Long-Term Results of Single- and Multi-Incision Minimally Invasive Esophagectomy for Esophageal Cancer: Experience of 348 Cases
Abstract
1. Introduction
2. Patients and Methods
2.1. Patient Selection
2.2. Surgical Techniques
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 381, 400–412. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658.e2. [Google Scholar] [CrossRef]
- Mariette, C.; Markar, S.R.; Dabakuyo-Yonli, T.S.; Meunier, B.; Pezet, D.; Collet, D.; D’Journo, X.B.; Brigand, C.; Perniceni, T.; Carrere, N.; et al. Hybrid Minimally Invasive Esophagectomy for Esophageal Cancer. N. Engl. J. Med. 2019, 380, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Chen, K.C.; Huang, P.M.; Kuo, S.W.; Lin, M.W.; Lee, J.M. Selection of minimally invasive surgical approaches for treating esophageal cancer. Thorac. Cancer 2022, 13, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Biere, S.S.; van Berge Henegouwen, M.I.; Maas, K.W.; Bonavina, L.; Rosman, C.; Garcia, J.R.; Gisbertz, S.S.; Klinkenbijl, J.H.; Hollmann, M.W.; de Lange, E.S.; et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: A multicentre, open-label, randomised controlled trial. Lancet 2012, 379, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, M.; Gonzalez-Rivas, D.; Fernandez, R.; Delgado, M.; Fieira, E.; Mendez, L. Uniportal VATS lobectomy. Minerva Chir. 2016, 71, 46–60. [Google Scholar]
- Aragaki, M.; Kaga, K.; Hida, Y.; Kato, T.; Matsui, Y. Feasibility and safety of reduced-port video-assisted thoracoscopic surgery using a needle scope for pulmonary lobectomy- retrospective study. Ann. Med. Surg. 2019, 45, 70–74. [Google Scholar] [CrossRef]
- Seo, H.S.; Kim, S.; Song, K.Y.; Lee, H.H. Feasibility and Potential of Reduced Port Surgery for Total Gastrectomy with Overlap Esophagojejunal Anastomosis Method. J. Gastric Cancer 2023, 23, 487–498. [Google Scholar] [CrossRef]
- Yang, Y.; Guerrero, W.G.; Algitmi, I.; Gonzalez-Rivas, D. Complex uniportal video-assisted thoracoscopic sleeve lobectomy during live surgery broadcasting. J. Thorac. Dis. 2016, 8, 1345–1348. [Google Scholar] [CrossRef]
- Datta, R.R.; Dieplinger, G.; Wahba, R.; Kleinert, R.; Thomas, M.; Gebauer, F.; Schiffmann, L.; Stippel, D.L.; Bruns, C.J.; Fuchs, H.F. True single-port cholecystectomy with ICG cholangiography through a single 15-mm trocar using the new surgical platform “symphonX”: First human case study with a commercially available device. Surg. Endosc. 2020, 34, 2722–2729. [Google Scholar] [CrossRef]
- Cho, I.S.; Bae, S.U.; Jeong, W.K.; Baek, S.K. Single-port laparoscopic appendectomy for acute appendicitis during pregnancy. J. Minim. Access Surg. 2021, 17, 37–42. [Google Scholar] [CrossRef]
- Alarcon, I.; Yang, T.; Balla, A.; Morales-Conde, S. Single/reduced port surgery vs. conventional laparoscopic gastrectomy: Systematic review and meta-analysis. Minim. Invasive Ther. Allied Technol. 2022, 31, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Abulimiti, A.; He, D.; Ran, A.; Luo, D. Comparison of single- and triple-port VATS for lung cancer: A meta-analysis. Open Med. 2021, 16, 1228–1239. [Google Scholar] [CrossRef]
