Transcranial Direct Current Stimulation over the Orbitofrontal Cortex Enhances Self-Reported Confidence but Reduces Metacognitive Sensitivity in a Perceptual Decision-Making Task
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Transcranial Direct Current Stimulation
2.3. Psychological Measures
2.4. Experimental Design
2.5. Statistical Analysis
3. Results
3.1. Stimulation Effects on Perceptual Decision-Making Accuracy and Self-Reported Confidence
3.2. Stimulation Effects on Metacognitive Sensitivity
3.3. Summary of the Stimulation Effects on First- and Second-Order Performance
3.4. Relationship Between Metacognitive Sensitivity, Metacognitive Beliefs, and Delay Discounting
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PFC | Prefrontal cortex |
ACC | Anterior cingulate cortex |
dlPFC | Dorsolateral prefrontal cortex |
NIBS | Non-invasive brain stimulation |
tDCS | Transcranial direct current stimulation |
OFC | Orbitofrontal cortex |
TMS | Transcranial magnetic stimulation |
MCQ-30 | Metacognitions Questionnaire-30 |
CC | Cognitive confidence |
CSC | Cognitive self-consciousness |
POS | Positive beliefs about worry |
NEG | Negative beliefs about worry |
NC | Need to control thoughts |
2-AFC | Two-alternative forced choice |
MICT | Monetary intertemporal choice task |
IP | Indifference point |
AuC | Area under the curve |
LME | Linear mixed-effect (models) |
ANOVA | Analysis of variance |
ROAST | Realistic volumetric approach to simulate transcranial electric stimulation |
SEM | Standard error of the mean |
tACS | Transcranial alternating current stimulation |
V1/V2 | Primary and secondary visual cortex |
ROC | Receiver operating characteristic (curve) |
References
- Flavell, J.; Wellman, H. Metamemory. In Perspectives on the Development of Memory and Cognition; Kail, R.V., Hagen, J.W., Eds.; Erlbaum: Hillsdale, MI, USA, 1977; pp. 62–63. [Google Scholar]
- Veenman, M.V.J. Teaching for Metacognition. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 89–95. ISBN 978-0-08-097087-5. [Google Scholar]
- Sun, X.; Zhu, C.; So, S.H.W. Dysfunctional Metacognition across Psychopathologies: A Meta-Analytic Review. Eur. Psychiatry 2017, 45, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Teachman, B.A.; Joormann, J.; Steinman, S.A.; Gotlib, I.H. Automaticity in Anxiety Disorders and Major Depressive Disorder. Clin. Psychol. Rev. 2012, 32, 575–603. [Google Scholar] [CrossRef] [PubMed]
- Fleur, D.S.; Bredeweg, B.; van den Bos, W. Metacognition: Ideas and Insights from Neuro- and Educational Sciences. npj Sci. Learn. 2021, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, B.; Lau, H. A Signal Detection Theoretic Approach for Estimating Metacognitive Sensitivity from Confidence Ratings. Conscious. Cogn. 2012, 21, 422–430. [Google Scholar] [CrossRef]
- Maniscalco, B.; Lau, H. Signal Detection Theory Analysis of Type 1 and Type 2 Data: Meta-D′, Response-Specific Meta-D′, and the Unequal Variance SDT Model. In The Cognitive Neuroscience of Metacognition; Fleming, S.M., Frith, C.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 25–66. ISBN 978-3-642-45190-4. [Google Scholar]
