Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV
Abstract
1. Introduction
2. Materials and Methods
2.1. Proteins and Their Retrieval, Protein Dataset Generation, and Antigenicity Evaluation
2.1.1. Antigenic Determinants (Epitopes) Prediction
2.1.2. Predictive Identification of Linear B-Cell-Epitopes (LBEs)
2.1.3. Immunoinformatically Predictive Identification of CTL Epitopes (CTLEs)
2.1.4. Computational Prediction of the HTL-Epitopes (HTLEs)
2.2. Comprehensive Evaluation and Prioritisation of Predicted Lbes, Ctles and Htles to Construct an Effective Vaccine
2.3. Chimeric Vaccine Model Design and the Screening of an Effective Vaccine Model
2.4. Vaccine’s Secondary Level Structure Prediction
2.5. Three-Dimensional Structural Modelling and Computational Refinement of the Most Suitable Vaccine Prototype
2.6. Molecular Docking and Normal Mode Analysis (Nma) for Gaining Analytical Insight into Molecular Complexes
2.7. Molecular Dynamics Simulation (Mds) of the Tlr-Receptors (TLR4 and TLR2)-Vaccine Prototype Complexes
2.8. Implementation of Codon Adaptation and Cloning of Vaccine Prototype with an Expression Vector
2.9. Immune Response Simulation
2.10. Population Coverage Assessment
3. Results
3.1. IMV Target Sequence Retrieval and Processing for Their Suitability for Vaccine Development
3.2. LBE Determination and Incorporation into Vaccine Construct
3.3. Evaluation of CTLEs for Incorporation into Vaccine Construct
3.4. Determination of Potential Htles for Incorporation into Vaccine Construct
3.5. Chimeric Vaccine Design and Screening for the Potential Vaccine Model
3.6. Prediction of the Secondary for Screened Chimeric Vaccine Prototype (MPXV-2-Beta)
3.7. Prediction of 3D Structures for Chimeric Vaccine Construct (MPXV-2-Beta)
3.8. Computational Docking of MPXV-2-Beta Interactions with TLRs and Major Histocompatibility Complex Molecules (MHC Molecules)
3.9. Normal Mode Analysis (NMA) and Molecular Dynamic Simulation (MDS) of MPXV-2-Beta with TLRs and MHC Molecules
3.10. Assessment of the Potency of the MPXV-2-Beta by Immunological Simulation
3.11. Codon Optimization Followed by Gene Cloning of MPXV-2-Beta
3.12. Determination of the Population Coverage for the MPXV-2-Beta Vaccine
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reynolds, M.G.; Yorita, K.L.; Kuehnert, M.J.; Davidson, W.B.; Huhn, G.D.; Holman, R.C.; Damon, I.K. Clinical manifestations of human monkeypox influenced by route of infection. J. Infect. Dis. 2006, 194, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.; Atkinson, B.; Onianwa, O.; Spencer, A.; Furneaux, J.; Grieves, J.; Taylor, C.; Milligan, I.; Bennett, A.; Fletcher, T. Air and surface sampling for monkeypox virus in a UK hospital: An observational study. Lancet Microbe 2022, 3, e904–e911. [Google Scholar] [CrossRef] [PubMed]
- Beeson, A.; Styczynski, A.; Hutson, C.L.; Whitehill, F.; Angelo, K.M.; Minhaj, F.S.; Morgan, C.; Ciampaglio, K.; Reynolds, M.G.; McCollum, A.M. Mpox respiratory transmission: The state of the evidence. Lancet Microbe 2023, 4, e277–e283. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. Monkeypox transmission—What we know so far. Lancet Respir. Med. 2022, 10, e101. [Google Scholar] [CrossRef]
