Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls
Abstract
:1. Introduction
2. Risk of Malignancies in Patients with CeD
3. Refractory Celiac Disease
4. Lymphomas
EATL
5. Small Bowel Carcinomas (SBCs)
6. Diagnostic Approach and Future Perspectives on Screening for Intestinal Malignancies in Celiac Disease
7. Other Malignancies Associated with Celiac Disease
7.1. Esophageal Cancer
7.2. Colorectal Cancer
7.3. Pancreatic Carcinomas
7.4. Hepatobiliary Carcinomas
7.5. Thyroid Neoplasms
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CeD | Celiac disease |
RCD | Refractory celiac disease |
EATL | Enteropathy-associated T-cell lymphoma |
SBC | Small bowel carcinoma |
IEL | Intraepithelial lymphocyte |
TGAs | Antibodies against transglutaminase 2 |
EMAs | Endomysial antibodies |
HLA | Human leukocyte antigen |
GFD | Gluten-free diet |
TCR | T-cell receptor |
DBE | Double-balloon enteroscopy |
SBE | Single-balloon enteroscopy |
SE | Spiral enteroscopy |
SIR | Standardized incidence ratio |
HR | Hazard ratio |
NHL | Non-Hodgkin lymphoma |
ASCT | Autologous stem cell transplantation |
SBA | Small bowel adenocarcinoma |
OR | Odds ratio |
MSI | Microsatellite instability |
TILs | Tumor-infiltrating lymphocytes |
MSS | Microsatellite-stable |
pMMR | Mismatch repair proficient |
SBCE | Small-bowel capsule endoscopy |
CT | Computed tomography |
MR | Magnetic resonance |
SMR | Standardized mortality ratio |
References
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef]
- Kagnoff, M.F. Overview and Pathogenesis of Celiac Disease. Gastroenterology 2005, 128, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Tapia, A.; Hill, I.D.; Semrad, C.; Kelly, C.P.; Greer, K.B.; Limketkai, B.N.; Lebwohl, B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Off. J. Am. Coll. Gastroenterol. 2023, 118, 59. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Rubio-Tapia, A. Epidemiology, Presentation, and Diagnosis of Celiac Disease. Gastroenterology 2021, 160, 63–75. [Google Scholar] [CrossRef]
- Pohoreski, K.; Horwitz, S.; Gidrewicz, D. 33 Gluten-Free Diet Knowledge and Adherence in Adolescents with Celiac Disease: A Cross-Sectional Study. Paediatr. Child Health 2023, 28, e15. [Google Scholar] [CrossRef]
- Hall, N.J.; Rubin, G.; Charnock, A. Systematic Review: Adherence to a Gluten-Free Diet in Adult Patients with Coeliac Disease. Aliment. Pharmacol. Ther. 2009, 30, 315–330. [Google Scholar] [CrossRef]
- Abu-Janb, N.; Jaana, M. Facilitators and Barriers to Adherence to Gluten-Free Diet among Adults with Celiac Disease: A Systematic Review. J. Hum. Nutr. Diet. 2020, 33, 786–810. [Google Scholar] [CrossRef]
- Malamut, G.; Cellier, C. Complications of Coeliac Disease. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 451–458. [Google Scholar] [CrossRef]
- Stenson, W.F.; Newberry, R.; Lorenz, R.; Baldus, C.; Civitelli, R. Increased Prevalence of Celiac Disease and Need for Routine Screening Among Patients with Osteoporosis. Arch. Intern. Med. 2005, 165, 393–399. [Google Scholar] [CrossRef]
- Cosnes, J.; Cellier, C.; Viola, S.; Colombel, J.; Michaud, L.; Sarles, J.; Hugot, J.; Ginies, J.; Dabadie, A.; Mouterde, O.; et al. Incidence of Autoimmune Diseases in Celiac Disease: Protective Effect of the Gluten-Free Diet. Clin. Gastroenterol. Hepatol. 2008, 6, 753–758. [Google Scholar] [CrossRef]
- Lebwohl, B.; Michaëlsson, K.; Green, P.H.R.; Ludvigsson, J.F. Persistent Mucosal Damage and Risk of Fracture in Celiac Disease. J. Clin. Endocrinol. Metab. 2014, 99, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Green, P.H.R.; Emilsson, L.; Mårild, K.; Söderling, J.; Roelstraete, B.; Ludvigsson, J.F. Cancer Risk in 47,241 Individuals with Celiac Disease: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2022, 20, e111–e131. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, L.; Semrad, C.; Lebwohl, B.; Green, P.H.R.; Ludvigsson, J.F. Risk of Small Bowel Adenocarcinoma, Adenomas, and Carcinoids in a Nationwide Cohort of Individuals with Celiac Disease. Gastroenterology 2020, 159, 1686–1694.e2. [Google Scholar] [CrossRef] [PubMed]
- Caio, G.; Volta, U.; Ursini, F.; Manfredini, R.; De Giorgio, R. Small Bowel Adenocarcinoma as a Complication of Celiac Disease: Clinical and Diagnostic Features. BMC Gastroenterol. 2019, 19, 45. [Google Scholar] [CrossRef]
- Nijeboer, P.; de Baaij, L.R.; Visser, O.; Witte, B.I.; Cillessen, S.A.G.M.; Mulder, C.J.; Bouma, G. Treatment Response in Enteropathy Associated T-Cell Lymphoma; Survival in a Large Multicenter Cohort. Am. J. Hematol. 2015, 90, 493–498. [Google Scholar] [CrossRef]
- Onwuzo, S.; Boustany, A.; Saleh, M.; Gupta, R.; Onwuzo, C.; Mascarenhas Monteiro, J.; Lawrence, F.; Emeshiobi, C.; Odu, J.; Asaad, I. Increased Risk of Colorectal Cancer in Patients with Celiac Disease: A Population-Based Study. Cureus 2023, 15, e36964. [Google Scholar] [CrossRef]
- West, J.; Logan, R.F.A.; Smith, C.J.; Hubbard, R.B.; Card, T.R. Malignancy and Mortality in People with Coeliac Disease: Population Based Cohort Study. BMJ 2004, 329, 716–719. [Google Scholar] [CrossRef]
- Lebwohl, B.; Green, P.H.R.; Söderling, J.; Roelstraete, B.; Ludvigsson, J.F. Association Between Celiac Disease and Mortality Risk in a Swedish Population. JAMA 2020, 323, 1277–1285. [Google Scholar] [CrossRef]
- Logan, R.F.A.; Rifkind, E.A.; Turner, I.D.; Ferguson, A. Mortality in Celiac Disease. Gastroenterology 1989, 97, 265–271. [Google Scholar] [CrossRef]
- Peters, U.; Askling, J.; Gridley, G.; Ekbom, A.; Linet, M. Causes of Death in Patients with Celiac Disease in a Population-Based Swedish Cohort. Arch. Intern. Med. 2003, 163, 1566–1572. [Google Scholar] [CrossRef]