- Arnold, D.H.; Clendinen, M.; Johnston, A.; Lee, A.L.F.; Yarrow, K. The Precision Test of Metacognitive Sensitivity and Confidence Criteria. Conscious. Cogn. 2024, 123, 103728. [Google Scholar] [CrossRef]
- Galvin, S.J.; Podd, J.V.; Drga, V.; Whitmore, J. Type 2 Tasks in the Theory of Signal Detectability: Discrimination between Correct and Incorrect Decisions. Psychon. Bull. Rev. 2003, 10, 843–876. [Google Scholar] [CrossRef]
- Fleming, S.M.; Lau, H.C. How to Measure Metacognition. Front. Hum. Neurosci. 2014, 8, 443. [Google Scholar] [CrossRef]
- Rouault, M.; Seow, T.; Gillan, C.M.; Fleming, S.M. Psychiatric Symptom Dimensions Are Associated With Dissociable Shifts in Metacognition but Not Task Performance. Biol. Psychiatry 2018, 84, 443–451. [Google Scholar] [CrossRef]
- Hohendorf, M.; Bauer, M. Metacognitive Sensitivity and Symptoms of Mental Disorder: A Systematic Review and Meta-Analysis. Front. Psychol. 2023, 14, 991339. [Google Scholar] [CrossRef]
- Janowsky, J.S.; Shimamura, A.P.; Kritchevsky, M.; Squire, L.R. Cognitive Impairment Following Frontal Lobe Damage and Its Relevance to Human Amnesia. Behav. Neurosci. 1989, 103, 548–560. [Google Scholar] [CrossRef]
- Pannu, J.K.; Kaszniak, A.W.; Rapcsak, S.Z. Metamemory for Faces Following Frontal Lobe Damage. J. Int. Neuropsychol. Soc. 2005, 11, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.F.; Schacter, D.L.; Sperling, R.A. Neural Correlates of Metamemory: A Comparison of Feeling-of-Knowing and Retrospective Confidence Judgments. J. Cogn. Neurosci. 2009, 21, 1751–1765. [Google Scholar] [CrossRef] [PubMed]
- Do Lam, A.T.A.; Gauggel, S.; Weis, S. Neural Correlates of Metamemory: An fMRI Study. NeuroImage 2009, 47, S120. [Google Scholar] [CrossRef]
- Baird, B.; Smallwood, J.; Gorgolewski, K.J.; Margulies, D.S. Medial and Lateral Networks in Anterior Prefrontal Cortex Support Metacognitive Ability for Memory and Perception. J. Neurosci. 2013, 33, 16657–16665. [Google Scholar] [CrossRef]
- Fleming, S.M.; Huijgen, J.; Dolan, R.J. Prefrontal Contributions to Metacognition in Perceptual Decision Making. J. Neurosci. 2012, 32, 6117–6125. [Google Scholar] [CrossRef]
- Rouault, M.; McWilliams, A.; Allen, M.G.; Fleming, S.M. Human Metacognition across Domains: Insights from Individual Differences and Neuroimaging. Personal. Neurosci. 2018, 1, e17. [Google Scholar] [CrossRef]
- Fleming, S.M.; Weil, R.S.; Nagy, Z.; Dolan, R.J.; Rees, G. Relating Introspective Accuracy to Individual Differences in Brain Structure. Science 2010, 329, 1541–1543. [Google Scholar] [CrossRef]
- McCurdy, L.Y.; Maniscalco, B.; Metcalfe, J.; Liu, K.Y.; de Lange, F.P.; Lau, H. Anatomical Coupling between Distinct Metacognitive Systems for Memory and Visual Perception. J. Neurosci. 2013, 33, 1897–1906. [Google Scholar] [CrossRef]
- Fleming, S.M.; Dolan, R.J. The Neural Basis of Metacognitive Ability. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1338–1349. [Google Scholar] [CrossRef]
- Schnyer, D.M.; Nicholls, L.; Verfaellie, M. The Role of VMPC in Metamemorial Judgments of Content Retrievability. J. Cogn. Neurosci. 2005, 17, 832–846. [Google Scholar] [CrossRef]
