Genotype-Based Housing as a Potential Confounder in Studies Using Transgenic Mouse Models—Insight from the A53T Mouse Model of Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals and Housing Conditions
2.3. Procedure
2.4. Behavioral Assessment of Short-Term Visuo-Spatial Memory
2.5. Quantitative Real-Time Reverse-Transcription PCR Analysis
2.6. RNA Sequencing and Related Data Analysis
2.7. Exclusion Criteria
2.7.1. Humane Endpoints: Termination Criteria
2.7.2. Exclusion Criteria Based on Technical Difficulties
2.8. Statistical Analysis
3. Results
3.1. A53T+ Animals Overexpress SNCA and GbH Had No Impact on SNCA/Snca Expression in A53T+ and A53T− Animals
3.2. A53T− Mice Kept in SGH as Well as A53T+ Mice Regardless of Housing Conditions Show a Reduced Preference for the Novel Object in Novel Object Recognition Test and Novel Object Location Test
3.3. The Expression of Iba1, Gfapα, Bdnf, and Il-1β Genes in the HPP Changes in a Genotype-Dependent Manner, Particularly Under MGH Conditions
3.4. The Expression of Iba1, Gfapα, Bdnf, and Tnfα in the mPFC Changes in a Genotype- and Housing-Dependent Manner
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A53T+ | Hemizygous A53T transgenic mice of the Hualpha-Syn(A53T) transgenic mouse line G2-3 (JAX006823 strain) |
A53T− | Non-transgenic littermates of the Hualpha-Syn(A53T) transgenic mouse line G2-3 (JAX006823 strain) |
GbH | Genotype-based environment |
SGH | Single-genotype environment |
MGH | Mixed-genotype environment |
PD | Parkinson’s disease |
PND | Postnatal day |
qPCR | Quantitative polymerase chain reaction |
MCI | Mild cognitive impairment |
CSF | Cerebrospinal fluid |
mRNA | Messenger RiboNucleic Acid |
IBA 1 | Ionized calcium-binding adaptor molecule 1 |
GFAPα | Glial Fibrillary Acidic Protein alpha |
TNFα | Tumor Necrosis Factor alpha |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin 6 |
BDNF | Brain-derived neurotrophic factor |
mPFC | Medial prefrontal cortex |
HPP | Hippocampus |
RT-PCR | Reverse transcription polymerase chain reaction |
NORT | Novel Object Recognition Test |
OLT | Object Location Test |
DI | Discrimination Index |
DIna | Discrimination Index based on Number of Approaches |
DIet | Discrimination Index based on Exploration Time |
GPDH | Glyceraldehyde-3-Phosphate Dehydrogenase |
AC | Above chance |
SD | Standard deviation |
ANOVA | Analysis of variance |
References
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.J.; Grieder, F.B. The continued importance of animals in biomedical research. Lab. Anim. 2024, 53, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Toth, L.A. The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp. Neurol. 2015, 270, 72–77. [Google Scholar] [CrossRef] [PubMed]
- NIH. Guide for the Care and Use of Laboratory Animals, 8th ed.; Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies Press: Washington, DC, USA, 2011; pp. 1–246. Available online: https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf (accessed on 14 June 2025).