- Wang, X.; Lun, W. Skin manifestation of human monkeypox. J. Clin. Med. 2023, 12, 914. [Google Scholar] [CrossRef]
- Islam, M.R.; Nowshin, D.T.; Khan, M.R.; Shahriar, M.; Bhuiyan, M.A. Monkeypox and sex: Sexual orientations and encounters are key factors to consider. Health Sci. Rep. 2023, 6, e1069. [Google Scholar] [CrossRef]
- Cho, C.T.; Wenner, H.A. Monkeypox virus. Bacteriol. Rev. 1973, 37, 1–18. [Google Scholar] [CrossRef]
- McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis. 2014, 58, 260–267. [Google Scholar] [CrossRef]
- Hakim, M.S.; Widyaningsih, S.A. The recent re-emergence of human monkeypox: Would it become endemic beyond Africa? J. Infect. Public Health 2023, 16, 332–340. [Google Scholar] [CrossRef]
- Lum, F.-M.; Torres-Ruesta, A.; Tay, M.Z.; Lin, R.T.; Lye, D.C.; Rénia, L.; Ng, L.F. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 2022, 22, 597–613. [Google Scholar] [CrossRef]
- Hraib, M.; Jouni, S.; Albitar, M.M.; Alaidi, S.; Alshehabi, Z. The outbreak of monkeypox 2022: An overview. Ann. Med. Surg. 2022, 79, 104069. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat. Microbiol. 2024, 9, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Lansiaux, E.; Jain, N.; Laivacuma, S.; Reinis, A. The virology of human monkeypox virus (hMPXV): A brief overview. Virus Res. 2022, 322, 198932. [Google Scholar] [CrossRef]
- Cabanillas, B.; Murdaca, G.; Guemari, A.; Torres, M.J.; Azkur, A.K.; Aksoy, E.; Vitte, J.; Fernández-Santamaria, R.; Karavelia, A.; Castagnoli, R. Monkeypox 2024 outbreak: Fifty essential questions and answers. Allergy 2024, 79, 3285–3309. [Google Scholar] [CrossRef]
- Luna, N.; Ramírez, A.L.; Muñoz, M.; Ballesteros, N.; Patiño, L.H.; Castañeda, S.A.; Bonilla-Aldana, D.K.; Paniz-Mondolfi, A.; Ramírez, J.D. Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: Emergence of a novel viral lineage? Travel Med. Infect. Dis. 2022, 49, 102402. [Google Scholar] [CrossRef]
- Titanji, B.K.; Hazra, A.; Zucker, J. Mpox clinical presentation, diagnostic approaches, and treatment strategies: A review. JAMA 2024, 332, 1652–1662. [Google Scholar] [CrossRef]
- Petersen, B.W. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses—Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015; MMWR. Morbidity and mortality weekly report; CDC: Atlanta, GA, USA, 2016; Volume 65. [Google Scholar]
- Rao, A.K. Use of JYNNEOS (Smallpox and Monkeypox Vaccine, Live, Nonreplicating) for Preexposure Vaccination of Persons at Risk for Occupational Exposure to Orthopoxviruses: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022; MMWR. Morbidity and mortality weekly report; CDC: Atlanta, GA, USA, 2022; Volume 71. [Google Scholar]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S. Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Reynolds, M.G.; Damon, I.K. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol. 2012, 20, 80–87. [Google Scholar] [CrossRef]
- Otter, A.D.; Jones, S.; Hicks, B.; Bailey, D.; Callaby, H.; Houlihan, C.; Rampling, T.; Gordon, N.C.; Selman, H.; Satheshkumar, P.S. Monkeypox virus-infected individuals mount comparable humoral immune responses as Smallpox-vaccinated individuals. Nat. Commun. 2023, 14, 5948. [Google Scholar] [CrossRef]