- Chua, E.F.; Ahmed, R.; Garcia, S.M. Effects of HD-tDCS on Memory and Metamemory for General Knowledge Questions That Vary by Difficulty. Brain Stimul. 2017, 10, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, A.M.; Chua, E.F. Transcranial Direct Current Stimulation over the Prefrontal Cortex Alters Encoding and Judgments of Learning Based on Fluency. J. Cogn. Neurosci. 2019, 31, 1710–1725. [Google Scholar] [CrossRef] [PubMed]
- Modirrousta, M.; Fellows, L.K. Medial Prefrontal Cortex Plays a Critical and Selective Role in ‘Feeling of Knowing’ Meta-Memory Judgments. Neuropsychologia 2008, 46, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- Rounis, E.; Maniscalco, B.; Rothwell, J.C.; Passingham, R.E.; Lau, H. Theta-Burst Transcranial Magnetic Stimulation to the Prefrontal Cortex Impairs Metacognitive Visual Awareness. Cogn. Neurosci. 2010, 1, 165–175. [Google Scholar] [CrossRef]
- Shekhar, M.; Rahnev, D. Distinguishing the Roles of Dorsolateral and Anterior PFC in Visual Metacognition. J. Neurosci. 2018, 38, 5078–5087. [Google Scholar] [CrossRef]
- Saccenti, D.; Moro, A.S.; Sassaroli, S.; Malgaroli, A.; Ferro, M.; Lamanna, J. Neural Correlates of Metacognition: Disentangling the Brain Circuits Underlying Prospective and Retrospective Second-Order Judgments through Noninvasive Brain Stimulation. J. Neurosci. Res. 2024, 102, e25330. [Google Scholar] [CrossRef]
- Ferro, M.; Lamanna, J.; Spadini, S.; Nespoli, A.; Sulpizio, S.; Malgaroli, A. Synaptic Plasticity Mechanisms behind TMS Efficacy: Insights from Its Application to Animal Models. J. Neural Transm. 2022, 129, 25–36. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Wendling, F. Mechanisms of Action of tDCS: A Brief and Practical Overview. Neurophysiol. Clin. 2019, 49, 269–275. [Google Scholar] [CrossRef]
- Beer, J.S.; Lombardo, M.V.; Bhanji, J.P. Roles of Medial Prefrontal Cortex and Orbitofrontal Cortex in Self-Evaluation. J. Cogn. Neurosci. 2010, 22, 2108–2119. [Google Scholar] [CrossRef]
- Lamanna, J.; Isotti, F.; Ferro, M.; Racchetti, G.; Anchora, L.; Rucco, D.; Malgaroli, A. Facilitation of Dopamine-Dependent Long-Term Potentiation in the Medial Prefrontal Cortex of Male Rats Follows the Behavioral Effects of Stress. J. Neurosci. Res. 2021, 99, 662–678. [Google Scholar] [CrossRef]
- Lamanna, J.; Isotti, F.; Ferro, M.; Spadini, S.; Racchetti, G.; Musazzi, L.; Malgaroli, A. Occlusion of Dopamine-Dependent Synaptic Plasticity in the Prefrontal Cortex Mediates the Expression of Depressive-like Behavior and Is Modulated by Ketamine. Sci. Rep. 2022, 12, 11055. [Google Scholar] [CrossRef] [PubMed]
- Rudebeck, P.H.; Murray, E.A. The Orbitofrontal Oracle: Cortical Mechanisms for the Prediction and Evaluation of Specific Behavioral Outcomes. Neuron 2014, 84, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Denervaud, S.; Fornari, E.; Yang, X.-F.; Hagmann, P.; Immordino-Yang, M.H.; Sander, D. An fMRI Study of Error Monitoring in Montessori and Traditionally-Schooled Children. npj Sci. Learn. 2020, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.A.; Veismann, M.; Banerjee, A.; Pleger, B. Human Orbitofrontal Cortex Signals Decision Outcomes to Sensory Cortex during Behavioral Adaptations. Nat. Commun. 2023, 14, 3552. [Google Scholar] [CrossRef]
