BTEX-K Ameliorates Rheumatoid Arthritis Through Regulating the NF-κB and PPAR-γ Signaling Pathways in Incomplete Freund’s Adjuvant-Induced Arthritis Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BTEX-K Production and HPLC Analysis
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. Nitric Oxide Assay
2.6. Measurement of Cytokine Levels
2.7. Measurement of Hyaluronic Acid Level
2.8. Protein Extraction and Western Blotting
2.9. Animal Experiment
2.10. Morphological Analysis of Articular Cartilage by Micro-CT
2.11. Statistical Analysis
3. Results
3.1. Effects of BTEX-K on LPS-Induced NO Production in RAW 264.7 Cells
3.2. Cytotoxicity of BTEX-K
3.3. Effects of BTEX-K on Protein Expression of iNOS and COX-2 in LPS-Stimulated RAW 264.7 Cells
3.4. Effects of BTEX-K on LPS-Induced Expression of Cytokines in RAW 264.7 Cells
3.5. Effects of BTEX-K on Hyaluronic Acid Expression in HaCaT Cells
3.6. Effects of BTEX-K on ERK and JNK Phosphorylation in LPS-Stimulated RAW 264.7 Cells
3.7. Effects of BTEX-K on NF-κB Signaling Pathway in LPS-Induced RAW 264.7 Cells
3.8. Effects of BTEX-K on Protein Expression of PPAR-γ in LPS-Stimulated RAW 264.7 Cells
3.9. Effects of BTEX-K on Bone Structure and Density in Rheumatoid Arthritis-Induced Mice Assessed by In Vivo Micro-CT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finckh, A.; Nordström, D.C.; Graf, J. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Glass, C.K.J.S. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Liu, J.; Cao, X. Innate signaling in the inflammatory immune disorders. Cytokine Growth Factor Rev. 2014, 25, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef]
- Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci. 2008, 13, 453–461. [Google Scholar] [CrossRef]
- Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782–787. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 1994, 269, 13725–13728. [Google Scholar] [CrossRef]
- Vane, J.; Botting, R.J. Mechanism of action of anti-inflammatory drugs: An overview. In Selective COX-2 Inhibitors; Paoletti, R., Patrono, C., Catella-Lawson, F., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 1–17. [Google Scholar]
- Bryant, C.E.; Spring, D.R.; Gangloff, M.; Gay, N.J. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 2010, 8, 8–14. [Google Scholar] [CrossRef]
- Hofmann, S.R.; Morbach, H.; Schwarz, T.; Rösen-Wolff, A.; Girschick, H.J.; Hedrich, C.M. Attenuated TLR4/MAPK signaling in monocytes from patients with CRMO results in impaired IL-10 expression. Clin. Immunol. 2012, 145, 69–76. [Google Scholar] [CrossRef]
- Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef]
- Agarwal, S.; Piesco, N.; Johns, L.; Riccelli, A.J. Differential expression of IL-1β, TNF-α, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. J. Dent. Res. 1995, 74, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Apostolaki, M.; Armaka, M.; Victoratos, P.; Kollias, G. Cellular mechanisms of TNF function in models of inflammation and autoimmunity. TNF Pathophysiol. 2010, 11, 1–26. [Google Scholar]
- Ji, J.-D.; Lee, Y.-H.; Song, G.-G. Prostaglandin E2 (PGE2): Roles in immune responses and inflammation. J. Korean Rheum. Assoc. 2004, 11, 307–316. [Google Scholar]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef]
- Turini, M.E.; DuBois, R.N. Cyclooxygenase-2: A therapeutic target. Annu. Rev. Med. 2002, 53, 35–57. [Google Scholar] [CrossRef]