- Bailey, K.R.; Rustay, N.R.; Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: Practical concerns and potential pitfalls. ILAR J. 2006, 47, 124–131. [Google Scholar] [CrossRef]
- Moreira, P.S.; Almeida, P.R.; Leite-Almeida, H.; Sousa, N.; Costa, P. Impact of Chronic Stress Protocols in Learning and Memory in Rodents: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0163245. [Google Scholar] [CrossRef]
- Tong, L.; Gong, Y.; Wang, P.; Hu, W.; Wang, J.; Chen, Z.; Zhang, W.; Huang, C. Microglia Loss Contributes to the Development of Major Depression Induced by Different Types of Chronic Stresses. Neurochem. Res. 2017, 42, 2698–2711. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Wang, Y.X.; Jiang, C.L. Inflammation: The Common Pathway of Stress-Related Diseases. Front. Hum. Neurosci. 2017, 11, 316. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Yang, D.; Zhao, D.; Ali Shah, S.Z.; Wu, W.; Lai, M.; Zhang, X.; Li, J.; Guan, Z.; Zhao, H.; Li, W.; et al. The Role of the Gut Microbiota in the Pathogenesis of Parkinson’s Disease. Front. Neurol. 2019, 10, 1155. [Google Scholar] [CrossRef]
- Lee, M.K.; Stirling, W.; Xu, Y.; Xu, X.; Qui, D.; Mandir, A.S.; Dawson, T.M.; Copeland, N.G.; Jenkins, N.A.; Price, D.L. Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc. Natl. Acad. Sci. USA 2002, 99, 8968–8973. [Google Scholar] [CrossRef]
- Kumaresan, M.; Khan, S. Spectrum of Non-Motor Symptoms in Parkinson’s Disease. Cureus 2021, 13, e13275. [Google Scholar] [CrossRef] [PubMed]
- Savica, R.; Carlin, J.M.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Maraganore, D.M.; Bharucha, A.E.; Rocca, W.A. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Neurology 2009, 73, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Morelli, M.; Nigro, S.; Quattrone, A.; Vescio, B.; Arabia, G.; Nicoletti, G.; Nisticò, R.; Salsone, M.; Novellino, F.; et al. A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson’s disease. Park. Relat. Disord. 2018, 54, 3–8. [Google Scholar] [CrossRef]
- DeMaagd, G.; Philip, A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ther. 2015, 40, 504–532. [Google Scholar]
- Titova, N.; Qamar, M.A.; Chaudhuri, K.R. The Nonmotor Features of Parkinson’s Disease. Int. Rev. Neurobiol. 2017, 132, 33–54. [Google Scholar] [CrossRef]
- Yamakado, H.; Takahashi, R. Experimental Animal Models of Prodromal Parkinson’s Disease. J. Park. Dis. 2024, 14, S369–S379. [Google Scholar] [CrossRef]
- Mack, J.; Marsh, L. Parkinson’s Disease: Cognitive Impairment. Focus 2017, 15, 42–54. [Google Scholar] [CrossRef]
- Cosgrove, J.; Alty, J.E. Cognitive deficits in Parkinson’s disease: Current perspectives. Res. Rev. Park. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Rota, L.; Pellegrini, C.; Benvenuti, L.; Antonioli, L.; Fornai, M.; Blandizzi, C.; Cattaneo, A.; Colla, E. Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy. Transl. Neurodegener. 2019, 8, 5. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, K.; Deng, X.H.; Wei, Y.H.; Guo, R.; Liu, S.F.; Zhu, Y.F.; Zhong, J.J.; Zheng, J.Y.; Wang, M.D.; et al. Amelioration of olfactory dysfunction in a mouse model of Parkinson’s disease via enhancing GABAergic signaling. Cell Biosci. 2023, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Stanojlović, M.; Pallais, J.P.; Lee, M.K.; Kotz, C.M. Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson’s disease. Mol. Brain 2019, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A. Postmortem studies in Parkinson’s disease. Dialogues Clin. Neurosci. 2004, 6, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, S.; Liu, J.; Yang, J.; Ou, R.; Zhang, L.; Chen, X.; Shang, H. Serum inflammatory cytokines levels and the correlation analyses in Parkinson’s disease. Front. Cell Dev. Biol. 2023, 11, 1104393. [Google Scholar] [CrossRef]