- Askling, J.; Linet, M.; Gridley, G.; Halstensen, T.S.; Ekström, K.; Ekbom, A. Cancer Incidence in a Population-Based Cohort of Individuals Hospitalized with Celiac Disease or Dermatitis Herpetiformis. Gastroenterology 2002, 123, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Elfström, P.; Granath, F.; Ye, W.; Ludvigsson, J.F. Low Risk of Gastrointestinal Cancer among Patients with Celiac Disease, Inflammation, or Latent Celiac Disease. Clin. Gastroenterol. Hepatol. 2012, 10, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Elfström, P.; Granath, F.; Ekström Smedby, K.; Montgomery, S.M.; Askling, J.; Ekbom, A.; Ludvigsson, J.F. Risk of Lymphoproliferative Malignancy in Relation to Small Intestinal Histopathology among Patients with Celiac Disease. J. Natl. Cancer Inst. 2011, 103, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goldacre, M.J.; Wotton, C.J.; Yeates, D.; Seagroatt, V.; Jewell, D. Cancer in Patients with Ulcerative Colitis, Crohn’s Disease and Coeliac Disease: Record Linkage Study. Eur. J. Gastroenterol. Hepatol. 2008, 20, 297–304. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; West, J.; Ekbom, A.; Stephansson, O. Reduced Risk of Breast, Endometrial and Ovarian Cancer in Women with Celiac Disease. Int. J. Cancer 2012, 131, E244–E250. [Google Scholar] [CrossRef]
- Catassi, C.; Fabiani, E.; Corrao, G.; Barbato, M.; De Renzo, A.; Carella, A.M.; Gabrielli, A.; Leoni, P.; Carroccio, A.; Baldassarre, M.; et al. Risk of Non-Hodgkin Lymphoma in Celiac Disease. JAMA 2002, 287, 1413–1419. [Google Scholar] [CrossRef]
- Green, P.H.R.; Fleischauer, A.T.; Bhagat, G.; Goyal, R.; Jabri, B.; Neugut, A.I. Risk of Malignancy in Patients with Celiac Disease. Am. J. Med. 2003, 115, 191–195. [Google Scholar] [CrossRef]
- Gao, Y.; Kristinsson, S.Y.; Goldin, L.R.; Björkholm, M.; Caporaso, N.E.; Landgren, O. Increased Risk for Non-Hodgkin Lymphoma in Individuals With Celiac Disease and a Potential Familial Association. Gastroenterology 2009, 136, 91–98. [Google Scholar] [CrossRef]
- Leslie, L.A.; Lebwohl, B.; Neugut, A.I.; Gregory Mears, J.; Bhagat, G.; Green, P.H.R. Incidence of Lymphoproliferative Disorders in Patients with Celiac Disease. Am. J. Hematol. 2012, 87, 754–759. [Google Scholar] [CrossRef]
- Sultan, A.A.; Crooks, C.J.; Card, T.; Tata, L.J.; Fleming, K.M.; West, J. Causes of Death in People with Coeliac Disease in England Compared with the General Population: A Competing Risk Analysis. Gut 2015, 64, 1220–1226. [Google Scholar] [CrossRef]
- Smedby, K.E.; Akerman, M.; Hildebrand, H.; Glimelius, B.; Ekbom, A.; Askling, J. Malignant Lymphomas in Coeliac Disease: Evidence of Increased Risks for Lymphoma Types Other than Enteropathy-Type T Cell Lymphoma. Gut 2005, 54, 54–59. [Google Scholar] [CrossRef] [PubMed]
- van Gils, T.; Nijeboer, P.; Overbeek, L.I.; Hauptmann, M.; Castelijn, D.A.; Bouma, G.; Mulder, C.J.; van Leeuwen, F.E.; de Jong, D. Risks for Lymphoma and Gastrointestinal Carcinoma in Patients with Newly Diagnosed Adult-Onset Celiac Disease: Consequences for Follow-Up. United Eur. Gastroenterol. J. 2018, 6, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, I.; Virta, L.J.; Huhtala, H.; Ilus, T.; Kaukinen, K.; Collin, P. Overall and Cause-Specific Mortality in Adult Celiac Disease and Dermatitis Herpetiformis Diagnosed in the 21st Century. Off. J. Am. Coll. Gastroenterol. 2020, 115, 1117. [Google Scholar] [CrossRef] [PubMed]
- Ilus, T.; Kaukinen, K.; Virta, L.J.; Pukkala, E.; Collin, P. Incidence of Malignancies in Diagnosed Celiac Patients: A Population-Based Estimate. Off. J. Am. Coll. Gastroenterol. 2014, 109, 1471. [Google Scholar] [CrossRef]
- Han, Y.; Chen, W.; Li, P.; Ye, J. Association Between Coeliac Disease and Risk of Any Malignancy and Gastrointestinal Malignancy. Medicine 2015, 94, e1612. [Google Scholar] [CrossRef]
- Silano, M.; Volta, U.; Mecchia, A.M.; Dessì, M.; Di Benedetto, R.; De Vincenzi, M. Delayed Diagnosis of Coeliac Disease Increases Cancer Risk. BMC Gastroenterol. 2007, 7, 8. [Google Scholar] [CrossRef]
- Lasa, J.; Rausch, A.; Bracho, L.F.; Altamirano, J.; Speisky, D.; de Dávila, M.T.G.; Iotti, A.; Zubiaurre, I. Colorectal Adenoma Risk Is Increased among Recently Diagnosed Adult Celiac Disease Patients. Gastroenterol. Res. Pract. 2018, 2018, 6150145. [Google Scholar] [CrossRef]
- Lebwohl, B.; Stavsky, E.; Neugut, A.I.; Green, P.H.R. Risk of Colorectal Adenomas in Patients with Coeliac Disease. Aliment. Pharmacol. Ther. 2010, 32, 1037–1043. [Google Scholar] [CrossRef]
- Volta, U.; Vincentini, O.; Quintarelli, F.; Felli, C.; Silano, M. Low Risk of Colon Cancer in Patients with Celiac Disease. Scand. J. Gastroenterol. 2014, 49, 564–568. [Google Scholar] [CrossRef]
- Gromny, I.; Neubauer, K. Pancreatic Cancer in Celiac Disease Patients—A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1565. [Google Scholar] [CrossRef]
- Landgren, A.M.; Landgren, O.; Gridley, G.; Dores, G.M.; Linet, M.S.; Morton, L.M. Autoimmune Disease and Subsequent Risk of Developing Alimentary Tract Cancers among 4.5 Million US Male Veterans. Cancer 2011, 117, 1163–1171. [Google Scholar] [CrossRef]
- Kent, L.; McBride, R.; McConnell, R.; Neugut, A.I.; Bhagat, G.; Green, P.H.R. Increased Risk of Papillary Thyroid Cancer in Celiac Disease. Dig. Dis. Sci. 2006, 51, 1875–1877. [Google Scholar] [CrossRef]