- Bechara, A. The Role of Emotion in Decision-Making: Evidence from Neurological Patients with Orbitofrontal Damage. Brain Cogn. 2004, 55, 30–40. [Google Scholar] [CrossRef]
- Hornak, J.; Bramham, J.; Rolls, E.T.; Morris, R.G.; O’Doherty, J.; Bullock, P.R.; Polkey, C.E. Changes in Emotion after Circumscribed Surgical Lesions of the Orbitofrontal and Cingulate Cortices. Brain 2003, 126, 1691–1712. [Google Scholar] [CrossRef]
- Balconi, M.; Finocchiaro, R.; Campanella, S. Reward Sensitivity, Decisional Bias, and Metacognitive Deficits in Cocaine Drug Addiction. J. Addict. Med. 2014, 8, 399–406. [Google Scholar] [CrossRef]
- Soutschek, A.; Bulley, A.; Wittekind, C.E. Metacognitive Deficits Are Associated with Lower Sensitivity to Preference Reversals in Nicotine Dependence. Sci. Rep. 2022, 12, 19787. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Ferro, M.; Scaini, S.; Malgaroli, A.; Lamanna, J. Neural Correlates of Delay Discounting in the Light of Brain Imaging and Non-Invasive Brain Stimulation: What We Know and What Is Missed. Brain Sci. 2023, 13, 403. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Seccia, A.; Ferro, M.; Malgaroli, A.; Lamanna, J. Poke And Delayed Drink Intertemporal Choice Task (POKE-ADDICT): An Open-Source Behavioral Apparatus for Intertemporal Choice Testing in Rodents. Anim. Models Exp. Med. 2023, 6, 619–626. [Google Scholar] [CrossRef]
- Peterson, E.; Welsh, M.C. The Development of Hot and Cool Executive Functions in Childhood and Adolescence: Are We Getting Warmer? In Handbook of Executive Functioning; Goldstein, S., Naglieri, J.A., Eds.; Springer Science: New York, NY, USA, 2014; pp. 45–65. [Google Scholar]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cohen, L.G.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low Intensity Transcranial Electric Stimulation: Safety, Ethical, Legal Regulatory and Application Guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [PubMed]
- Iyer, M.B.; Mattu, U.; Grafman, J.; Lomarev, M.; Sato, S.; Wassermann, E.M. Safety and Cognitive Effect of Frontal DC Brain Polarization in Healthy Individuals. Neurology 2005, 64, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety Aspects of Transcranial Direct Current Stimulation Concerning Healthy Subjects and Patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, A.F.; Volz, M.S.; Bikson, M.; Fregni, F. Electrode Positioning and Montage in Transcranial Direct Current Stimulation. J. Vis. Exp. 2011, 51, 274. [Google Scholar] [CrossRef]
- Ly, V.; Bergmann, T.O.; Gladwin, T.E.; Volman, I.; Usberti, N.; Cools, R.; Roelofs, K. Reduced Affective Biasing of Instrumental Action With tDCS Over the Prefrontal Cortex. Brain Stimul. 2016, 9, 380–387. [Google Scholar] [CrossRef]
- Yu, P.; Lu, X.; Chen, Y.; Ye, H.; Zeng, L.; Guo, W. Modulating OFC Activity With tDCS Alters Regret About Human Decision-Making. Front. Psychol. 2021, 12, 706962. [Google Scholar] [CrossRef]
