Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro
2.2. Callus Culture
2.3. Cell Suspension Culture Initiation and Maintenance
2.4. Flow Cytometry
2.5. Extraction of Secondary Metabolites for Metabolomic Analysis
2.6. UPLC-HRMS/MS Analysis and Data Processing
2.7. Cell Line and Culture Methods
2.8. Extract Preparation for MTT Assay
2.9. MTT Assay
2.10. Statistical Analysis
3. Results
3.1. Callus Induction and Proliferation
3.2. Cell Suspension Culture
3.3. Nuclear DNA Content
3.4. UPLC-HRMS/MS Analysis
3.5. Cytotoxic Assay Using MTT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dziankowska-Zaborszczyk, E.; Maniecka-Bryła, I.; Pikala, M. Mortality Trends Due to Skin Melanoma in Poland in the Years 2000–2020. Int. J. Environ. Res. Public Health 2022, 19, 16118. [Google Scholar] [CrossRef]
- Conforti, C.; Zalaudek, I. Epidemiology and Risk Factors of Melanoma: A Review. Dermatol. Pract. Concept. 2021, 11, 2021161S. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Ranaware, A.M.; Harsha, C.; Nitesh, T.; Girisa, S.; Deshpande, V.; Fan, L.; Nalawade, S.P.; Sethi, G.; Kunnumakkara, A.B. Piceatannol: A Natural Stilbene for the Prevention and Treatment of Cancer. Pharmacol. Res. 2020, 153, 104635. [Google Scholar] [CrossRef]
- Bellosi, B.; Selldorf, P.; Schoenenberger, N. Exploring the Flora on Inert Landfill Sites in Southern Ticino (Switzerland). Bauhinia 2011, 23, 1–15. [Google Scholar]
- Węgrzynek, B.; Nowak, T. Rare and Endangered Segetal Weed Species in the Silesian Upland (s Poland) Recorded in the Last Twenty Years. Plant Breed. Seed Sci. 2010, 61, 75–84. [Google Scholar] [CrossRef]
- Unterladstetter, V.; Jagel, A. Tännelkräuter—Zwei unauffällige Wildkräuter verlassen die Äcker. Palmengarten 2018, 82, 11–17. [Google Scholar] [CrossRef]
- Wren, R.C. Potter’s New Cyclopaedia of Botanical Drugs and Preparations, 7th ed.; Sir Isaac Pitman & Sond, Ltd.: London, UK, 1956. [Google Scholar]
- Dhivya, S.M.; Kalaichelvi, K. Studies on Ethno-Medicinal Plants Used by the Irulas Tribes of Nellithurai Beat, Karamadai Range of Western Ghats, Tamil Nadu, India. Int. J. Pharm. Chem. Sci. 2015, 3, 2116–2124. [Google Scholar]
- Janaćković, P.; Gavrilović, M.; Miletić, M.; Radulović, M.; Kolašinac, S.; Stevanović, Z.D. Small Regions as Key Sources of Traditional Knowledge: A Quantitative Ethnobotanical Survey in the Central Balkans. J. Ethnobiol. Ethnomed. 2022, 18, 70. [Google Scholar] [CrossRef]
- Yuldashev, M.P.; Malikov, V.M.; Batirov, É.K. Flavonoids of the Epigeal Part of Kickxia elatine. Chem. Nat. Compd. 1996, 32, 30–32. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Licata, M.; Leto, C.; Savo, V.; Bonsangue, G.; Letizia Gargano, M.; Venturella, G.; La Bella, S. Ethnobotanical Investigation on Wild Medicinal Plants in the Monti Sicani Regional Park (Sicily, Italy). J. Ethnopharmacol. 2014, 153, 568–586. [Google Scholar] [CrossRef]
- Toth, L.; Csordas, I.; Papay, V. Chemical Analysis of Kickxia elatine (L.) Dum. Herba Hung. 1978, 17, 35–37. [Google Scholar]
- Toth, L.; Csordas, I.; Papay, V.; Bujtas, G. The Flavonoids of Kickxia elatine (L.) Dum. Pharmazie 1978, 33, 374–375. [Google Scholar] [PubMed]