- Lee, J.M.; Yang, S.M.; Yang, P.W.; Huang, P.M. Single-incision laparo-thoracoscopic minimally invasive oesophagectomy to treat oesophageal cancerdagger. Eur. J. Cardiothorac. Surg. 2016, 49 (Suppl. S1), i59–i63. [Google Scholar] [PubMed]
- Lee, J.M.; Chen, S.C.; Yang, S.M.; Tseng, Y.F.; Yang, P.W.; Huang, P.M. Comparison of single- and multi-incision minimally invasive esophagectomy (MIE) for treating esophageal cancer: A propensity-matched study. Surg. Endosc. 2017, 31, 2925–2931. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, N.; Ma, A.; Wang, Z.; Zhang, Y.; Liu, C.; Liu, L. Three-dimensional versus two-dimensional video-assisted thoracic surgery for thoracic disease: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 862–871. [Google Scholar] [CrossRef]
- Shen, M.S.; Hsieh, M.Y.; Lin, C.H.; Wang, B.Y. Comparison of three-dimensional and two-dimensional thoracoscopic segmentectomy in lung cancer. Asian J. Surg. 2023, 46, 2657–2661. [Google Scholar] [CrossRef] [PubMed]
- Garas, G.; Kayani, B.; Tolley, N.; Palazzo, F.; Athanasiou, T.; Zacharakis, E. Is there a role for intraoperative recurrent laryngeal nerve monitoring during high mediastinal lymph node dissection in three-stage oesophagectomy for oesophageal cancer? Int. J. Surg. 2013, 11, 370–373. [Google Scholar] [CrossRef]
- Baba, M.; Aikou, T.; Natsugoe, S.; Kusano, C.; Shimada, M.; Nakano, S.; Fukumoto, T.; Yoshinaka, H. Quality of life following esophagectomy with three-field lymphadenectomy for carcinoma, focusing on its relationship to vocal cord palsy. Dis. Esophagus 2017, 11, 28–34. [Google Scholar] [CrossRef]
- Verhage, R.J.; Zandvoort, H.J.; ten Kate, F.J.; van Hillegersberg, R. How to define a positive circumferential resection margin in T3 adenocarcinoma of the esophagus. Am. J. Surg. Pathol. 2011, 35, 919–926. [Google Scholar] [CrossRef]
- Karasaki, T.; Nakajima, J.; Murakawa, T.; Fukami, T.; Yoshida, Y.; Kusakabe, M.; Ohtsu, H.; Takamoto, S. Video-assisted thoracic surgery lobectomy preserves more latissimus dorsi muscle than conventional surgery. Interact. Cardiovasc. Thorac. Surg. 2009, 8, 316–319; discussion 319–320. [Google Scholar] [CrossRef] [PubMed]
- Tacconi, F.; Carlea, F.; La Rocca, E.; Vanni, G.; Ambrogi, V. Systemic Inflammation after Uniport, Multiport, or Hybrid VATS Lobectomy for Lung Cancer. Thorac. Cardiovasc. Surg. 2022, 70, 258–264. [Google Scholar] [CrossRef]
- Mayanagi, S.; Tsubosa, Y.; Omae, K.; Niihara, M.; Uchida, T.; Tsushima, T.; Yokota, T.; Sato, H.; Naito, T.; Yasui, H. Negative Impact of Skeletal Muscle Wasting After Neoadjuvant Chemotherapy Followed by Surgery on Survival for Patients with Thoracic Esophageal Cancer. Ann. Surg. Oncol. 2017, 24, 3741–3747. [Google Scholar] [CrossRef]