- Chan, E.D.; Riches, D.W. IFN-γ + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 MAPK in a mouse macrophage cell line. Am. J. Physiol. Cell Physiol. 2001, 280, C441–C450. [Google Scholar] [CrossRef]
- Johnson, G.L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef]
- Lim, H.-S.; Kim, Y.J.; Kim, B.-Y.; Jeong, S.-J. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int. J. Mol. Sci. 2019, 20, 3574. [Google Scholar] [CrossRef]
- Hardy, R.S.; Raza, K.; Cooper, M.S. Therapeutic glucocorticoids: Mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 2020, 16, 133–144. [Google Scholar] [CrossRef]
- Gupta, S.; Mishra, K.P.; Kumar, B.; Singh, S.B.; Ganju, L. Andrographolide attenuates complete Freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. J. Ethnopharmacol. 2020, 261, 113022. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Lin, L.; Wu, J.; Zhang, X.; Yu, Y.; He, S. Anti-inflammatory effects and mechanisms of dandelion in RAW264.7 macrophages and zebrafish larvae. Front. Pharmacol. 2022, 13, 906927. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, Y.; Huang, M.; Zhang, X.; Wu, Y.; Yu, M.; Zhang, L. Anti-inflammatory mechanism of action of benzoylmesaconine in lipopolysaccharide-stimulated RAW264.7 cells. Evid.-Based Complement. Altern. Med. 2022, 2022, 7008907. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Y.; Zhao, H.; Wang, Q.; Hu, M.; Liu, T. Anti-inflammatory activity of the water extract of Chloranthus serratus roots in LPS-stimulated RAW264.7 cells mediated by the Nrf2/HO-1, MAPK and NF-κB signaling pathways. J. Ethnopharmacol. 2021, 271, 113880. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Nam, K.; Choi, S.; Park, J.-S.; Lee, J.; Kim, H.-W. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010, 31, 9057–9064. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, S.Y.; Lee, H.J.; Lee, Y.R. Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in lipopolysaccharide-stimulated RAW264.7 cells. J. Ethnopharmacol. 2023, 309, 116362. [Google Scholar] [CrossRef]
- Choi, W.W.; Kim, S.H.; Kim, J.H.; Kim, K.; Kim, S.J.; Kim, M.; Yong, S.Y. Preclinical study of dual-wavelength light-emitting diode therapy in an osteoarthritis rat model. Ann. Rehabil. Med. 2023, 47, 483–492. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, D.; Lee, M.; Lee, J.; Cho, S.; Kim, T.J.; Kim, H.S. Micro-Current Stimulation Suppresses Inflammatory Responses in Peptidoglycan-Treated Raw 264.7 Macrophages and Propionibacterium acnes-Induced Skin Inflammation via TLR2/NF-κB Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 2508. [Google Scholar] [CrossRef]
- Walsh, N.C.; Crotti, T.N.; Goldring, S.R.; Gravallese, E.M. Rheumatic diseases: The effects of inflammation on bone. Immunol. Rev. 2005, 208, 228–251. [Google Scholar] [CrossRef]
- Boyce, J.A. Eicosanoids in asthma, allergic inflammation, and host defense. Curr. Mol. Med. 2008, 8, 335–349. [Google Scholar] [CrossRef]
- eSilva, J.L.; da Silva, M.P.; Lefort, J.; Vargaftig, B.J. Endotoxins, asthma, and allergic immune responses. Toxicology 2000, 152, 31–35. [Google Scholar]
- Kawamata, H.; Ochiai, H.; Mantani, N.; Terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 2000, 28, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Horwood, N.J.; Page, T.H.; McDaid, J.P.; Palmer, C.D.; Campbell, J.; Mahon, T.; Brennan, F.M.; Webster, D.; Foxwell, B.M. Bruton’s tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J. Immunol. 2006, 176, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
