [CrossRef]
- Lombardi, C.; Bagnasco, D.; Passalacqua, G. Biological agents for severe asthma: The evolution of the at-home self-injection approach. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 421–427. [Google Scholar] [CrossRef]
Characteristics of Patients at Baseline | |||
---|---|---|---|
Drug | Mepolizumab | Benralizumab | Dupilumab |
Sample of patients | 157 | 162 | 42 |
Gender (Female, %) | 77 (49) | 99 (61) | 23 (55) |
Age mean | 59 (21–84) | 56 (12.7) | 55 (12) |
Age Onset | 41 (15.7) | - | 24 (17) |
BMI | 25.8 (8.8) | - | 26 (4.0) |
CRSwNP (%) | 99 (63) | 86 (53.1) | 26 (62) |
Exacerbations | 3.9 (2.8) | 144 (93.5) | 2.6 (2.7) |
Hospitalizations | 1.4 (0.5) | 0.2 (0.5) | 0.1 (0.3) |
CS dependent (%) | 85 (54) | 41 (25.3) | 16 (38) |
CS dose g/y | 5.8 (4.0) | 3.6 | 2.2 (2.7) |
FEV1 % | 70 (33) | 71 (54–84) | 79 (22) |
FEV1 L | 2.21 (1.0) | 1.9 (1.4–2.5) | 2.34 (2.7) |
FeNO | 58 (42) | - | 44 (32) |
ACT | 17 (4) | 14 (12–17.5) | 17 (5) |
SNOT-22 | 51 (15) | 42 (23.0–66.0) | 43 (24) |
Production of CO2e (kg/y) Before Mabs Use | |||||
Drug | Mepolizumab | Benralizumab | Dupilumab | Total | |
Sample of patients (n) | 157 | 162 | 42 | 361 | |
CS (kg/y of CO2) | 24,613 | 11,872 | 3764 | 40,250 | |
Exacerbations (kg/y of CO2) | 323 | 277 | 277 | 877 | |
Hospitalizations (kg/y of CO2) | 15,937 | 2812 | 5625 | 24,375 | |
TOTAL (kg/y of CO2) | 40,873 | 14,961 | 9666 | 65,502 | |
CO2e production (kg/y)/patient | 260 | 92 | 230 | 181 | |
Production of CO2e (kg/y) post 1 year of Mabs use | Total | ||||
CS (kg/y of CO2) | 8977 | 3764 | 869 | 13,610 | |
Exacerbations (kg/y of CO2) | 50 | 33 | 58 | 141 | |
Hospitalizations (kg/y of CO2) | 1875 | 0 | 938 | 2813 | |
TOTAL (kg/y of CO2) | 10,901 | 3798 | 1864 | 16,563 | |
CO2e production (kg/y)/patient | 69 | 23 | 44 | 46 | |
Reduction in CO2 production after 1 year of Mabs use | Total | p-value | |||
Difference pre/post (kg/y of CO2) | −29,973 | −11,164 | −7802 | −48,939 | 0.039 * |
Gain of CO2e (kg/y) consumption | −73% | −75% | −81% | −76% | 0.032 * |
Savings with Biologics | Example of Year Gain | |
---|---|---|
Car [36] | 794 km | 1 Milan-Florence (round trip) |
Plain [37] | 474 km | 1 Milan-Paris |
Train [38] | 4091 km | 1 Madrid-Berlin (round trip) |
Cow meat production [39] | 8.2 kg | 68 Hamburgers |
Pig meat production [39] | 11.25 kg | 562 Slices of ham |
Chicken [40] | 96 kg | 120 Roasted Chickens |
Washing Machine [41] | - | 465 Washes at 30° 229 Washes at 60° |
On-demand platform * [42] | 55 g/h | 2454 h 1227 days if used 2 h/day 3.3 years if used 2 h/day |
Pizza [43] | 4.69 kg | 29 Margheritas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnasco, D.; Pini, L.; Bondi, B.; Montagnino, C.; Testino, E.; Capuano, V.; Pugliaro, C.; Brussino, L.; Nicola, S.; Caminati, M.; et al. Carbon Footprint Impact, of Monoclonal Antibodies for Severe Asthma, Administered in Italy. Biomedicines 2025, 13, 1574. https://doi.org/10.3390/biomedicines13071574
Bagnasco D, Pini L, Bondi B, Montagnino C, Testino E, Capuano V, Pugliaro C, Brussino L, Nicola S, Caminati M, et al. Carbon Footprint Impact, of Monoclonal Antibodies for Severe Asthma, Administered in Italy. Biomedicines. 2025; 13(7):1574. https://doi.org/10.3390/biomedicines13071574
Chicago/Turabian StyleBagnasco, Diego, Laura Pini, Benedetta Bondi, Carola Montagnino, Elisa Testino, Veronica Capuano, Celeste Pugliaro, Luisa Brussino, Stefania Nicola, Marco Caminati, and et al. 2025. "Carbon Footprint Impact, of Monoclonal Antibodies for Severe Asthma, Administered in Italy" Biomedicines 13, no. 7: 1574. https://doi.org/10.3390/biomedicines13071574
APA StyleBagnasco, D., Pini, L., Bondi, B., Montagnino, C., Testino, E., Capuano, V., Pugliaro, C., Brussino, L., Nicola, S., Caminati, M., Baiardini, I., & Braido, F. (2025). Carbon Footprint Impact, of Monoclonal Antibodies for Severe Asthma, Administered in Italy. Biomedicines, 13(7), 1574. https://doi.org/10.3390/biomedicines13071574