- Nalca, A.; Zumbrun, E.E. ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile. In Drug Design, Development and Therapy; Taylor & Francis: Abingdon, UK, 2010; pp. 71–79. [Google Scholar]
- Shi, D.; He, P.; Song, Y.; Cheng, S.; Linhardt, R.J.; Dordick, J.S.; Chi, L.; Zhang, F. Kinetic and structural aspects of glycosaminoglycan–monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules 2022, 27, 5898. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, C.; Chuai, X.; Chiu, S. Monkeypox virus: A re-emergent threat to humans. Virol. Sin. 2022, 37, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Sagdat, K.; Batyrkhan, A.; Kanayeva, D. Exploring monkeypox virus proteins and rapid detection techniques. Front. Cell. Infect. Microbiol. 2024, 14, 1414224. [Google Scholar] [CrossRef]
- Shchelkunov, S.; Totmenin, A.; Safronov, P.; Mikheev, M.; Gutorov, V.; Ryazankina, O.; Petrov, N.; Babkin, I.; Uvarova, E.; Sandakhchiev, L. Analysis of the monkeypox virus genome. Virology 2002, 297, 172–194. [Google Scholar] [CrossRef]
- Dülek, Ö.; Mutlu, G.; Koçkaya, E.S.; Can, H.; Karakavuk, M.; Değirmenci Döşkaya, A.; Gürüz, A.Y.; Döşkaya, M.; Ün, C. Computational identification of monkeypox virus epitopes to generate a novel vaccine antigen against Mpox. Biologicals 2024, 88, 101798. [Google Scholar] [CrossRef]
- Huang, I.; Lai, G.-C.; Chao, T.-L.; Liu, W.-D.; Chang, S.-Y.; Chang, S.-C. Monkeypox virus H3L protein as the target antigen for developing neutralizing antibody and serological assay. Appl. Microbiol. Biotechnol. 2025, 109, 80. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, X.; Zhu, Y.; Mo, O.; Yu, H.; Zhu, L.; Zhang, J.; Kuang, L.; Gao, Y.; Cao, R. Multi-valent mRNA vaccines against monkeypox enveloped or mature viron surface antigens demonstrate robust immune response and neutralizing activity. Sci. China Life Sci. 2023, 66, 2329–2341. [Google Scholar] [CrossRef]
- Gao, F.; He, C.; Liu, M.; Yuan, P.; Tian, S.; Zheng, M.; Zhang, L.; Zhou, X.; Xu, F.; Luo, J.; et al. Cross-reactive immune responses to monkeypox virus induced by MVA vaccination in mice. Virol. J. 2023, 20, 126. [Google Scholar] [CrossRef]
- Lin, C.L.; Chung, C.S.; Heine, H.G.; Chang, W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 2000, 74, 3353–3365. [Google Scholar] [CrossRef]
- Ishack, S.; Lipner, S.R. Bioinformatics and immunoinformatics to support COVID-19 vaccine development. J. Med. Virol. 2021, 93, 5209–5211. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Consortium, U. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Consortium, O.S.D.D.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef]
- Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. BMC Bioinform. 2013, 14 (Suppl. 6), S4. [Google Scholar] [CrossRef]
- Hon, J.; Marusiak, M.; Martinek, T.; Kunka, A.; Zendulka, J.; Bednar, D.; Damborsky, J. SoluProt: Prediction of soluble protein expression in Escherichia coli. Bioinformatics 2021, 37, 23–28. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 2006, 65, 40–48. [Google Scholar] [CrossRef]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vir, P.; Raghava, G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 2013, 8, 30. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. 2013, 2013, 263952. [Google Scholar] [CrossRef] [PubMed]