- Moro, A.S.; Saccenti, D.; Vergallito, A.; Scaini, S.; Malgaroli, A.; Ferro, M.; Lamanna, J. Transcranial Direct Current Stimulation (tDCS) over the Orbitofrontal Cortex Reduces Delay Discounting. Front. Behav. Neurosci. 2023, 17, 1239463. [Google Scholar] [CrossRef]
- Huang, Y.; Datta, A.; Bikson, M.; Parra, L.C. Realistic Volumetric-Approach to Simulate Transcranial Electric Stimulation-ROAST-a Fully Automated Open-Source Pipeline. J. Neural Eng. 2019, 16, 056006. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Liebetanz, D.; Lang, N.; Antal, A.; Tergau, F.; Paulus, W. Safety Criteria for Transcranial Direct Current Stimulation (tDCS) in Humans. Clin. Neurophysiol. 2003, 114, 2220–2222; author reply 2222–2223. [Google Scholar] [CrossRef]
- Quattropani, M.C.; Lenzo, V.; Mucciardi, M.; Toffle, M.E. Psychometric Properties of the Italian Version of the Short Form of the Metacognitions Questionnaire (MCQ-30). BPA-Appl. Psych. Bull. 2014, 62, 269. [Google Scholar] [CrossRef]
- Wells, A.; Cartwright-Hatton, S. A Short Form of the Metacognitions Questionnaire: Properties of the MCQ-30. Behav. Res. Ther. 2004, 42, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.D.; Green, L.; Myerson, J. Estimating the Subjective Value of Future Rewards: Comparison of Adjusting-Amount and Adjusting-Delay Procedures. Behav. Process. 2012, 90, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.O. A Comparison of Current Measures of the Accuracy of Feeling-of-Knowing Predictions. Psychol. Bull. 1984, 95, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Bona, S.; Silvanto, J. Accuracy and Confidence of Visual Short-Term Memory Do Not Go Hand-In-Hand: Behavioral and Neural Dissociations. PLoS ONE 2014, 9, e90808. [Google Scholar] [CrossRef]
- Bor, D.; Schwartzman, D.J.; Barrett, A.B.; Seth, A.K. Theta-Burst Transcranial Magnetic Stimulation to the Prefrontal or Parietal Cortex Does Not Impair Metacognitive Visual Awareness. PLoS ONE 2017, 12, e0171793. [Google Scholar] [CrossRef]
- Rahnev, D.; Nee, D.E.; Riddle, J.; Larson, A.S.; D’Esposito, M. Causal Evidence for Frontal Cortex Organization for Perceptual Decision Making. Proc. Natl. Acad. Sci. USA 2016, 113, 6059–6064. [Google Scholar] [CrossRef]
- Ye, Q.; Zou, F.; Lau, H.; Hu, Y.; Kwok, S.C. Causal Evidence for Mnemonic Metacognition in Human Precuneus. J. Neurosci. 2018, 38, 6379–6387. [Google Scholar] [CrossRef]
- Barrett, A.B.; Dienes, Z.; Seth, A.K. Measures of Metacognition on Signal-Detection Theoretic Models. Psychol. Methods 2013, 18, 535–552. [Google Scholar] [CrossRef]
- Lapate, R.C.; Samaha, J.; Rokers, B.; Postle, B.R.; Davidson, R.J. Perceptual Metacognition of Human Faces Is Causally Supported by Function of the Lateral Prefrontal Cortex. Commun. Biol. 2020, 3, 360. [Google Scholar] [CrossRef]
- Xue, K.; Zheng, Y.; Rafiei, F.; Rahnev, D. The Timing of Confidence Computations in Human Prefrontal Cortex. Cortex 2023, 168, 167–175. [Google Scholar] [CrossRef]
- Mazur, J.E. An Adjusting Procedure for Studying Delayed Reinforcement. In The Effect of Delay and of Intervening Events on Reinforcement Value; Commons, M.L., Mazur, J.E., Nevin, J.A., Rachlin, H., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1987; pp. 55–73. [Google Scholar]