- Handjieva, N.; Tersieva, L.; Popov, S.; Evstatieva, L. Two Iridoid Glucosides, 5-O-Menthiafoloylkickxioside and Kickxin, from Kickxia Dum. Species. Phytochemistry 1995, 39, 925–927. [Google Scholar] [CrossRef]
- Efferth, T. Biotechnology Applications of Plant Callus Cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Hermosaningtyas, A.A.; Chanaj-Kaczmarek, J.; Kikowska, M.; Gornowicz-Porowska, J.; Budzianowska, A.; Pawlaczyk, M. Potential of Plant Stem Cells as Helpful Agents for Skin Disorders—A Narrative Review. Appl. Sci. 2024, 14, 7402. [Google Scholar] [CrossRef]
- Wawrosch, C.; Zotchev, S.B. Production of Bioactive Plant Secondary Metabolites through in Vitro Technologies—Status and Outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef]
- Bapat, V.A.; Kavi Kishor, P.B.; Jalaja, N.; Jain, S.M.; Penna, S. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy 2023, 13, 858. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B.; Nahorska, A. Potential of Plant Cell Cultures as a Source of Bioactive Compounds for Cosmetic Applications (in Polish). Pol. J. Cosmetol. 2015, 18, 170–175. [Google Scholar]
- Niazian, M.; Sabbatini, P. Traditional in Vitro Strategies for Sustainable Production of Bioactive Compounds and Manipulation of Metabolomic Profile in Medicinal, Aromatic and Ornamental Plants. Planta 2021, 254, 111. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B.; Sliwinska, E.; Rewers, M.; Kowalczyk, M.; Stochmal, A.; Oleszek, W. The Effect of Nutritional Factors and Plant Growth Regulators on Micropropagation and Production of Phenolic Acids and Saponins from Plantlets and Adventitious Root Cultures of Eryngium maritimum L. J. Plant Growth Regul. 2014, 33, 809–819. [Google Scholar] [CrossRef]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A Lipidome Atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Nakabayashi, R.; Mori, T.; Yamada, Y.; Takahashi, M.; Rai, A.; Sugiyama, R.; Yamamoto, H.; Nakaya, T.; Yamazaki, M.; et al. A Cheminformatics Approach to Characterize Metabolomes in Stable-Isotope-Labeled Organisms. Nat. Methods 2019, 16, 295–298. [Google Scholar] [CrossRef]
- Chou, T.C.; Martin, N. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values; ComboSyn: Paramus, NJ, USA, 2005. [Google Scholar]
- Makowczyńska, J.; Andrzejewska-Golec, E.; Sliwinska, E. Nuclear DNA Content in Different Plant Materials of Plantago asiatica L. Cultured in Vitro. Plant Cell Tissue Organ Cult. 2008, 94, 65–71. [Google Scholar] [CrossRef]
- Ay, N.V.; Duy, M.V.; Baatartsogt, O.; Enkhchimeg, V. Plant Regeneration of Kamchatic Plantain (Plantago cantschatica Link) through Callus Induction. Mong. J. Agric. Sci. 2017, 19, 41–48. [Google Scholar] [CrossRef]
- Budzianowska, A.; Skrzypczak, L.; Budzianowski, J. Phenylethanoid Glucosides from in vitro Propagated Plants and Callus Cultures of Plantago lanceolata. Planta Med. 2004, 70, 834–840. [Google Scholar] [CrossRef]
- Wakhlu, A.K.; Barna, K.S. Callus Initiation, Growth and Plant Regeneration in Plantago ovata Forsk. Cv. GI-2. Plant Cell Tissue Organ Cult. 1989, 17, 235–241. [Google Scholar] [CrossRef]