- Yang, P.W.; Huang, P.M.; Yong, L.S.; Chang, Y.H.; Wu, C.W.; Hua, K.T.; Hsieh, M.S.; Lee, J.M. Circulating Interleukin-6 is Associated with Prognosis and Genetic Polymorphisms of MIR608 in Patients with Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2018, 25, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, X.; Jiao, D.; Cai, Y.; Qian, L.; Shen, Y.; Lu, Y.; Zhou, Y.; Fu, B.; Sun, R.; et al. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J. Hematol. Oncol. 2023, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.H.; Huang, P.M.; Liang, S.T.; Chen, K.C.; Lin, M.W.; Kuo, S.W.; Liao, H.C.; Lee, J.M. Plasma Cytokines Pattern as a Prognostic Marker for Esophageal Squamous Cell Carcinoma via Unsupervised Clustering Analyses. Oncology 2025, 103, 427–438. [Google Scholar] [CrossRef]
- Chen, K.C.; Wu, I.H.; Chang, C.Y.; Huang, P.M.; Lin, M.W.; Lee, J.M. The Long-Term Clinical Impact of Thoracic Endovascular Aortic Repair (TEVAR) for Advanced Esophageal Cancer Invading Aorta. Ann. Surg. Oncol. 2021, 28, 8374–8384. [Google Scholar] [CrossRef]
- Dmitrii, S.; Pavel, K. Uniportal Video-Assisted Thoracic Surgery Esophagectomy. Thorac. Surg. Clin. 2017, 27, 407–415. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, J.; Zhang, J.; Li, J.; Fang, W.; Chen, M. Efficacy and complications of single-port thoracoscopic minimally invasive esophagectomy in esophageal squamous cell carcinoma: A single-center experience. Sci. Rep. 2023, 13, 16325. [Google Scholar] [CrossRef]
- Weng, G.; Su, W.; Fiorelli, A.; Lin, Y.; Chen, L.; Zhang, H.; Fang, W. Single-port compared to multi-port video-assisted thoracoscopic esophagectomy: A propensity-matched study. J. Thorac. Dis. 2025, 17, 1626–1635. [Google Scholar] [CrossRef]
- Nachira, D.; Congedo, M.T.; Calabrese, G.; Tabacco, D.; Petracca Ciavarella, L.; Meacci, E.; Vita, M.L.; Punzo, G.; Lococo, F.; Raveglia, F.; et al. Uniportal-VATS vs. open McKeown esophagectomy: Surgical and long-term oncological outcomes. Front. Surg. 2023, 10, 1103101. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.; Kumar, V.; Chaturvedi, A.; Chaudhary, A.K.; Gonzalez-Rivas, D. Uniportal video-assisted thoracoscopic Ivor Lewis oesophagectomy. J. Minim. Access Surg. 2023, 19, 450–452. [Google Scholar] [CrossRef] [PubMed]
No. (%) | ||||||
---|---|---|---|---|---|---|
Unmatched cohort (n = 817) | Propensity score matching (n = 542) | |||||
Characteristic | SIMIE | MIMIE | p-value | SIMIE | MIMIE | p-value |
(n = 348) | (n = 469) | (n = 271) | (n = 271) | |||
Age, median (IQR), y | 58.5 (52.0–65.0) | 58.0 (52.0–65.0) | 0.9828 | 58.0 (52.0–65.0) | 58.0 (52.0–65.0) | 0.7719 |
Sex | 0.0760 | 1.0000 | ||||
Male | 314 (90.2) | 439 (93.6) | 263 (97.0) | 263 (97.0) | ||
Female | 34 (9.8) | 30 (6.4) | 8 (3.0) | 8 (3.0) | ||
Lung function, median (IQR), % | ||||||
FVC | 106.8 (95.0–117.6) | 103.8 (92.0–113.9) | 0.2237 | 106.5 (94.3–117.1) | 102.7 (91.5–113.9) | 0.1242 |
FEV1 | 102.4 (91.3–113.6) | 101.3 (90.5–111.4) | 0.8993 | 102.0 (91.6–113.4) | 100.8 (90.1–112.2) | 0.8539 |
Pre-op Alb level, median (IQR), g/dL | 4.2 (3.9–4.4) | 4.2 (3.8–4.4) | 0.2267 | 4.2 (3.9–4.4) | 4.2 (3.9–4.4) | 0.2062 |
Pathology type | 0.6164 | 1.0000 | ||||