- Suschek, C.V.; Schnorr, O.; Kolb-Bachofen, V. The role of iNOS in chronic inflammatory processes in vivo: Is it damage-promoting, protective, or active at all? Curr. Mol. Med. 2004, 4, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Fukata, M.; Chen, A.; Klepper, A.; Krishnareddy, S.; Vamadevan, A.S.; Thomas, L.S.; Xu, R.; Inoue, H.; Arditi, M.; Dannenberg, A.J. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 2006, 131, 862–877. [Google Scholar] [CrossRef]
- Kuok, C.-L.; Chi, C.-W.; Liu, T.-Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 2004, 203, 127–137. [Google Scholar]
- Brown, M.; Sacks, D.J. Compartmentalised MAPK pathways. In Protein-Protein Interactions as New Drug Targets; Wiley-VCH: Weinheim, Germany, 2008; pp. 205–235. [Google Scholar]
- Zhu, H.; Zhang, L.; Jia, H.; Xu, L.; Cao, Y.; Zhai, M.; Li, K.; Xia, L.; Jiang, L.; Li, X. Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation. Phytomedicine 2022, 104, 154283. [Google Scholar] [CrossRef]
- Baldwin, A.S., Jr. The NF-κB and IκB proteins: New discoveries and insights. Annu. Rev. Immunol. 1996, 14, 649–681. [Google Scholar] [CrossRef]
- Beg, A.A.; Baldwin Jr, A.S. The IκB proteins: Multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 1993, 7, 2064–2070. [Google Scholar] [CrossRef]
- Pascual, G.; Fong, A.L.; Ogawa, S.; Gamliel, A.; Li, A.C.; Perissi, V.; Rose, D.W.; Willson, T.M.; Rosenfeld, M.G.; Glass, C.K. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature 2005, 437, 759–763. [Google Scholar] [CrossRef]
- Bae, E.A.; Park, S.Y.; Kim, D.H. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 2000, 23, 1481–1485. [Google Scholar] [CrossRef]
- Kim, H.J.; Oh, T.K.; Kim, Y.H.; Lee, J.; Moon, J.M.; Park, Y.S.; Sung, C.M. Pharmacokinetics of Ginsenoside Rb1, Rg3, Rk1, Rg5, F2, and Compound K from Red Ginseng Extract in Healthy Korean Volunteers. Evid. Based Complement. Alternat. Med. 2022, 2022, 8427519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Lee, J.-H.; Lee, G.Y.; Oh, J.-H.; Lee, H.; Kim, H.S.; Kim, T.-J. BTEX-K Ameliorates Rheumatoid Arthritis Through Regulating the NF-κB and PPAR-γ Signaling Pathways in Incomplete Freund’s Adjuvant-Induced Arthritis Mice. Biomedicines 2025, 13, 1524. https://doi.org/10.3390/biomedicines13071524
Hong J, Lee J-H, Lee GY, Oh J-H, Lee H, Kim HS, Kim T-J. BTEX-K Ameliorates Rheumatoid Arthritis Through Regulating the NF-κB and PPAR-γ Signaling Pathways in Incomplete Freund’s Adjuvant-Induced Arthritis Mice. Biomedicines. 2025; 13(7):1524. https://doi.org/10.3390/biomedicines13071524
Chicago/Turabian StyleHong, Joonpyo, Jin-Ho Lee, Ga Young Lee, Jin-Hwan Oh, Hana Lee, Han Sung Kim, and Tack-Joong Kim. 2025. "BTEX-K Ameliorates Rheumatoid Arthritis Through Regulating the NF-κB and PPAR-γ Signaling Pathways in Incomplete Freund’s Adjuvant-Induced Arthritis Mice" Biomedicines 13, no. 7: 1524. https://doi.org/10.3390/biomedicines13071524
APA StyleHong, J., Lee, J.-H., Lee, G. Y., Oh, J.-H., Lee, H., Kim, H. S., & Kim, T.-J. (2025). BTEX-K Ameliorates Rheumatoid Arthritis Through Regulating the NF-κB and PPAR-γ Signaling Pathways in Incomplete Freund’s Adjuvant-Induced Arthritis Mice. Biomedicines, 13(7), 1524. https://doi.org/10.3390/biomedicines13071524