- Myerson, J.; Green, L.; Warusawitharana, M. Area under the Curve as a Measure of Discounting. J. Exp. Anal. Behav. 2001, 76, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Lak, A.; Costa, G.M.; Romberg, E.; Koulakov, A.A.; Mainen, Z.F.; Kepecs, A. Orbitofrontal Cortex Is Required for Optimal Waiting Based on Decision Confidence. Neuron 2014, 84, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Hobot, J.; Skóra, Z.; Wierzchoń, M.; Sandberg, K. Continuous Theta Burst Stimulation to the Left Anterior Medial Prefrontal Cortex Influences Metacognitive Efficiency. Neuroimage 2023, 272, 119991. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.D. Orbitofrontal Cortex and Its Contribution to Decision-Making. Annu. Rev. Neurosci. 2007, 30, 31–56. [Google Scholar] [CrossRef]
- Wokke, M.E.; Achoui, D.; Cleeremans, A. Action Information Contributes to Metacognitive Decision-Making. Sci. Rep. 2020, 10, 3632. [Google Scholar] [CrossRef]
- Fleming, S.M.; Maniscalco, B.; Ko, Y.; Amendi, N.; Ro, T.; Lau, H. Action-Specific Disruption of Perceptual Confidence. Psychol. Sci. 2015, 26, 89–98. [Google Scholar] [CrossRef]
- Di Luzio, P.; Tarasi, L.; Silvanto, J.; Avenanti, A.; Romei, V. Human Perceptual and Metacognitive Decision-Making Rely on Distinct Brain Networks. PLoS Biol. 2022, 20, e3001750. [Google Scholar] [CrossRef]
- Rahnev, D.A.; Maniscalco, B.; Luber, B.; Lau, H.; Lisanby, S.H. Direct Injection of Noise to the Visual Cortex Decreases Accuracy but Increases Decision Confidence. J. Neurophysiol. 2012, 107, 1556–1563. [Google Scholar] [CrossRef]
- Han, L.T.; Cohen, M.S.; He, L.K.; Green, L.M.; Knowlton, B.J.; Castel, A.D.; Rissman, J. Establishing a Causal Role for Left Ventrolateral Prefrontal Cortex in Value-Directed Memory Encoding with High-Definition Transcranial Direct Current Stimulation. Neuropsychologia 2023, 181, 108489. [Google Scholar] [CrossRef]
- Meiron, O.; Lavidor, M. Prefrontal Oscillatory Stimulation Modulates Access to Cognitive Control References in Retrospective Metacognitive Commentary. Clin. Neurophysiol. 2014, 125, 77–82. [Google Scholar] [CrossRef]
- Schauer, G.; Ogawa, C.Y.; Tsuchiya, N.; Bartels, A. Conscious Perception of Flickering Stimuli in Binocular Rivalry and Continuous Flash Suppression Is Not Affected by tACS-Induced SSR Modulation. Conscious. Cogn. 2020, 82, 102953. [Google Scholar] [CrossRef] [PubMed]
- Zizlsperger, L.; Kümmel, F.; Haarmeier, T. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning. PLoS ONE 2016, 11, e0151218. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Park, C.I.; Kim, H.W.; Jeon, S.; Kang, J.I.; Kim, S.J. Dysfunctional Metacognitive Beliefs in Patients with Obsessive-Compulsive Disorder and Pattern of Their Changes Following a 3-Month Treatment. Front. Psychiatry 2021, 12, 628985. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wu, W.; Lin, Y.; Wang, J.; Zhou, D.; Guo, J.; Gu, S.; He, M.; Ahmed, S.; Hu, J.; et al. Localization of Cerebral Functional Deficits in Patients with Obsessive-Compulsive Disorder: A Resting-State fMRI Study. J. Affect. Disord. 2012, 138, 313–321. [Google Scholar] [CrossRef]