- Fadaka, A.O.; Sibuyi, N.R.S.; Martin, D.R.; Goboza, M.; Klein, A.; Madiehe, A.M.; Meyer, M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci. Rep. 2021, 11, 19707. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 1986, 44, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 2005, 81, 281–289. [Google Scholar] [CrossRef]
- Ahammad, I.; Lira, S.S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. 2020, 162, 820–837. [Google Scholar] [CrossRef]
- Kreiter, S.; Selmi, A.; Diken, M.; Sebastian, M.; Osterloh, P.; Schild, H.R.; Huber, C.; Tureci, O.; Sahin, U. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J. Immunol. 2008, 180, 309–318. [Google Scholar] [CrossRef]
- Gallie, D.R. The cap and poly (A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991, 5, 2108–2116. [Google Scholar] [CrossRef]
- Munroe, D.; Jacobson, A. mRNA poly (A) tail, a 3′ enhancer of translational initiation. Mol. Cell. Biol. 1990, 10, 3441–3455. [Google Scholar]
- Bernstein, P.; Ross, J. Poly (A), poly (A) binding protein and the regulation of mRNA stability. Trends Biochem. Sci. 1989, 14, 373–377. [Google Scholar] [CrossRef]
- Zhao, Y.; Moon, E.; Carpenito, C.; Paulos, C.M.; Liu, X.; Brennan, A.L.; Chew, A.; Carroll, R.G.; Scholler, J.; Levine, B.L. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010, 70, 9053–9061. [Google Scholar] [CrossRef]
- Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, O.z.; Sahin, U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Pourseif, M.M.; Parvizpour, S.; Jafari, B.; Dehghani, J.; Naghili, B.; Omidi, Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: Development of self-amplifying mRNA and peptide vaccines. BioImpacts BI 2020, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Day, N.; Trifillis, P.; Kiledjian, M. An mRNA stability complex functions with poly (A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 1999, 19, 4552–4560. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Panda, S.; Singh, R.; Behera, A.; Biswal, P.; Mech, P.; Ramaiyan, K. In silico structural delineation of nucleocapsid protein of SARS-CoV-2. J. Entomol. Zool. Stud. 2020, 8, 6–10. [Google Scholar]
- Buchan, D.W.; Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The vienna RNA websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef]
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41, W384–W388. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res. 2014, 42, W271–W276. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, M.; Wang, N.; Yang, Y.; Wang, D. Designing a candidate multi-epitope vaccine against transmissible gastroenteritis virus based on immunoinformatic and molecular dynamics. Int. J. Mol. Sci. 2024, 25, 8828. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, A.; Kumari, G.; Muduli, R.; Das, M.; Kundu, R.; Mukherjee, S.; Majumdar, T. Rational design and computational evaluation of a multi-epitope vaccine for monkeypox virus: Insights into binding stability and immunological memory. Heliyon 2024, 10, e36154. [Google Scholar] [CrossRef]
- Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B.L.; Gapsys, V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model. 2022, 62, 1691–1711. [Google Scholar] [CrossRef]