- Brodacki, B.; Staszewski, J.; Toczyłowska, B.; Kozłowska, E.; Drela, N.; Chalimoniuk, M.; Stepien, A. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci. Lett. 2008, 441, 158–162. [Google Scholar] [CrossRef]
- Reale, M.; Iarlori, C.; Thomas, A.; Gambi, D.; Perfetti, B.; Di Nicola, M.; Onofrj, M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav. Immun. 2009, 23, 55–63. [Google Scholar] [CrossRef]
- Barnum, C.J.; Tansey, M.G. Neuroinflammation and non-motor symptoms: The dark passenger of Parkinson’s disease? Curr. Neurol. Neurosci. Rep. 2012, 12, 350–358. [Google Scholar] [CrossRef]
- Williamson, L.L.; Sholar, P.W.; Mistry, R.S.; Smith, S.H.; Bilbo, S.D. Microglia and memory: Modulation by early-life infection. J. Neurosci. 2011, 31, 15511–15521. [Google Scholar] [CrossRef]
- Fidalgo, A.R.; Cibelli, M.; White, J.P.; Nagy, I.; Maze, M.; Ma, D. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neurosci. Lett. 2011, 498, 63–66. [Google Scholar] [CrossRef]
- Cibelli, M.; Fidalgo, A.R.; Terrando, N.; Ma, D.; Monaco, C.; Feldmann, M.; Takata, M.; Lever, I.J.; Nanchahal, J.; Fanselow, M.S.; et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann. Neurol. 2010, 68, 360–368. [Google Scholar] [CrossRef]
- Kouli, A.; Camacho, M.; Allinson, K.; Williams-Gray, C.H. Neuroinflammation and protein pathology in Parkinson’s disease dementia. Acta Neuropathol. Commun. 2020, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int. J. Mol. Sci. 2023, 25, 498. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.A.; O’Connor, J.C. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J. Psychiatry 2022, 12, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Barbosa, I.G.; Diniz, B.S.; Kummer, A. Circulating levels of brain-derived neurotrophic factor: Correlation with mood, cognition and motor function. Biomark. Med. 2010, 4, 871–887. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, C.; Zhang, Q.; Wu, W.; Sun, J. Serum BDNF discriminates Parkinson’s disease patients with depression from without depression and reflect motor severity and gender differences. J. Neurol. 2021, 268, 1411–1418. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, B.S.; Soares, J.C.; Zhang, X.Y. Low BDNF is associated with cognitive impairments in patients with Parkinson’s disease. Park. Relat. Disord. 2016, 29, 66–71. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, L.P.; Liu, W.; Zhu, X.D.; Zhang, X.Y. Altered BDNF levels are associated with cognitive impairment in Parkinson’s disease patients with depression. Park. Relat. Disord. 2022, 103, 122–128. [Google Scholar] [CrossRef]
- Salehi, Z.; Mashayekhi, F. Brain-derived neurotrophic factor concentrations in the cerebrospinal fluid of patients with Parkinson’s disease. J. Clin. Neurosci. 2009, 16, 90–93. [Google Scholar] [CrossRef]
- Fernandez-Moure, J.S. Lost in Translation: The Gap in Scientific Advancements and Clinical Application. Front. Bioeng. Biotechnol. 2016, 4, 43. [Google Scholar] [CrossRef]
- Mahalmani, V.; Sinha, S.; Prakash, A.; Medhi, B. Translational research: Bridging the gap between preclinical and clinical research. Indian J. Pharmacol. 2022, 54, 393–396. [Google Scholar] [CrossRef]
- Directive, E. 63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar] [CrossRef]