- Volta, U.; Vincentini, O.; Silano, M. Collaborating Centers of the Italian Registry of Celiac Disease Papillary Cancer of Thyroid in Celiac Disease. J. Clin. Gastroenterol. 2011, 45, e44–e46. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; Lebwohl, B.; Kämpe, O.; Murray, J.A.; Green, P.H.; Ekbom, A. Risk of Thyroid Cancer in a Nationwide Cohort of Patients with Biopsy-Verified Celiac Disease. Thyroid 2013, 23, 971–976. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Kalra, N.; Mukerjee, A.; Sinha, S.; Muralidhar, V.; Serin, Y.; Tiwari, A.; Verma, A.K. Current Updates on the Association between Celiac Disease and Cancer, and the Effects of the Gluten-free Diet for Modifying the Risk (Review). Int. J. Funct. Nutr. 2022, 3, 2. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Elli, L.; Leffler, D.; Cellier, C.; Lebwohl, B.; Ciacci, C.; Schumann, M.; Lundin, K.E.A.; Chetcuti Zammit, S.; Sidhu, R.; Roncoroni, L.; et al. Guidelines for Best Practices in Monitoring Established Coeliac Disease in Adult Patients. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 198–215. [Google Scholar] [CrossRef]
- Hujoel, I.A.; Murray, J.A. Refractory Celiac Disease. Curr. Gastroenterol. Rep. 2020, 22, 18. [Google Scholar] [CrossRef]
- Ilus, T.; Kaukinen, K.; Virta, L.J.; Huhtala, H.; Mäki, M.; Kurppa, K.; Heikkinen, M.; Heikura, M.; Hirsi, E.; Jantunen, K.; et al. Refractory Coeliac Disease in a Country with a High Prevalence of Clinically-Diagnosed Coeliac Disease. Aliment. Pharmacol. Ther. 2014, 39, 418–425. [Google Scholar] [CrossRef]
- Biagi, F.; Schiepatti, A.; Malamut, G.; Marchese, A.; Cellier, C.; Bakker, S.F.; Mulder, C.J.J.; Volta, U.; Zingone, F.; Ciacci, C.; et al. PROgnosticating COeliac patieNts SUrvivaL: The PROCONSUL Score. PLoS ONE 2014, 9, e84163. [Google Scholar] [CrossRef]
- Nasr, I.; Nasr, I.; Beyers, C.; Chang, F.; Donnelly, S.; Ciclitira, P.J. Recognising and Managing Refractory Coeliac Disease: A Tertiary Centre Experience. Nutrients 2015, 7, 9896. [Google Scholar] [CrossRef]
- Scarmozzino, F.; Pizzi, M.; Pelizzaro, F.; Angerilli, V.; Dei Tos, A.P.; Piazza, F.; Savarino, E.V.; Zingone, F.; Fassan, M. Refractory Celiac Disease and Its Mimickers: A Review on Pathogenesis, Clinical-Pathological Features and Therapeutic Challenges. Front. Oncol. 2023, 13, 1273305. [Google Scholar] [CrossRef]
- Soderquist, C.R.; Bhagat, G. Cellular and Molecular Bases of Refractory Celiac Disease. Int. Rev. Cell Mol. Biol. 2021, 358, 207–240. [Google Scholar] [CrossRef]
- de Leval, L.; Feldman, A.L.; Pileri, S.; Nakamura, S.; Gaulard, P. Extranodal T- and NK-Cell Lymphomas. Virchows Arch. 2023, 482, 245–264. [Google Scholar] [CrossRef]
- Singh, M.; Louie, R.H.Y.; Samir, J.; Field, M.A.; Milthorpe, C.; Adikari, T.; Mackie, J.; Roper, E.; Faulks, M.; Jackson, K.J.L.; et al. Expanded T Cell Clones with Lymphoma Driver Somatic Mutations Accumulate in Refractory Celiac Disease. Sci. Transl. Med. 2025, 17, eadp6812. [Google Scholar] [CrossRef]
- Soderquist, C.R.; Hsiao, S.; Mansukhani, M.M.; Alobeid, B.; Green, P.H.; Bhagat, G. Refractory Celiac Disease Type II: An Atypical Case Highlighting Limitations of the Current Classification System. Hematol. Oncol. 2020, 38, 399–405. [Google Scholar] [CrossRef]
- Lewis, N.E.; Zhou, T.; Dogan, A. Biology and Genetics of Extranodal Mature T-Cell and NKcell Lymphomas and Lymphoproliferative Disorders. Haematologica 2023, 108, 3261–3277. [Google Scholar] [CrossRef]
- Dieckman, T.; Schreurs, M.; Lindelauf, C.; Mahfouz, A.; Meijer, C.R.; Pigeaud, L.; van Unen, V.; Bouma, G.; Koning, F. Activated CD27+PD-1+ CD8 T Cells and CD4 T Regulatory Cells Dominate the Tumor Microenvironment in Refractory Celiac Disease Type II. Gastro. Hep. Adv. 2024, 4, 100545. [Google Scholar] [CrossRef]
- Martín-Masot, R.; Herrador-López, M.; Navas-López, V.M.; Carmona, F.D.; Nestares, T.; Bossini-Castillo, L. Celiac Disease is a Risk Factor for Mature T and NK Cell Lymphoma: A Mendelian Randomization Study. Int. J. Mol. Sci. 2023, 24, 7216. [Google Scholar] [CrossRef]
- Arguelles-Grande, C.; Brar, P.; Green, P.H.R.; Bhagat, G. Immunohistochemical and T-Cell Receptor Gene Rearrangement Analyses as Predictors of Morbidity and Mortality in Refractory Celiac Disease. J. Clin. Gastroenterol. 2013, 47, 593. [Google Scholar] [CrossRef]
- Malamut, G.; Afchain, P.; Verkarre, V.; Lecomte, T.; Amiot, A.; Damotte, D.; Bouhnik, Y.; Colombel, J.; Delchier, J.; Allez, M.; et al. Presentation and Long-Term Follow-up of Refractory Celiac Disease: Comparison of Type I with Type II. Gastroenterology 2009, 136, 81–90. [Google Scholar] [CrossRef]
- Al-toma, A.; Verbeek, W.H.M.; Hadithi, M.; von Blomberg, B.M.E.; Mulder, C.J.J. Survival in Refractory Coeliac Disease and Enteropathy-Associated T-Cell Lymphoma: Retrospective Evaluation of Single-Centre Experience. Gut 2007, 56, 1373–1378. [Google Scholar] [CrossRef]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) Guideline for Coeliac Disease and Other Gluten-Related Disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
- Pennazio, M.; Rondonotti, E.; Despott, E.J.; Dray, X.; Keuchel, M.; Moreels, T.; Sanders, D.S.; Spada, C.; Carretero, C.; Valdivia, P.C.; et al. Small-Bowel Capsule Endoscopy and Device-Assisted Enteroscopy for Diagnosis and Treatment of Small-Bowel Disorders: European Society of Gastrointestinal Endoscopy (ESGE) Guideline–Update 2022. Endoscopy 2023, 55, 58–95. [Google Scholar] [CrossRef]
- Haider, M.B.; Al Sbihi, A.; Reddy, S.N.; Green, P. Prevalence of Malignant Neoplasms in Celiac Disease Patients-a Nationwide United States Population-Based Study. World J. Clin. Oncol. 2024, 15, 1048–1060. [Google Scholar] [CrossRef]
- Tio, M.; Cox, M.R.; Eslick, G.D. Meta-Analysis: Coeliac Disease and the Risk of All-Cause Mortality, Any Malignancy and Lymphoid Malignancy. Aliment. Pharmacol. Ther. 2012, 35, 540–551. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Rubio-Tapia, A.; Ristow, K.M.; Habermann, T.M.; Murray, J.A.; Inwards, D.J. Patients with Celiac Disease and B-Cell Lymphoma Have a Better Prognosis than Those with T-Cell Lymphoma. Clin. Gastroenterol. Hepatol. 2010, 8, 1042–1047. [Google Scholar] [CrossRef]