- Alabbas, A.B. Integrativesubtractive proteomics, immunoinformatics, docking, and simulation approaches reveal candidate vaccine against Sin Nombre orthohantavirus. Front. Immunol. 2022, 13, 1022159. [Google Scholar] [CrossRef]
- Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005, 33, W526–W531. [Google Scholar] [CrossRef]
- Fu, H.; Liang, Y.; Zhong, X.; Pan, Z.; Huang, L.; Zhang, H.; Xu, Y.; Zhou, W.; Liu, Z. Codon optimization with deep learning to enhance protein expression. Sci. Rep. 2020, 10, 17617. [Google Scholar] [CrossRef]
- Khan, N.T.; Zinnia, M.A.; Islam, A.B.M.M.K. Modeling mRNA-based vaccine YFV. E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J. Biomol. Struct. Dyn. 2023, 41, 1617–1638. [Google Scholar] [CrossRef]
- Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 2010, 5, e9862. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.-H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Ladnyj, I.; Ziegler, P.; Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593. [Google Scholar] [PubMed]
- Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 2000, 3, 445–450. [Google Scholar] [CrossRef]
- Lim, H.X.; Lim, J.; Jazayeri, S.D.; Poppema, S.; Poh, C.L. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed. J. 2021, 44, 18–30. [Google Scholar] [CrossRef]
- He, R.; Yang, X.; Liu, C.; Chen, X.; Wang, L.; Xiao, M.; Ye, J.; Wu, Y.; Ye, L. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell. Mol. Immunol. 2018, 15, 815–826. [Google Scholar] [CrossRef]
- Jiang, P.; Cai, Y.; Chen, J.; Ye, X.; Mao, S.; Zhu, S.; Xue, X.; Chen, S.; Zhang, L. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine 2017, 35, 3096–3103. [Google Scholar] [CrossRef]
- Zhou, W.-Y.; Shi, Y.; Wu, C.; Zhang, W.-J.; Mao, X.-H.; Guo, G.; Li, H.-X.; Zou, Q.-M. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model. Vaccine 2009, 27, 5013–5019. [Google Scholar] [CrossRef]
- Vartak, A.; Sucheck, S.J. Recent advances in subunit vaccine carriers. Vaccines 2016, 4, 12. [Google Scholar] [CrossRef]
- Hammarlund, E.; Lewis, M.W.; Carter, S.V.; Amanna, I.; Hansen, S.G.; Strelow, L.I.; Wong, S.W.; Yoshihara, P.; Hanifin, J.M.; Slifka, M.K. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med. 2005, 11, 1005–1011. [Google Scholar] [CrossRef]
- Meo, S.A.; Al-Masri, A.A.; Klonoff, D.C.; Alshahrani, A.N.; Al-Khlaiwi, T. Comparison of Biological, Pharmacological Characteristics, Indications, Contraindications and Adverse Effects of JYNNEOS and ACAM2000 Monkeypox Vaccines. Vaccines 2022, 10, 1971. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Li, L.; Song, X.; Li, H.; Wang, J.; Ju, W.; Qu, X.; Song, D.; Liu, Y.; Meng, X. A novel multi-epitope recombined protein for diagnosis of human brucellosis. BMC Infect. Dis. 2016, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Solanki, V.; Tiwari, M.; Tiwari, V. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 5240. [Google Scholar] [CrossRef] [PubMed]
- Kakakhel, S.; Ahmad, A.; Mahdi, W.A.; Alshehri, S.; Aiman, S.; Begum, S.; Shams, S.; Kamal, M.; Imran, M.; Shakeel, F. Annotation of potential vaccine targets and designing of mRNA-based multi-epitope vaccine against lumpy skin disease virus via reverse vaccinology and agent-based modeling. Bioengineering 2023, 10, 430. [Google Scholar] [CrossRef]