- Laukens, D.; Brinkman, B.M.; Raes, J.; De Vos, M.; Vandenabeele, P. Heterogeneity of the gut microbiome in mice: Guidelines for optimizing experimental design. FEMS Microbiol. Rev. 2016, 40, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Jirkof, P.; Bratcher, N.; Medina, L.; Strasburg, D.; Ebert, P.; Gaskill, B.N. The effect of group size, age and handling frequency on inter-male aggression in CD 1 mice. Sci. Rep. 2020, 10, 2253. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, P.L.P.; Kruitwagen, C.L.J.J.; Koolhaas, J.M.; Van de Weerd, H.A.; Van Zutphen, L.F.M.; Baumans, V. Influence of cage enrichment on aggressive behaviour and physiological parameters in male mice. Appl. Anim. Behav. Sci. 2002, 76, 65–81. [Google Scholar] [CrossRef]
- Hess, S.E.; Rohr, S.; Dufour, B.D.; Gaskill, B.N.; Pajor, E.A.; Garner, J.P. Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 25–31. [Google Scholar]
- Denninger, J.K.; Smith, B.M.; Kirby, E.D. Novel Object Recognition and Object Location Behavioral Testing in Mice on a Budget. J. Vis. Exp. 2018, e58593. [Google Scholar] [CrossRef]
- Pavković, Ž.; Milanović, D.; Ruždijić, S.; Kanazir, S.; Pešić, V. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats. Paediatr. Anaesth. 2018, 28, 537–546. [Google Scholar] [CrossRef]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012, 13, 93–110. [Google Scholar] [CrossRef]
- Willis, E.F.; Bartlett, P.F.; Vukovic, J. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice. Front. Behav. Neurosci. 2017, 11, 197. [Google Scholar] [CrossRef]
- Teutsch, J.; Kätzel, D. Operant Assessment of DMTP Spatial Working Memory in Mice. Front. Behav. Neurosci. 2019, 13, 193. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 14 June 2025).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Raney, B.J.; Barber, G.P.; Benet-Pagès, A.; Casper, J.; Clawson, H.; Cline, M.S.; Diekhans, M.; Fischer, C.; Navarro Gonzalez, J.; Hickey, G.; et al. The UCSC Genome Browser database: 2024 update. Nucleic Acids Res. 2024, 52, D1082–D1088. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 14 June 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Pedersen T _Patchwork: The Composer of Plots_. R Package Version 1.3.0.9000, Commit: b4c1604dd64f3a2350df00d45ed105381498450b. Available online: https://github.com/thomasp85/patchwork (accessed on 14 June 2025).
- Cooper, J.A.; Sagar, H.J.; Sullivan, E.V. Short-term memory and temporal ordering in early Parkinson’s disease: Effects of disease chronicity and medication. Neuropsychologia 1993, 31, 933–949. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E.; Aldridge, J.W. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 2009, 9, 65–73. [Google Scholar] [CrossRef]
- Potrebić, M.; Pavković, Ž.; Puškaš, N.; Pešić, V. The Influence of Social Isolation on Social Orientation, Sociability, Social Novelty Preference, and Hippocampal Parvalbumin-Expressing Interneurons in Peripubertal Rats—Understanding the Importance of Meeting Social Needs in Adolescence. Front. Behav. Neurosci. 2022, 16, 872628. [Google Scholar] [CrossRef]
- Ball, G.F.; Balthazart, J. How useful is the appetitive and consummatory distinction for our understanding of the neuroendocrine control of sexual behavior? Horm. Behav. 2008, 53, 307–318. [Google Scholar] [CrossRef]
- Wittmann, B.C.; Bunzeck, N.; Dolan, R.J.; Düzel, E. Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage 2007, 38, 194–202. [Google Scholar] [CrossRef]