- Maltby, N.; Tolin, D.F.; Worhunsky, P.; O’Keefe, T.M.; Kiehl, K.A. Dysfunctional Action Monitoring Hyperactivates Frontal-Striatal Circuits in Obsessive-Compulsive Disorder: An Event-Related fMRI Study. Neuroimage 2005, 24, 495–503. [Google Scholar] [CrossRef]
- Ursu, S.; Carter, C.S. An Initial Investigation of the Orbitofrontal Cortex Hyperactivity in Obsessive-Compulsive Disorder: Exaggerated Representations of Anticipated Aversive Events? Neuropsychologia 2009, 47, 2145–2148. [Google Scholar] [CrossRef]
- Drueke, B.; Gauggel, S.; Weise, L.; Forkmann, T.; Mainz, V. Metacognitive Judgements and Abilities in Patients with Affective Disorders. Curr. Psych. 2023, 42, 16987–16999. [Google Scholar] [CrossRef]
- Nejati, V.; Salehinejad, M.A.; Nitsche, M.A. Interaction of the Left Dorsolateral Prefrontal Cortex (l-DLPFC) and Right Orbitofrontal Cortex (OFC) in Hot and Cold Executive Functions: Evidence from Transcranial Direct Current Stimulation (tDCS). Neuroscience 2018, 369, 109–123. [Google Scholar] [CrossRef]
- Miyamoto, K.; Trudel, N.; Kamermans, K.; Lim, M.C.; Lazari, A.; Verhagen, L.; Wittmann, M.K.; Rushworth, M.F.S. Identification and Disruption of a Neural Mechanism for Accumulating Prospective Metacognitive Information Prior to Decision-Making. Neuron 2021, 109, 1396–1408.e7. [Google Scholar] [CrossRef]
- Janowsky, J.S.; Shimamura, A.P.; Squire, L.R. Memory and Metamemory: Comparisons between Patients with Frontal Lobe Lesions and Amnesic Patients. Psychobiology 1989, 17, 3–11. [Google Scholar] [CrossRef]
- Kao, Y.-C.; Davis, E.S.; Gabrieli, J.D. Neural Correlates of Actual and Predicted Memory Formation. Nat. Neurosci. 2005, 8, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Pannu, J.K.; Kaszniak, A.W. Metamemory Experiments in Neurological Populations: A Review. Neuropsychol. Rev. 2005, 15, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Schnyer, D.M.; Verfaellie, M.; Alexander, M.P.; LaFleche, G.; Nicholls, L.; Kaszniak, A.W. A Role for Right Medial Prefrontal Cortex in Accurate Feeling-of-Knowing Judgments: Evidence from Patients with Lesions to Frontal Cortex. Neuropsychologia 2004, 42, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, A.P.; Squire, L.R. Memory and Metamemory: A Study of the Feeling-of-Knowing Phenomenon in Amnesic Patients. J. Exp. Psychol. Learn. Mem. Cogn. 1986, 12, 452–460. [Google Scholar] [CrossRef]
- Soutschek, A.; Moisa, M.; Ruff, C.C.; Tobler, P.N. Frontopolar Theta Oscillations Link Metacognition with Prospective Decision Making. Nat. Commun. 2021, 12, 3943. [Google Scholar] [CrossRef]
- Higham, P.A.; Perfect, T.J.; Bruno, D. Investigating Strength and Frequency Effects in Recognition Memory Using Type-2 Signal Detection Theory. J. Exp. Psychol. Learn. Mem. Cogn. 2009, 35, 57–80. [Google Scholar] [CrossRef]
- Keidel, K.; Lu, X.; Suzuki, S.; Murawski, C.; Ettinger, U. Association of Temporal Discounting with Transdiagnostic Symptom Dimensions. npj Ment. Health Res. 2024, 3, 13. [Google Scholar] [CrossRef]
- Hoven, M.; Rouault, M.; van Holst, R.; Luigjes, J. Differences in Metacognitive Functioning between Obsessive-Compulsive Disorder Patients and Highly Compulsive Individuals from the General Population. Psychol. Med. 2023, 53, 7933–7942. [Google Scholar] [CrossRef]