- Delabie, J.; Holte, H.; Vose, J.M.; Ullrich, F.; Jaffe, E.S.; Savage, K.J.; Connors, J.M.; Rimsza, L.; Harris, N.L.; Müller-Hermelink, K.; et al. Enteropathy-Associated T-Cell Lymphoma: Clinical and Histological Findings from the International Peripheral T-Cell Lymphoma Project. Blood 2011, 118, 148–155. [Google Scholar] [CrossRef]
- Sandal, R.; Chauhan, A.; Jandial, A.; Mishra, K.; Rastogi, P.; Dhiman, P.; Kumar, A. Enteropathy-Associated T-Cell Lymphoma: Epidemiology, Natural History, and Management in the Current Era; Springer International Publishing: New York, NY, USA, 2023; pp. 1–18. [Google Scholar]
- WHO Classification of Tumours Editorial Board. Haematolymphoid Tumours; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-832-4520-9. [Google Scholar]
- Al-Toma, A.; Goerres, M.S.; Meijer, J.W.R.; Peña, A.S.; Crusius, J.B.A.; Mulder, C.J.J. Human Leukocyte Antigen-DQ2 Homozygosity and the Development of Refractory Celiac Disease and Enteropathy-Associated T-Cell Lymphoma. Clin. Gastroenterol. Hepatol. 2006, 4, 315–319. [Google Scholar] [CrossRef]
- Wolters, V.M.; Verbeek, W.H.M.; Zhernakova, A.; Onland–Moret, C.; Schreurs, M.W.J.; Monsuur, A.J.; Verduijn, W.; Wijmenga, C.; Mulder, C.J.J. The MYO9B Gene Is a Strong Risk Factor for Developing Refractory Celiac Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 1399–1405.e2. [Google Scholar] [CrossRef]
- Cording, S.; Lhermitte, L.; Malamut, G.; Berrabah, S.; Trinquand, A.; Guegan, N.; Villarese, P.; Kaltenbach, S.; Meresse, B.; Khater, S.; et al. Oncogenetic Landscape of Lymphomagenesis in Coeliac Disease. Gut 2022, 71, 497–508. [Google Scholar] [CrossRef]
- Moffitt, A.B.; Ondrejka, S.L.; McKinney, M.; Rempel, R.E.; Goodlad, J.R.; Teh, C.H.; Leppa, S.; Mannisto, S.; Kovanen, P.E.; Tse, E.; et al. Enteropathy-Associated T Cell Lymphoma Subtypes Are Characterized by Loss of Function of SETD2. J. Exp. Med. 2017, 214, 1371–1386. [Google Scholar] [CrossRef]
- Roberti, A.; Dobay, M.P.; Bisig, B.; Vallois, D.; Boéchat, C.; Lanitis, E.; Bouchindhomme, B.; Parrens, M.-C.; Bossard, C.; Quintanilla-Martinez, L.; et al. Type II Enteropathy-Associated T-Cell Lymphoma Features a Unique Genomic Profile with Highly Recurrent SETD2 Alterations. Nat. Commun. 2016, 7, 12602. [Google Scholar] [CrossRef]
- Nicolae, A.; Xi, L.; Pham, T.H.; Pham, T.-A.; Navarro, W.; Meeker, H.G.; Pittaluga, S.; Jaffe, E.S.; Raffeld, M. Mutations in the JAK/STAT and RAS Signaling Pathways Are Common in Intestinal T-Cell Lymphomas. Leukemia 2016, 30, 2245–2247. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Nijeboer, P.; de van der Schueren, M.A.E.; Berkenpas, M.; van Bodegraven, A.A.; Mulder, C.J.J. Refractory Celiac Disease and EATL Patients Show Severe Malnutrition and Malabsorption at Diagnosis. Clin. Nutr. 2016, 35, 685–691. [Google Scholar] [CrossRef]
- Malamut, G.; Chandesris, O.; Verkarre, V.; Meresse, B.; Callens, C.; Macintyre, E.; Bouhnik, Y.; Gornet, J.-M.; Allez, M.; Jian, R.; et al. Enteropathy Associated T Cell Lymphoma in Celiac Disease: A Large Retrospective Study. Dig. Liver Dis. 2013, 45, 377. [Google Scholar] [CrossRef]
- Gale, J.; Simmonds, P.D.; Mead, G.M.; Sweetenham, J.W.; Wright, D.H. Enteropathy-Type Intestinal T-Cell Lymphoma: Clinical Features and Treatment of 31 Patients in a Single Center. J. Clin. Oncol. 2000, 18, 795–803. [Google Scholar] [CrossRef]
- Narciso-Schiavon, J.L.; Fonseca, K.K.; Silva, J.S.; Rodrigues, S.S.T.; I-Ching, L.; Gentili, A.C.; De Meireles, C.Z.; Fonseca, J.S.; Lacombe, L.A.; Schiavon, L.D.L. Acute Abdominal Perforation as a Clinical Presentation of Coeliac Disease. Arab. J. Gastroenterol. 2024, 25, 64–66. [Google Scholar] [CrossRef]
- Awad, A.K.; Awan, R.U.; Awad, A.K.; Nabeel, A.; Dar, S.; Abegunde, A.T. Patients with Enteropathy-Associated T-Cell Lymphoma in the United States from 2000 to 2018: SEER Data-Base Analysis. Cancer Treat. Res. Commun. 2023, 36, 100745. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Biagi, F.; Gobbi, P.G.; Corazza, G.R. How I Treat Enteropathy-Associated T-Cell Lymphoma. Blood 2012, 119, 2458–2468. [Google Scholar] [CrossRef]
- Jantunen, E.; Boumendil, A.; Finel, H.; Luan, J.-J.; Johnson, P.; Rambaldi, A.; Haynes, A.; Duchosal, M.A.; Bethge, W.; Biron, P.; et al. Autologous Stem Cell Transplantation for Enteropathy-Associated T-Cell Lymphoma: A Retrospective Study by the EBMT. Blood 2013, 121, 2529–2532. [Google Scholar] [CrossRef]
- Marchi, E.; Craig, J.W.; Kalac, M. Current and Upcoming Treatment Approaches to Uncommon Subtypes of PTCL (EATL, MEITL, SPTCL, and HSTCL). Blood 2024, 144, 1898–1909. [Google Scholar] [CrossRef]
- Chen, X.; Wu, W.; Wei, W.; Zou, L. Immune Checkpoint Inhibitors in Peripheral T-Cell Lymphoma. Front. Pharmacol. 2022, 13, 869488. [Google Scholar] [CrossRef]
- Silano, M.; Volta, U.; Vincenzi, A.D.; Dessì, M.; Vincenzi, M.D. The Collaborating Centers of the Italian Registry of the Complications of Coeliac Disease Effect of a Gluten-Free Diet on the Risk of Enteropathy-Associated T-Cell Lymphoma in Celiac Disease. Dig. Dis. Sci. 2008, 53, 972–976. [Google Scholar] [CrossRef]
- Holmes, G.K.; Prior, P.; Lane, M.R.; Pope, D.; Allan, R.N. Malignancy in Coeliac Disease—Effect of a Gluten Free Diet. Gut 1989, 30, 333–338. [Google Scholar] [CrossRef]
- Coeliac Disease Guidelines|BSG. Available online: https://www.bsg.org.uk/clinical-resource/diagnosis-management-adult-coeliac-disease (accessed on 16 October 2024).