- Meloni, E.G.; Carlezon, W.A., Jr.; Bolshakov, V.Y. Impact of social dominance hierarchy on PACAP expression in the extended amygdala, corticosterone, and behavior in C57BL/6 male mice. bioRxiv 2023. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Wang, W.; Dong, H.; Hou, P.; Tang, Y. Chronic mild stress impairs cognition in mice: From brain homeostasis to behavior. Life Sci. 2008, 82, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, G.K.; Hindi, E.A.; Zayed, M.A.; Abd El-Aziz, G.S.; Alturkistani, H.A.; Ibrahim, R.F.; Al-Thepyani, M.A.; Bakhlgi, R.; Alzahrani, N.A.; Ashraf, G.M.; et al. The Impact of Chronic Unpredictable Mild Stress-Induced Depression on Spatial, Recognition and Reference Memory Tasks in Mice: Behavioral and Histological Study. Behav. Sci. 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Stanojlovic, M.; Pallais Yllescas, J.P., Jr.; Vijayakumar, A.; Kotz, C. Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson’s Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol. Neurobiol. 2019, 56, 8435–8450. [Google Scholar] [CrossRef]
- Lidster, K.; Owen, K.; Browne, W.J.; Prescott, M.J. Cage aggression in group-housed laboratory male mice: An international data crowdsourcing project. Sci. Rep. 2019, 9, 15211. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Kou, G.; Li, Y. The relationship between gut microbiota and inflammatory response, learning and memory in mice by sleep deprivation. Front. Cell. Infect. Microbiol. 2023, 13, 1159771. [Google Scholar] [CrossRef]
- Gu, X.L.; Long, C.X.; Sun, L.; Xie, C.; Lin, X.; Cai, H. Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol. Brain 2010, 3, 12. [Google Scholar] [CrossRef]
- Lier, J.; Winter, K.; Bleher, J.; Grammig, J.; Mueller, W.C.; Streit, W.; Bechmann, I. Loss of IBA1-Expression in brains from individuals with obesity and hepatic dysfunction. Brain Res. 2019, 1710, 220–229. [Google Scholar] [CrossRef]
- Terrando, N.; Monaco, C.; Ma, D.; Foxwell, B.M.; Feldmann, M.; Maze, M. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. USA 2010, 107, 20518–20522. [Google Scholar] [CrossRef]
- Hennessy, E.; Gormley, S.; Lopez-Rodriguez, A.B.; Murray, C.; Murray, C.; Cunningham, C. Systemic TNF-α produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain Behav. Immun. 2017, 59, 233–244. [Google Scholar] [CrossRef]
- Tang, Y.; Han, L.; Li, S.; Hu, T.; Xu, Z.; Fan, Y.; Liang, X.; Yu, H.; Wu, J.; Wang, J. Plasma GFAP in Parkinson’s disease with cognitive impairment and its potential to predict conversion to dementia. NPJ Park. Dis. 2023, 9, 23. [Google Scholar] [CrossRef]
- Liu, T.; Zuo, H.; Ma, D.; Song, D.; Zhao, Y.; Cheng, O. Cerebrospinal fluid GFAP is a predictive biomarker for conversion to dementia and Alzheimer’s disease-associated biomarkers alterations among de novo Parkinson’s disease patients: A prospective cohort study. J. Neuroinflam. 2023, 20, 167. [Google Scholar] [CrossRef]
- Hasel, P.; Liddelow, S.A. Astrocytes. Curr. Biol. 2021, 31, R326–R327. [Google Scholar] [CrossRef]
- Wang, T.; Sun, Y.; Dettmer, U. Astrocytes in Parkinson’s Disease: From Role to Possible Intervention. Cells 2023, 12, 2336. [Google Scholar] [CrossRef]
- Yoshimoto, Y.; Lin, Q.; Collier, T.J.; Frim, D.M.; Breakefield, X.O.; Bohn, M.C. Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson’s disease. Brain Res. 1995, 691, 25–36. [Google Scholar] [CrossRef]
- Giralt, A.; Friedman, H.C.; Caneda-Ferrón, B.; Urbán, N.; Moreno, E.; Rubio, N.; Blanco, J.; Peterson, A.; Canals, J.M.; Alberch, J. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther. 2010, 17, 1294–1308. [Google Scholar] [CrossRef]
- Sticozzi, C.; Belmonte, G.; Meini, A.; Carbotti, P.; Grasso, G.; Palmi, M. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca2+-calmodulin/ERK mitogen-activated protein kinase signaling pathway. Neuroscience 2013, 252, 367–383. [Google Scholar] [CrossRef]