- Chauhan, V.; Rungta, T.; Goyal, K.; Singh, M.P. Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Sci. Rep. 2019, 9, 2517. [Google Scholar] [CrossRef]
- Mortazavi, B.; Molaei, A.; Fard, N.A. Multi-epitope vaccines, from design to expression; an in silico approach. Hum. Immunol. 2024, 85, 110804. [Google Scholar] [CrossRef]
- Rafi, M.O.; Al-Khafaji, K.; Sarker, M.T.; Taskin-Tok, T.; Rana, A.S.; Rahman, M.S. Design of a multi-epitope vaccine against SARS-CoV-2: Immunoinformatic and computational methods. RSC Adv. 2022, 12, 4288–4310. [Google Scholar] [CrossRef]
- Aiman, S.; Alhamhoom, Y.; Ali, F.; Rahman, N.; Rastrelli, L.; Khan, A.; Farooq, Q.U.A.; Ahmed, A.; Khan, A.; Li, C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques-a bioinformatics and immunoinformatics approach. Front. Immunol. 2022, 13, 985450. [Google Scholar] [CrossRef]
- Barh, D.; Barve, N.; Gupta, K.; Chandra, S.; Jain, N.; Tiwari, S.; Leon-Sicairos, N.; Canizalez-Roman, A.; Rodrigues dos Santos, A.; Hassan, S.S. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds. PLoS ONE 2013, 8, e52773. [Google Scholar] [CrossRef]
- Thoma-Uszynski, S.; Stenger, S.; Takeuchi, O.; Ochoa, M.T.; Engele, M.; Sieling, P.A.; Barnes, P.F.; Rollinghoff, M.; Bolcskei, P.L.; Wagner, M. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 2001, 291, 1544–1547. [Google Scholar] [CrossRef]
- Monterrubio-López, G.P.; González-Y-Merchand, J.A.; Ribas-Aparicio, R.M. Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed Res. Int. 2015, 2015, 483150. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Rezaei, N. Implications of Toll-like receptors in Ebola infection. Expert Opin. Ther. Targets 2017, 21, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.C.; Shirey, K.A.; Pletneva, L.M.; Boukhvalova, M.S.; Garzino-Demo, A.; Vogel, S.N.; Blanco, J.C. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol. 2014, 9, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhu, F.; Xu, Y.; Wen, H.; Rao, M.; Zhang, P.; Peng, W.; Cui, Y.; Yang, H.; Tan, C. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum. Vaccines Immunother. 2024, 20, 2293300. [Google Scholar] [CrossRef]
- Mahafujul Alam, S.S.; Mir, S.A.; Samanta, A.; Nayak, B.; Ali, S.; Hoque, M. Immunoinformatics based designing of a multi-epitope cancer vaccine targeting programmed cell death ligand 1. Sci. Rep. 2025, 15, 12420. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Shamkh, I.M.; Khan, M.S.; Lotfy, M.M.; Nzeyimana, J.B.; Abutayeh, R.F.; Hamdy, N.M.; Hamza, D.; Chanu, N.R.; Khanal, P. Multi-epitope vaccine design against monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines 2022, 10, 2010. [Google Scholar] [CrossRef]
- Kesavan, L.R.; Kamalan, B.C.; Sivanandan, S. Targeting human inosine 5′monophosphate dehydrogenase type 2 for anti-dengue lead identification–A computational approach. J. Biomol. Struct. Dyn. 2024, 1–15. [Google Scholar] [CrossRef]
- Tahir ul Qamar, M.; Rehman, A.; Tusleem, K.; Ashfaq, U.A.; Qasim, M.; Zhu, X.; Fatima, I.; Shahid, F.; Chen, L.-L. Designing of a next generation multiepitope based vaccine (MEV) against SARS-CoV-2: Immunoinformatics and in silico approaches. PLoS ONE 2020, 15, e0244176. [Google Scholar] [CrossRef]
- Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012, 30, 1102–1107. [Google Scholar] [CrossRef]