SCC | 314 (92.1) | 422 (90.7) | 264 (97.4) | 264 (97.4) | ||
Adenocarcinoma | 23 (6.7) | 36 (7.7) | 7 (2.6) | 7 (2.6) | ||
Others | 4 (1.2) | 8 (1.7) | ||||
Pathological staging | 0.2292 | 0.5492 | ||||
0 | 4 (1.2) | 4 (0.9) | 4 (1.5) | 1 (0.4) | ||
I | 175 (50.4) | 224 (48.4) | 144 (53.1) | 139 (51.3) | ||
II | 29 (8.4) | 60 (13.0) | 27 (10.0) | 35 (12.9) | ||
III | 111 (32.0) | 148 (32.0) | 76 (28.0) | 78 (28.8) | ||
IV | 28 (8.1) | 27 (5.8) | 20 (7.4) | 18 (6.6) | ||
Neoadjuvant CCRT | 0.1247 | 1.0000 | ||||
+ | 254 (73.0) | 319 (68.0) | 208 (76.8) | 208 (76.8) | ||
– | 94 (27.0) | 150 (32.0) | 63 (23.3) | 63 (23.3) | ||
Operation method | 0.0025 | 1.0000 | ||||
McKeown | 247 (71.0) | 285 (60.8) | 199 (73.4) | 199 (73.4) | ||
Ivor Lewis | 101 (29.0) | 184 (39.2) | 72 (26.6) | 72 (26.6) |
No. (%) | ||||||
---|---|---|---|---|---|---|
Unmatched cohort (n = 817) | 1:1 Propensity score matching (n = 542) | |||||
Characteristic | SIMIE | MIMIE | p value | SIMIE | MIMIE | p value |
(n = 348) | (n = 469) | (n = 271) | (n = 271) | |||
Postoperative overall complication rate (%) | 65 (18.7) | 70 (14.9) | 0.1532 | 50 (18.5) | 36 (13.3) | 0.0998 |
Pulmonary (%) | 10 (2.9) | 16 (3.4) | 0.6649 | 7 (2.6) | 9 (3.3) | 0.6118 |
Leakage (%) | 14 (4.0) | 9 (1.9) | 0.0722 | 12 (4.4) | 5 (1.9) | 0.0845 |
30-d Mortality | ||||||
(%) | 5 (1.4) | 14 (3.0) | 0.1465 | 3 (1.1) | 7 (2.6) | 0.2017 |
LNs retrieved | 43 (29–57) | 36 (21–49) | <0.0001 | 44 (32–58) | 36 (23–49) | <0.0001 |
Resection margin | 0.3494 | 0.8838 | ||||
R0 | 298 (89.0) | 346 (91.0) | 231 (87.8) | 203 (88.3) | ||
R1 or R2 | 37 (11.0) | 34 (9.0) | 32 (12.2) | 27 (11.7) | ||
Overall survival | 0.0244 | 0.0088 | ||||
3 y | 0.4832 | 0.4335 | 0.4975 | 0.4284 | ||
5 y | 0.4484 | 0.3611 | 0.4597 | 0.3537 | ||
Progression-free survival | 0.0305 | 0.0207 | ||||
3 y | 0.4281 | 0.3845 | 0.4246 | 0.3798 | ||
5 y | 0.3863 | 0.3219 | 0.3787 | 0.3086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Huang, P.-M.; Chen, K.-C.; Lee, J.-M. Long-Term Results of Single- and Multi-Incision Minimally Invasive Esophagectomy for Esophageal Cancer: Experience of 348 Cases. Biomedicines 2025, 13, 1523. https://doi.org/10.3390/biomedicines13071523
Chen Y-H, Huang P-M, Chen K-C, Lee J-M. Long-Term Results of Single- and Multi-Incision Minimally Invasive Esophagectomy for Esophageal Cancer: Experience of 348 Cases. Biomedicines. 2025; 13(7):1523. https://doi.org/10.3390/biomedicines13071523
Chicago/Turabian StyleChen, Yung-Hsin, Pei-Ming Huang, Ke-Cheng Chen, and Jang-Ming Lee. 2025. "Long-Term Results of Single- and Multi-Incision Minimally Invasive Esophagectomy for Esophageal Cancer: Experience of 348 Cases" Biomedicines 13, no. 7: 1523. https://doi.org/10.3390/biomedicines13071523
APA StyleChen, Y.-H., Huang, P.-M., Chen, K.-C., & Lee, J.-M. (2025). Long-Term Results of Single- and Multi-Incision Minimally Invasive Esophagectomy for Esophageal Cancer: Experience of 348 Cases. Biomedicines, 13(7), 1523. https://doi.org/10.3390/biomedicines13071523