- Albini, M.; Krawczun-Rygmaczewska, A.; Cesca, F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023, 197, 42–51. [Google Scholar] [CrossRef]
- Chang, E.; Wang, J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson’s disease. Brain Behav. 2021, 11, e2251. [Google Scholar] [CrossRef]
- Miller, K.M.; Mercado, N.M.; Sortwell, C.E. Synucleinopathy-associated pathogenesis in Parkinson’s disease and the potential for brain-derived neurotrophic factor. NPJ Park. Dis. 2021, 7, 35. [Google Scholar] [CrossRef]
- Jha, S.; Dong, B.E.; Xue, Y.; Delotterie, D.F.; Vail, M.G.; Sakata, K. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV. Transl. Psychiatry 2016, 6, e896. [Google Scholar] [CrossRef]
- Costa, G.A.; de Gusmão Taveiros Silva, N.K.; Marianno, P.; Chivers, P.; Bailey, A.; Camarini, R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023, 526, 277–289. [Google Scholar] [CrossRef]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Park. Dis. 2019, 9, 501–515. [Google Scholar] [CrossRef]
- Costa, G.; Sisalli, M.J.; Simola, N.; Della Notte, S.; Casu, M.A.; Serra, M.; Pinna, A.; Feliciello, A.; Annunziato, L.; Scorziello, A.; et al. Gender Differences in Neurodegeneration, Neuroinflammation and Na+-Ca2+ Exchangers in the Female A53T Transgenic Mouse Model of Parkinson’s Disease. Front. Aging Neurosci. 2020, 12, 118. [Google Scholar] [CrossRef]
- Cooper, D.N.; Krawczak, M.; Polychronakos, C.; Tyler-Smith, C.; Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: Towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 2013, 132, 1077–1130. [Google Scholar] [CrossRef]
Gene | Forward | Reverse |
---|---|---|
Iba1 | 5′-GGA TTT GCA GGG AGG AAA AG-3′ | 5′-TGG GAT CAT CGA GGA ATT G-3′ |
Gfapα | 5′-GGA GAT GCG GGA TGG TGA G-3′ | 5′-ACC ACG TCC TTG TGC TCC TG-3′ |
Il-6 | 5′-GAC AAA GCC AGA GTC CTT CAG AGA G-3′ | 5′-CTA GGT TTG CCG AGT AGA TCT C-3′ |
Il-1β | 5′-GCA ACT GTT CCT GAA CTC AAC T-3′ | 5′-ATC TTT TGG GGT CCG TCA ACT-3′ |
Tnfα | 5′-CCC TCA CAC TCA GAT CAT CTT CT-3′ | 5′-GCT ACG ACG TGG GCT ACA G-3′ |
Bdnf | 5′-AGG CAC TGG AAC TCG CAA TG-3′ | 5′-AAG GGC CCG AAC ATA CGA TT-3′ |
Gapdh | 5′-TGA AGC AGG CAT CTG AGG G-3′ | 5′-CGA AGG TGG AAG AGT GGG AG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubljević, O.; Dragoj, M.; Potrebić Stefanović, M.; Srbovan, M.; Stanojlović, M.; Pavković, Ž. Genotype-Based Housing as a Potential Confounder in Studies Using Transgenic Mouse Models—Insight from the A53T Mouse Model of Parkinson’s Disease. Biomedicines 2025, 13, 1506. https://doi.org/10.3390/biomedicines13061506
Dubljević O, Dragoj M, Potrebić Stefanović M, Srbovan M, Stanojlović M, Pavković Ž. Genotype-Based Housing as a Potential Confounder in Studies Using Transgenic Mouse Models—Insight from the A53T Mouse Model of Parkinson’s Disease. Biomedicines. 2025; 13(6):1506. https://doi.org/10.3390/biomedicines13061506
Chicago/Turabian StyleDubljević, Olga, Miodrag Dragoj, Milica Potrebić Stefanović, Maja Srbovan, Miloš Stanojlović, and Željko Pavković. 2025. "Genotype-Based Housing as a Potential Confounder in Studies Using Transgenic Mouse Models—Insight from the A53T Mouse Model of Parkinson’s Disease" Biomedicines 13, no. 6: 1506. https://doi.org/10.3390/biomedicines13061506
APA StyleDubljević, O., Dragoj, M., Potrebić Stefanović, M., Srbovan, M., Stanojlović, M., & Pavković, Ž. (2025). Genotype-Based Housing as a Potential Confounder in Studies Using Transgenic Mouse Models—Insight from the A53T Mouse Model of Parkinson’s Disease. Biomedicines, 13(6), 1506. https://doi.org/10.3390/biomedicines13061506