- Leffler, D.A.; Dennis, M.; Hyett, B.; Kelly, E.; Schuppan, D.; Kelly, C.P. Etiologies and Predictors of Diagnosis in Nonresponsive Celiac Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 445–450. [Google Scholar] [CrossRef]
- Howdle, P.D.; Jalal, P.K.; Holmes, G.K.T.; Houlston, R.S. Primary Small-bowel Malignancy in the UK and Its Association with Coeliac Disease. QJM Int. J. Med. 2003, 96, 345–353. [Google Scholar] [CrossRef]
- Swinson, C.; Coles, E.; Slavin, G.; Booth, C. Coeliac Disease and Malignancy. Lancet 1983, 321, 111–115. [Google Scholar] [CrossRef]
- Vanoli, A.; Di Sabatino, A.; Furlan, D.; Klersy, C.; Grillo, F.; Fiocca, R.; Mescoli, C.; Rugge, M.; Nesi, G.; Fociani, P.; et al. Small Bowel Carcinomas in Coeliac or Crohn’s Disease: Clinico-Pathological, Molecular, and Prognostic Features. A Study From the Small Bowel Cancer Italian Consortium. J. Crohn’s Colitis 2017, 11, 942–953. [Google Scholar] [CrossRef]
- Vanoli, A.; Di Sabatino, A.; Martino, M.; Klersy, C.; Grillo, F.; Mescoli, C.; Nesi, G.; Volta, U.; Fornino, D.; Luinetti, O.; et al. Small Bowel Carcinomas in Celiac or Crohn’s Disease: Distinctive Histophenotypic, Molecular and Histogenetic Patterns. Mod. Pathol. 2017, 30, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Libera, L.; Vanoli, A.; Sahnane, N.; Adnan, M.; Guerini, C.; Arpa, G.; Bianchi, P.I.; Lenti, M.V.; Corazza, G.R.; La Rosa, S.; et al. LINE-1 Hypomethylation Characterizes the Inflammatory Response in Coeliac Disease Associated-Intestinal Mucosa and Small Bowel Adenocarcinomas. J. Pathol. 2025, 265, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Green, P.H.; Stavropoulos, S.N.; Panagi, S.G.; Goldstein, S.L.; McMahon, D.J.; Absan, H.; Neugut, A.I. Characteristics of Adult Celiac Disease in the USA: Results of a National Survey. Am. J. Gastroenterol. 2001, 96, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Khosla, D.; Dey, T.; Madan, R.; Gupta, R.; Goyal, S.; Kumar, N.; Kapoor, R. Small Bowel Adenocarcinoma: An Overview. World J. Gastrointest. Oncol. 2022, 14, 413. [Google Scholar] [CrossRef]
- Somasundar, P.S.; Espat, N.J.; Malignant Neoplasms of the Small Intestine. Medscape eMedicine 2025. Available online: https://emedicine.medscape.com/article/282684-overview (accessed on 15 June 2025).
- Dabaja, B.S.; Suki, D.; Pro, B.; Bonnen, M.; Ajani, J. Adenocarcinoma of the Small Bowel. Cancer 2004, 101, 518–526. [Google Scholar] [CrossRef]
- Branchi, F.; Locatelli, M.; Tomba, C.; Conte, D.; Ferretti, F.; Elli, L. Enteroscopy and Radiology for the Management of Celiac Disease Complications: Time for a Pragmatic Roadmap. Dig. Liver Dis. 2016, 48, 578–586. [Google Scholar] [CrossRef]
- Masselli, G.; Gualdi, G. CT and MR Enterography in Evaluating Small Bowel Diseases: When to Use Which Modality? Abdom. Imaging 2013, 38, 249–259. [Google Scholar] [CrossRef]
- Mallant, M.; Hadithi, M.; Al-Toma, A.-B.; Kater, M.; Jacobs, M.; Manoliu, R.; Mulder, C.; Waesberghe, J.H. van Abdominal Computed Tomography in Refractory Coeliac Disease and Enteropathy Associated T-Cell Lymphoma. World J. Gastroenterol. 2007, 13, 1696. [Google Scholar] [CrossRef]
- Amzallag-Bellenger, E.; Oudjit, A.; Ruiz, A.; Cadiot, G.; Soyer, P.A.; Hoeffel, C.C. Effectiveness of MR Enterography for the Assessment of Small-Bowel Diseases beyond Crohn Disease. RadioGraphics 2012, 32, 1423–1444. [Google Scholar] [CrossRef]
- Paulsen, S.R.; Huprich, J.E.; Fletcher, J.G.; Booya, F.; Young, B.M.; Fidler, J.L.; Johnson, C.D.; Barlow, J.M.; Earnest, F. CT Enterography as a Diagnostic Tool in Evaluating Small Bowel Disorders: Review of Clinical Experience with over 700 Cases. RadioGraphics 2006, 26, 641–657. [Google Scholar] [CrossRef]
- Van Weyenberg, S.J.B.; Bouman, K.; Jacobs, M.A.J.M.; Halloran, B.P.; Van Der Peet, D.L.; Mulder, C.J.J.; Van Kuijk, C.; Van Waesberghe, J.H.T.M. Comparison of MR Enteroclysis with Video Capsule Endoscopy in the Investigation of Small-Intestinal Disease. Abdom. Imaging 2013, 38, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Boudiaf, M.; Jaff, A.; Soyer, P.; Bouhnik, Y.; Hamzi, L.; Rymer, R. Small-Bowel Diseases: Prospective Evaluation of Multi–Detector Row Helical CT Enteroclysis in 107 Consecutive Patients. Radiology 2004, 233, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Van Weyenberg, S.J.B.; Meijerink, M.R.; Jacobs, M.A.J.M.; van Kuijk, C.; Mulder, C.J.; van Waesberghe, J.H.T.M. MR Enteroclysis in Refractory Celiac Disease: Proposal and Validation of a Severity Scoring System. Radiology 2011, 259, 151–161. [Google Scholar] [CrossRef]
- Lohan, D.G.; Alhajeri, A.N.; Cronin, C.G.; Roche, C.J.; Murphy, J.M. MR Enterography of Small-Bowel Lymphoma: Potential for Suggestion of Histologic Subtype and the Presence of Underlying Celiac Disease. Am. J. Roentgenol. 2008, 190, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Radmard, A.R.; Hashemi Taheri, A.P.; Salehian Nik, E.; Kooraki, S.; Kolahdoozan, S.; Mirminachi, B.; Sotoudeh, M.; Ekhlasi, G.; Malekzadeh, R.; Shahbazkhani, B. MR Enterography in Nonresponsive Adult Celiac Disease: Correlation with Endoscopic, Pathologic, Serologic, and Genetic Features. J. Magn. Reson. Imaging 2017, 46, 1096–1106. [Google Scholar] [CrossRef]