- Morla, S.; Makhija, A.; Kumar, S. Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene 2016, 584, 1–6. [Google Scholar] [CrossRef]
- Mukherjee, S.; Karmakar, S.; Babu, S.P.S. TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Braz. J. Infect. Dis. 2016, 20, 193–204. [Google Scholar] [CrossRef]
Proteomes | M1R/IMV | E8L/IMV | H3L/IMV | A29L/IMV |
---|---|---|---|---|
Allergenicity status | NA | NA | NA | NA |
Antigenicity/(score) | Ag/(0.6339) | Ag/(0.5316) | Ag/(0.4538) | N-Ag/(0.3277) |
Residue toxicity | Nontoxic | Nontoxic | Nontoxic | Nontoxic |
AA Length | 250 | 304 | 324 | 110 |
Mw/TpI | 27,303.24/6.72 | 35,247.99/7.77 | 37,531.34/5.53 | 12,559.24/5.73 |
AI | 87.48 | 88.22 | 97.99 | 73.73 |
GRAVY | −0.004 | −0.359 | −0.02 | −0.75 |
I-i | 33.47 | 45.45 | 41.77 | 32.28 |
EHL-MR | 30 h | 30 h | 30 h | 30 h |
EHL-Y | >20 min | >20 min | >20 min | >20 min |
EHL-E | >10 h | >10 h | >10 h | >10 h |
EC (M−1cm−1) | 19,285 | 56,270 | 38,390 | 2980 |
E. solubility | 0.853 | 0.847 | 0.882 | 0.74 |
Proteins IDs/Proteins | LBL-Epitope Designation | LBL-Epitope | ABCP(s) | Ag(s) | Toxicity | Allergenicity |
---|---|---|---|---|---|---|
QJQ40281.1/A29L/IMV | LBE-1 | LRAAMISLAKKIDVQT | 0.71 | 0.7326 | Nontoxic | NA |
LBE-2 | TLKQRLTNLEKKITNI | 0.69 | 0.9498 | Nontoxic | NA | |
QJQ40248.1/E8L/IMV | LBE-3 | ARLKTLDIHYNESKPT | 0.74 | 1.0282 | Nontoxic | NA |
LBE-4 | LVRINFKGGYISGGFL | 0.68 | 1.1759 | Nontoxic | NA | |
AGR38652.1/H3L/IMV | LBE-5 | NDDPDHYKDYVFIQWT | 0.87 | 0.9084 | Nontoxic | NA |
LBE-6 | PNFWSRIGTVAAKRYP | 0.78 | 1.0417 | Nontoxic | NA | |
QJQ40223.1/M1R/IMV | LBE-7 | IEIGNFYIRQNHGCNI | 0.89 | 1.148 | Nontoxic | NA |
LBE-8 | DECYGAPGSPTNLEFI | 0.88 | 0.88 | Nontoxic | NA | |
Proteins IDs/Proteins | CTL-Epitope Designation | CTL-Epitope | IC50-value | Ag(s) | Toxicity | Allergenicity |
QJQ40281.1/A29L/IMV | CTL-1 | TLRAAMISL | 51.12 | 1.1323 | Nontoxic | NA |
CTL-2 | TLKQRLTNL | 12.59 | 0.9942 | Nontoxic | NA | |
QJQ40248.1/E8L/IMV | CTL-3 | RLKTLDIHY | 34.19 | 1.9035 | Nontoxic | NA |
CTL-4 | SDLREACFSY | 48.1 | 1.7231 | Non-toxic | NA | |
AGR38652.1/H3L/IMV | CTL-5 | RIGTVAAKR | 50.9 | 1.7688 | Nontoxic | NA |
CTL-6 | RIGTVAAKRY | 25.62 | 1.44 | Nontoxic | NA | |
QJQ40223.1/M1R/IMV | CTL-7 | LANKENVHW | 5.4 | 1.716 | Nontoxic | NA |
CTL-8 | LTPEQKAYV | 31.4 | 1.1239 | Nontoxic | NA |
Proteins IDs/Proteins | HTL-Epitope Designation | HTL-Epitope | IC50-Value | Ag(s) | II/IL-4 Score | Tox/Aller |
---|---|---|---|---|---|---|
QJQ40281.1/A29L/IMV | HTL -1 | TLRAAMISLAKKIDV | 23.9 | 0.8881 | II/0.25 | NT/NA |
HTL -2 | NLEKKITNITTKFEQ | 83.2 | 0.6727 | II/0.31 | NT/NA | |
QJQ40248.1/E8L/IMV | HTL -3 | LDYFTYLGTTINHSA | 8.8 | 0.6462 | II/1.05 | NT/NA |
HTL -4 | TLDIHYNESKPTTIQ | 20.4 | 0.7176 | II/1.35 | NT/NA | |
AGR38652.1/H3L/IMV | HTL -5 | LQMREIITGNKVKTE | 65.6 | 0.834 | II/0.26 | NT/NA |
HTL -6 | PDHYKDYVFIQWTGG | 74.4 | 0.649 | II/0.32 | NT/NA | |
QJQ40223.1/M1R/IMV | HTL -7 | PAMFTAALNIQTSVN | 6.5 | 0.4876 | II/0.34 | NT/NA |
HTL -8 | NDKIKLILANKENVH | 15.1 | 0.56 | II/1.45 | NT/NA | |
Proteins IDs/Proteins | IFN-γ-Epitope Designation | IFN-Gamma Epitope | IC50-Value | Ag(s) | IFN-γ/IL-4 Scores | Tox/Aller |