- Capobianco, L.; Nordahl, H. A Brief History of Metacognitive Therapy: From Cognitive Science to Clinical Practice. Cogn. Behav. Pract. 2023, 30, 45–54. [Google Scholar] [CrossRef]
- Saccenti, D.; Lauro, L.J.R.; Crespi, S.A.; Moro, A.S.; Vergallito, A.; Grgič, R.G.; Pretti, N.; Lamanna, J.; Ferro, M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast. 2024, 2024, 7853199. [Google Scholar] [CrossRef]
Response Variable | Difficulty Level | Real (n = 20) | Sham (n = 20) | F-Value | p-Value |
---|---|---|---|---|---|
Accuracy | 6 | 0.857 ± 0.003 | 0.849 ± 0.003 | - | - |
25 | 0.753 ± 0.003 | 0.744 ± 0.003 | - | - | |
50 | 0.650 ± 0.003 | 0.640 ± 0.003 | - | - | |
100 | 0.546 ± 0.003 | 0.535 ± 0.003 | - | - | |
Pooled | 0.702 ± 0.009 | 0.692 ± 0.009 | 0.006 | 0.936 | |
Confidence | 6 | 6.785 ± 0.245 | 6.465 ± 0.245 | - | - |
25 | 6.102 ± 0.245 | 5.771 ± 0.245 | - | - | |
50 | 5.420 ± 0.245 | 5.076 ± 0.245 | - | - | |
100 | 4.737 ± 0.245 | 4.382 ± 0.245 | - | - | |
Pooled | 5.760 ± 0.278 | 5.420 ± 0.278 | 4.963 | 0.026 | |
ϕ coefficient | 6 | 0.200 ± 0.005 | 0.256 ± 0.005 | - | - |
25 | 0.132 ± 0.005 | 0.182 ± 0.005 | - | - | |
50 | 0.065 ± 0.005 | 0.108 ± 0.005 | - | - | |
100 | −0.003 ± 0.005 | 0.034 ± 0.005 | - | - | |
Pooled | 0.099 ± 0.016 | 0.145 ± 0.016 | 5.722 | 0.017 | |
meta-d′ | 6 | 1.413 ± 0.022 | 1.738 ± 0.022 | - | - |
25 | 0.948 ± 0.022 | 1.199 ± 0.022 | - | - | |
50 | 0.483 ± 0.022 | 0.660 ± 0.022 | - | - | |
100 | 0.019 ± 0.022 | 0.122 ± 0.022 | - | - | |
Pooled | 0.716 ± 0.110 | 0.930 ± 0.110 | 3.919 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccenti, D.; Moro, A.S.; Salvetti, G.; Sassaroli, S.; Malgaroli, A.; Lamanna, J.; Ferro, M. Transcranial Direct Current Stimulation over the Orbitofrontal Cortex Enhances Self-Reported Confidence but Reduces Metacognitive Sensitivity in a Perceptual Decision-Making Task. Biomedicines 2025, 13, 1522. https://doi.org/10.3390/biomedicines13071522
Saccenti D, Moro AS, Salvetti G, Sassaroli S, Malgaroli A, Lamanna J, Ferro M. Transcranial Direct Current Stimulation over the Orbitofrontal Cortex Enhances Self-Reported Confidence but Reduces Metacognitive Sensitivity in a Perceptual Decision-Making Task. Biomedicines. 2025; 13(7):1522. https://doi.org/10.3390/biomedicines13071522
Chicago/Turabian StyleSaccenti, Daniele, Andrea Stefano Moro, Gianmarco Salvetti, Sandra Sassaroli, Antonio Malgaroli, Jacopo Lamanna, and Mattia Ferro. 2025. "Transcranial Direct Current Stimulation over the Orbitofrontal Cortex Enhances Self-Reported Confidence but Reduces Metacognitive Sensitivity in a Perceptual Decision-Making Task" Biomedicines 13, no. 7: 1522. https://doi.org/10.3390/biomedicines13071522
APA StyleSaccenti, D., Moro, A. S., Salvetti, G., Sassaroli, S., Malgaroli, A., Lamanna, J., & Ferro, M. (2025). Transcranial Direct Current Stimulation over the Orbitofrontal Cortex Enhances Self-Reported Confidence but Reduces Metacognitive Sensitivity in a Perceptual Decision-Making Task. Biomedicines, 13(7), 1522. https://doi.org/10.3390/biomedicines13071522