- Hadithi, M.; Mallant, M.; Oudejans, J.; van Waesberghe, J.-H.T.M.; Mulder, C.J.; Comans, E.F.I. 18F-FDG PET versus CT for the Detection of Enteropathy-Associated T-Cell Lymphoma in Refractory Celiac Disease. J. Nucl. Med. 2006, 47, 1622–1627. [Google Scholar]
- Ferretti, F.; Branchi, F.; Orlando, S.; Roncoroni, L.; Barigelletti, G.; Fabiano, S.; Vecchi, M.; Penagini, R.; Doneda, L.; Elli, L. Effectiveness of Capsule Endoscopy and Double-Balloon Enteroscopy in Suspected Complicated Celiac Disease. Clin. Gastroenterol. Hepatol. 2022, 20, 941–949.e3. [Google Scholar] [CrossRef]
- Collin, P.; Rondonotti, E.; Lundin, K.E.; Spada, C.; Keuchel, M.; Kaukinen, K.; DE Franchis, R.; Jacobs, M.A.; Villa, F.; Mulder, C.J. Video Capsule Endoscopy in Celiac Disease: Current Clinical Practice. J. Dig. Dis. 2012, 13, 94–99. [Google Scholar] [CrossRef]
- Barret, M.; Malamut, G.; Rahmi, G.; Samaha, E.; Edery, J.; Verkarre, V.; Macintyre, E.; Lenain, E.; Chatellier, G.; Cerf-Bensussan, N.; et al. Diagnostic Yield of Capsule Endoscopy in Refractory Celiac Disease. Am. J. Gastroenterol. 2012, 107, 1546–1553. [Google Scholar] [CrossRef]
- Atlas, D.S.; Rubio-Tapia, A.; Van Dyke, C.T.; Lahr, B.D.; Murray, J.A. Capsule Endoscopy in Nonresponsive Celiac Disease. Gastrointest. Endosc. 2011, 74, 1315–1322. [Google Scholar] [CrossRef]
- Perez-Cuadrado-Robles, E.; Lujan-Sanchis, M.; Elli, L.; Juanmartinena-Fernandez, J.-F.; Garcıa-Lledo, J.; Ruano-Dıaz, L.; Egea-Valenzuela, J.; Jimenez-Garcıa, V.-A.; Arguelles-Arias, F.; Juan-Acosta, M.S.; et al. Role of Capsule Endoscopy in Alarm Features and Non-Responsive Celiac Disease: A European Multicenter Study. Dig. Endosc. 2018, 30, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Daveson, A.J.M.; Anderson, R.P. Small Bowel Endoscopy and Coeliac Disease. Best Pract. Res. Clin. Gastroenterol. 2012, 26, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Kurien, M.; Evans, K.E.; Aziz, I.; Sidhu, R.; Drew, K.; Rogers, T.L.; McAlindon, M.E.; Sanders, D.S. Capsule Endoscopy in Adult Celiac Disease: A Potential Role in Equivocal Cases of Celiac Disease? Gastrointest. Endosc. 2013, 77, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Elli, L.; Casazza, G.; Locatelli, M.; Branchi, F.; Ferretti, F.; Conte, D.; Fraquelli, M. Use of Enteroscopy for the Detection of Malignant and Premalignant Lesions of the Small Bowel in Complicated Celiac Disease: A Meta-Analysis. Gastrointest. Endosc. 2017, 86, 264–273.e1. [Google Scholar] [CrossRef]
- Heine, G.D.; Hadithi, M.; Groenen, M.J.; Kuipers, E.J.; Jacobs, M.A.; Mulder, C.J. Double-Balloon Enteroscopy: Indications, Diagnostic Yield, and Complications in a Series of 275 Patients with Suspected Small-Bowel Disease. Endoscopy 2006, 38, 42–48. [Google Scholar] [CrossRef]
- Hadithi, M.; Al-toma, A.; Oudejans, J.; van Bodegraven, A.A.; Mulder, C.J.; Jacobs, M. The Value of Double-Balloon Enteroscopy in Patients With Refractory Celiac Disease. Off. J. Am. Coll. Gastroenterol. 2007, 102, 987. [Google Scholar] [CrossRef]
- Riccioni, M.E.; Urgesi, R.; Cianci, R.; Bizzotto, A.; Galasso, D.; Costamagna, G. Current Status of Device-Assisted Enteroscopy: Technical Matters, Indication, Limits and Complications. World J. Gastrointest. Endosc. 2012, 4, 453. [Google Scholar] [CrossRef]
- Irvine, A.J.; Sanders, D.S.; Hopper, A.; Kurien, M.; Sidhu, R. How Does Tolerability of Double Balloon Enteroscopy Compare to Other Forms of Endoscopy? Front. Gastroenterol. 2015, 7, 41–46. [Google Scholar] [CrossRef]
- Schiepatti, A.; Cappellini, A.; Maimaris, S.; Minerba, P.; Retrosi, M.; Mantica, G.; Scarcella, C.; Delogu, C.; Arpa, G.; Bianchi, P.I.; et al. Fecal Calprotectin Measurement as a Biomarker of Severe Disease Phenotype in Celiac Disease and Non-Celiac Enteropathies. Dig. Liver Dis. 2025, 57, 308–314. [Google Scholar] [CrossRef]
- Schiepatti, A.; Maimaris, S.; Scarcella, C.; Pignatti, P.; Betti, E.; Shoval, Y.; Arpa, G.; Ciccocioppo, R.; Biagi, F. Flow Cytometry for the Assessment and Monitoring of Aberrant Intraepithelial Lymphocytes in Non-Responsive Celiac Disease and Non-Celiac Enteropathies. Dig. Liver Dis. 2024, 56, 795–801. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Malamut, G.; Verbeek, W.H.M.; van Wanrooij, R.L.J.; Leffler, D.A.; Niveloni, S.I.; Arguelles-Grande, C.; Lahr, B.D.; Zinsmeister, A.R.; Murray, J.A.; et al. Creation of a Model to Predict Survival in Patients with Refractory Coeliac Disease Using a Multinational Registry. Aliment. Pharmacol. Ther. 2016, 44, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, W.H.M.; Goerres, M.S.; von Blomberg, B.M.E.; Oudejans, J.J.; Scholten, P.E.T.; Hadithi, M.; Al-Toma, A.; Schreurs, M.W.J.; Mulder, C.J.J. Flow Cytometric Determination of Aberrant Intra-Epithelial Lymphocytes Predicts T-Cell Lymphoma Development More Accurately than T-Cell Clonality Analysis in Refractory Celiac Disease. Clin. Immunol. 