QJQ40281.1/A29L/IMV | IFN-γ -1 | KQRLTNLEKKITNIT | 74.4 | 0.986 | 0.9657/0.31 | NT/NA |
IFN-γ -2 | LEKKITNITTKFEQI | 100.4 | 0.753 | 0.6529/0.31 | NT/NA |
Parameters | MPX-1- Beta | MPXV-1- Hbha | MPXV-1- Ribos | MPXV-2- Beta | MPXV-2-Hbha | MPXV-2-Ribos |
---|---|---|---|---|---|---|
Allergenicity | NA | NA | NA | NA | NA | NA |
Antigenicity/score | Ag/0.7495 | Ag/0.6912 | Ag/0.6752 | Ag/0.7202 | Ag/0.6686 | Ag/0.6513 |
Residue toxicity/score | Nontoxic/0.29 | Nontoxic/0.24 | Nontoxic/0.24 | Nontoxic/0.52 | Nontoxic/0.26 | Nontoxic/0.24 |
AA Length | 405 | 519 | 490 | 407 | 521 | 492 |
Mw/TpI | 42,760.94/8.7 | 55,228.39/9.17 | 51,040.22/9.17 | 43,102.1/9.77 | 55,569.55/9.2 | 51,381.39/9.2 |
AI | 71.53 | 77.9 | 80.49 | 65.63 | 73.25 | 75.57 |
GRAVY | −0.465 | −0.455 | −0.273 | −0.597 | −0.557 | −0.382 |
I-i | 26.42 | 30.20 | 23.08 | 25.92 | 29.79 | 22.68 |
EHL-MR | 1 h | 1 h | 1 h | 1 h | 1 h | 1 h |
EHL-Y | 30 min | 30 min | 30 min | 30 min | 30 min | 30 min |
EHL-E | >10 h | >10 h | >10 h | >10 h | >10 h | >10 h |
EC (M−1cm−1) | 47,705 | 48,820 | 44,350 | 50,810 | 51,925 | 47,330 |
E. solubility | 1.107 | 0.884 | 0.839 | 1.167 | 0.932 | 0.921 |
E. solubility/Soluproscore | SE/0.836 | ISE/0.346 | SE/0.498 | SE/0.942 | SE/0.605 | SE/0.624 |
Complex Description | No. of Residues in the Interface | Count of Salt Bridges | Count of Hydrogen Bonds | Count of Non-Bonded Contacts | Interface Area (Å2) |
---|---|---|---|---|---|
TLR4 | 41 | 04 | 28 | 206 | 1709 |
MPXV-2-Beta | 31 | 1936 | |||
TLR2 | 23 | 05 | 13 | 159 | 1112 |
MPXV-2-Beta | 27 | 1030 | |||
MHC-I–MPXV-2-Beta complex | 12–13 (A–C) | 09 (A–C) | 09 (A–C) | 102 (A–C) | 671–663 (A–C) |
20–22 (B–C) | 6 (B–C) | 10 (A–C) | 146 (A–C) | 1071–1081 (B–C) | |
MHC-II–MPXV-2-Beta complex | 14–16 (A–C) | 03 (A–C) | 9 (A–C) | 107 (A–C) | 688–675 (A–C) |
4–4 (B–C) | 4 (B–C) | 4 (B–C) | 30 (B–C) | 188–170 (B–C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izhari, M.A.; Alharthi, S.B.; Alharbi, R.A.; Almontasheri, A.H.A.; Alghamdi, W.A.; Sindi, A.A.A.; Salem, A.A.; Mahzari, A.; Alghamdi, F.; Gosady, A.R.A. Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV. Biomedicines 2025, 13, 1439. https://doi.org/10.3390/biomedicines13061439
Izhari MA, Alharthi SB, Alharbi RA, Almontasheri AHA, Alghamdi WA, Sindi AAA, Salem AA, Mahzari A, Alghamdi F, Gosady ARA. Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV. Biomedicines. 2025; 13(6):1439. https://doi.org/10.3390/biomedicines13061439
Chicago/Turabian StyleIzhari, Mohammad Asrar, Siraj B. Alharthi, Raed A. Alharbi, Ahmad H. A. Almontasheri, Wael A. Alghamdi, Abdulmajeed Abdulghani A. Sindi, Ahmad Abdulmajed Salem, Ali Mahzari, Fahad Alghamdi, and Ahmed R. A. Gosady. 2025. "Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV" Biomedicines 13, no. 6: 1439. https://doi.org/10.3390/biomedicines13061439
APA StyleIzhari, M. A., Alharthi, S. B., Alharbi, R. A., Almontasheri, A. H. A., Alghamdi, W. A., Sindi, A. A. A., Salem, A. A., Mahzari, A., Alghamdi, F., & Gosady, A. R. A. (2025). Design and Validation of a Multi-Epitope mRNA Vaccine Construct Against Human Monkeypox Virus (hMPXV) by Annotating Protein of Intracellular Mature Virus (IMV) Form of hMPXV. Biomedicines, 13(6), 1439. https://doi.org/10.3390/biomedicines13061439