2008, 126, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Branchi, F.; Wiese, J.J.; Heldt, C.; Manna, S.; Dony, V.; Loddenkemper, C.; Bojarski, C.; Siegmund, B.; Schneider, T.; Daum, S.; et al. The Combination of Clinical Parameters and Immunophenotyping of Intraepithelial Lymphocytes Allows to Assess Disease Severity in Refractory Celiac Disease. Dig. Liver Dis. 2022, 54, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- van Wanrooij, R.L.J.; Müller, D.M.J.; Neefjes-Borst, E.A.; Meijer, J.; Koudstaal, L.G.; Heideman, D.A.M.; Bontkes, H.J.; von Blomberg, B.M.E.; Bouma, G.; Mulder, C.J.J. Optimal Strategies to Identify Aberrant Intra-Epithelial Lymphocytes in Refractory Coeliac Disease. J. Clin. Immunol. 2014, 34, 828–835. [Google Scholar] [CrossRef]
- García-Hoz, C.; Crespo, L.; Lopez, N.; De Andrés, A.; Ríos León, R.; Santón, A.; Garriga, M.; Butz, E.; León, F.; Roy Ariño, G. The Intracellular Intensity of CD3 on Aberrant Intraepithelial Lymphocytes Is a Prognostic Factor of the Progression to Overt Lymphoma in Refractory Celiac Disease Type II (Pre-Enteropathy-Associated T Cell Lymphoma). Dig. Dis. 2020, 38, 490–499. [Google Scholar] [CrossRef]
- Poyrazoglu, B.O.; Dulger, A.C. Celiac Disease Is Increased in Esophageal Squamous Cell Carcinoma. Pak. J. Med. Sci. 2021, 37, 1445–1450. [Google Scholar] [CrossRef]
- Dickey, W. Colon Neoplasia Co-Existing with Coeliac Disease in Older Patients: Coincidental, Probably; Important, Certainly. Scand. J. Gastroenterol. 2002, 37, 1054–1056. [Google Scholar] [CrossRef]
- Pereyra, L.; Gonzalez, R.; Mohaidle, A.; Fischer, C.; Mella, J.M.; Panigadi, G.N.; Manazzoni, D.; Matoso, M.D.; Lasa, J.S.; Novillo, A.; et al. Risk of Colorectal Neoplasia in Patients with Celiac Disease: A Multicenter Study. J. Crohns Colitis 2013, 7, e672–e677. [Google Scholar] [CrossRef]
- Krishnan, A.; Hadi, Y.B.; Shabih, S.; Mukherjee, D.; Patel, R.A.; Patel, R.; Singh, S.; Thakkar, S. Risk of Pancreatic Cancer in Individuals with Celiac Disease in the United States: A Population-Based Matched Cohort Study. World J. Gastrointest. Oncol. 2023, 15, 523–532. [Google Scholar] [CrossRef]
- Mormile, R. Celiac Disease and Hashimoto’s Thyroiditis: A Shared Plot? Int. J. Color. Dis. 2016, 31, 947. [Google Scholar] [CrossRef]
Study | CeD Cases | Risk Factors | Cancer Mortality Rate Among Patients with CeD |
---|---|---|---|
Lebwohl et al. [12] | 47,241 | Diagnosis at age ≥ 60 years: HR = 1.22 (95% CI, 1.16–1.29) Diagnosis between 40 and 59 years: HR = 1.07 (95% CI, 1.01–1.14) Recent CeD diagnosis (first year of follow-up): HR = 2.47 (95% CI, 2.22–2.74) | – |
Lebwohl et al. [18] | 49,829 | – | Increased compared to the general population: HR = 1.29 (95% CI, 1.22–1.36) |
West et al. [17] | 4732 | Recent CeD diagnosis (first year of follow-up): HR = 2.07 (95% CI, 1.45–2.96) | Increased compared to matched controls: HR = 1.31 (95% CI, 1.13–1.51) |
Peters et al. [20] | 10,032 | – | Increased compared to general population: SMR = 1.7 (95% CI, 1.5–2.0) |
Type of Cancer | Study | Risk/Mortality Assessment | Reference |
---|---|---|---|
NHL | Catassi et al. | Increased risk OR = 3.1 (95% CI, 1.3–7.6) | [26] |
Green et al. | Increased risk SMR = 9.1 (95% CI, 4.7–13) | [27] | |
Peters et al. | Increased mortality SMR = 11.4 (95% CI, 7.8–16.0) | [20] | |
Gao et al. | Increased risk OR = 5.35 (95% CI, 3.56–8.06) | [28] | |
Leslie et al. | Increased risk SIR = 6.91 (95% CI, 4.26–8.28) | [29] | |
Sultan et al. | 0.15% increased risk (95% CI, 0.03–0.27) of dying from NHL from the general population baseline risk | [30] | |
Smedby et al. | Increased risk SIR = 6.6 (95% CI, 5.0–8.6) | [31] | |
HL | Smedby et al. | No increased risk SIR = 1.0 (95% CI, 0.02–5.6) | [31] |
T-cell lymphoma | Van Gils et al. | Increased risk RR = 35.8 (95% CI, 27.1–47.4) | [32] |
All types of lymphoma | Koskinen et al. | Increased mortality HR = 2.36 (95% CI, 1.65–3.39) | [33] |
Lebwohl et al. | Increased risk HR = 2.20 (95% CI, 1.94–2.49). | [12] | |
Small bowel carcinoma | Askling et al. | Increased risk SIR = 10 (95% CI, 4.4–20) | [21] |
Elfstrom et al. | Increased risk after the first year of follow-up HR = 2.22 (95% CI, 1.19–4.14) for Marsh 3 HR = 2.49 (95% CI, 1.07–5.79) for Marsh 1–2 HR = 4.67 (95% CI, 0.53–41.4) for latent CeD (only positive serology) | [22] | |
Ilus et al. | Increased risk SIR = 4.29 (95% CI, 2.83–6.24) | [34] | |
Han et al. | Increased risk OR = 14.41 (95% CI, 5.53–37.60) | [35] | |
Silano et al. | Increased risk SIR = 25 (95% CI, 8.5–51.4) | [36] | |
Green et al. | Increased risk SMR = 34 (95% CI, 24–42) | [27] | |
Esophageal squamous cell carcinoma | Askling et al. | Increased risk SIR = 4.2 (95% CI, 1.6–9.2) | [22] |
Han et al. | Increased risk OR = 3.72 (95% CI, 1.90–7.28) | [35] | |
van Gils et al. | Increased risk RR = 3.5 (95% CI, 2.1–5.8) | [32] | |
All types of esophageal cancer | Green et al. | Increased risk SMR = 12 (95% CI, 6.5–21) | [27] |
Colorectal cancer | Onwuzo et al. | Increased risk OR = 14,02 (95% CI, 13.40–14.65) | [16] |
Lasa et al. | Increased risk OR = 2.95 (95% CI, 1.36–6.41) | [37] | |
Lebwohl et al. | No increased risk OR = 0.75 (95% CI, 0.41–1.34) | [38] | |
Colon cancer | Ilus et al. | Increased risk SIR = 1.35 (95% CI, 1.13–1.58) | [34] |
Goldacre et al. | No increased risk (excluding cases occurring within the first year of follow-up) Adjusted rate ratio = 1.23 (95% CI, 0.61–2.20) | [24] | |
Han et al. | No increased risk OR = 1.15 (95% CI, 0.86–1.56) | [35] | |
Volta et al. | Decreased risk SIR = 0.29 (95% CI, 0.07–0.45) | [39] | |
Rectal cancer | Ilus et al. | No increased risk SIR = 0.82 (95% CI, 0.61–1.07) | [34] |
Goldacre et al. | No increased risk (excluding cases occurring within the first year of follow-up) Adjusted rate ratio = 1.04 (95% CI, 0.28–2.67) | [24] | |
Han et al. | No increased risk OR = 0.90 (95% CI, 0.71–1.14) | [35] | |
Pancreatic cancer | Gromny and Neubauer | Increased risk OR = 1.46 (95% CI, 1.26–1.7) | [40] |
Askling et al. | Borderline increased risk SIR = 1.9 (95% CI, 0.9–3.6) | [21] | |
Landgren et al. | Increased risk RR = 2.27 (95% CI, 1.22–4.23) | [41] | |
Elfstrom et al. | Increased risk in the first year of follow-up HR = 10.7 (95% CI, 5.77–19.7) Increased risk after the first year of follow-up (not statistically significant) HR = 1.40 (95% CI, 0.97–2.02) | [22] | |
Goldacre et al. | No increased risk after the first year of follow-up Adjusted RR = 0.57 (95% CI, 0.07–2.05) | [24] | |
Ilus et al. | Decreased risk SIR = 0.73 (95% CI, 0.53–0.97) | [34] | |
Hepatobiliary carcinoma | Lebwohl et al. | Increased risk HR = 1.80 (95% CI, 1.44–2.25) | [12] |
Askling et al. | Increased risk SIR = 2.7 (95% CI, 1.3–4.7) | [21] | |
Elfstrom et al. | Increased risk in the first year of follow-up HR = 6.05 (95% CI 2.96–12.4) Increased risk after the first year of follow-up HR = 1.78 (95% CI, 1.22–2.60) | [22] | |
Thyroid cancer | Kent et al. | Increased risk SIR = 22.52 (95% CI, 14.90–34.04) | [42] |
Volta et al. | Increased risk (not statistically significant) SIR = 2.55 (95% CI, 0.93–5.55) | [43] | |
Ludvigsson et al. | No increased risk HR = 0.6 (95% CI, 0.3–1.3) | [44] | |
Askling et al. | No increased risk SIR = 0.6 (95% CI, 0.0–3.3) | [21] | |
Breast cancer | Ludvigsson et al. | Decreased risk in the first year of follow-up HR = 0.85 (95% CI, 0.72–1.01) Decreased risk after the first year of follow-up HR = 0.82 (95% CI, 0.68–0.99) | [25] |
Askling et al. | Decreased risk SIR = 0.3 (95% CI, 0.1–0.5) | [21] |
Category | Gene/Alteration | Clinical/Functional Significance | Study |
---|---|---|---|
JAK/STAT Pathway (Activation) | JAK1, STAT3, JAK3 | Hyperresponsiveness to IL-15 → proliferation and survival of aberrant IELs, risk of neoplastic transformation | [54,55,56,57,58] |
JAK/STAT Pathway (Regulation) | SOCS1, SOCS3 | Loss of negative regulation of the JAK-STAT pathway, seen in patients without JAK1/STAT3 mutations | [58] |
NF-κB Pathway | TNFAIP3/A20, TNIP3 | Loss of inflammatory control; chronic NF-κB activation supporting IEL survival | [54,55,56,58] |
Epigenetic Regulators | TET2, KMT2D, DDX3X | Gene expression dysregulation, impaired histone methylation, increased plasticity and genomic instability | [54,55,56,57,58] |
DNA Repair | POT1, TP53 (abnormal expression) | Defective repair mechanisms → mutation accumulation and genomic instability | [54,56,58] |
Immune Evasion | CD58 | Allows IELs to evade immune surveillance | [54] |
Characteristics | Disease Type | ||
---|---|---|---|
RCD-1 | RCD-2 | EATL | |
Intraepithelial lymphocyte phenotype | IELs mostly normal —loss of normal surface markers CD3 and CD8: either < 50% by immunohistochemistry or <20–25% by flow cytometry | IELs mostly aberrant—loss of normal surface markers CD3 and CD8: either >50% by immunohistochemistry or >20–25% by flow cytometry | Atypical IELs. CD30 expression present in most IELs |
T-cell receptor gamma gene rearrangement polymerase chain reaction | Polyclonal | Monoclonal | Monoclonal |
Treatment | Corticosteroids (budesonide) Immunosuppression (e.g., azathioprine) | Corticosteroids (budesonide) Immunosuppression (e.g., azathioprine) Chemotherapy (e.g., cladribine) ASCT | Chemotherapy and ASCT |
Five-year survival | 80–95% | 44–58% | 11–20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubas, A.; Małecka-Wojciesko, E. Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls. Biomedicines 2025, 13, 1507. https://doi.org/10.3390/biomedicines13061507
Kubas A, Małecka-Wojciesko E. Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls. Biomedicines. 2025; 13(6):1507. https://doi.org/10.3390/biomedicines13061507
Chicago/Turabian StyleKubas, Aleksandra, and Ewa Małecka-Wojciesko. 2025. "Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls" Biomedicines 13, no. 6: 1507. https://doi.org/10.3390/biomedicines13061507
APA StyleKubas, A., & Małecka-Wojciesko, E. (2025). Malignancies in Celiac Disease—A Hidden Threat with Diagnostic Pitfalls. Biomedicines, 13(6), 1507. https://doi.org/10.3390/biomedicines13061507