- Budzianowska, A.; Kikowska, M.; Budzianowski, J. Phenylethanoid Glycosides Accumulation and Antiradical Activity of Fractionated Extracts of Plantago ovata Forssk. Callus Cultures Lines. Plant Cell Tissue Organ Cult. 2024, 156, 54. [Google Scholar] [CrossRef]
- Tomilova, S.V.; Kochkin, D.V.; Tyurina, T.M.; Glagoleva, E.S.; Labunskaya, E.A.; Galishev, B.A.; Nosov, A.M. Specificity of Growth and Synthesis of Secondary Metabolites in Cultures in Vitro Digitalis lanata Ehrh. Russ. J. Plant Physiol. 2022, 69, 25. [Google Scholar] [CrossRef]
- Rahamooz-Haghighi, S.; Bagheri, K.; Danafar, H.; Sharafi, A. Tissue Culture, In Vitro Organogenesis and Regeneration of Plantago lanceolata. J. Apple Biotechnol. Rep. 2020, 7, 258–265. [Google Scholar] [CrossRef]
- Bajaj, Y.P.S. Somaclonal Variation—Origin, Induction, Cryopreservation, and Implications in Plant Breeding. In Somaclonal Variation in Crop Improvement I; Bajaj, Y.P.S., Ed.; Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1990; Volume 11, pp. 3–48. ISBN 978-3-642-08077-7. [Google Scholar]
- Kour, G.; Kour, B.; Kaul, S.; Dhar, M.K. Genetic and Epigenetic Instability of Amplification-Prone Sequences of a Novel B Chromosome Induced by Tissue Culture in Plantago lagopus L. Plant Cell Rep. 2009, 28, 1857–1867. [Google Scholar] [CrossRef] [PubMed]
- De Morais Oliveira, J.P.; Silva, A.J.D.; Catrinck, M.N.; Clarindo, W.R. Embryonic Abnormalities and Genotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid during Indirect Somatic Embryogenesis in Coffea. Sci. Rep. 2023, 13, 9689. [Google Scholar] [CrossRef]
- Castro, M.; Castro, S.; Loureiro, J. Genome Size Variation and Incidence of Polyploidy in Scrophulariaceae Sensu Lato from the Iberian Peninsula. AoB PLANTS 2012, 2012, pls037. [Google Scholar] [CrossRef] [PubMed]
- Suda, J.; Kyncl, T.; Jarolímová, V. Genome Size Variation in Macaronesian Angiosperms: Forty Percent of the Canarian Endemic Flora Completed. Plant Syst. Evol. 2005, 252, 215–238. [Google Scholar] [CrossRef]
- Wang, L.-B.; Dong, N.-W.; Wu, Z.-H.; Wu, L.-J. Two New Compounds with Cytotoxic Activity on the Human Melanoma A375-S2 Cells from Daphne giraldii Callus Cells. J. Asian Nat. Prod. Res. 2012, 14, 1020–1026. [Google Scholar] [CrossRef]
- Gjörloff Wingren, A.; Ziyad Faik, R.; Holefors, A.; Filecovic, E.; Gustafsson, A. In Vitro Effects of Undifferentiated Callus Extracts from Plantago major L., Rhodiola rosea L. and Silybum marianum L. in Normal and Malignant Human Skin Cells. Heliyon 2023, 9, e16480. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Li, R.-H.; Sun, C.; Liu, Y.-Q.; Zheng, J.-N. Dacarbazine Combined Targeted Therapy versus Dacarbazine Alone in Patients with Malignant Melanoma: A Meta-Analysis. PLoS ONE 2014, 9, e111920. [Google Scholar] [CrossRef]
- Koprowska, K.; Czyż, M. Dacarbazine, a Chemotherapeutic against Metastatic Melanoma and a Reference Drug for New Treatment Modalities. Postepy Hig. Med. Dosw. 2011, 65, 734–751. [Google Scholar] [CrossRef]
- Lev, D.C.; Ruiz, M.; Mills, L.; McGary, E.C.; Price, J.E.; Bar-Eli, M. Dacarbazine Causes Transcriptional Up-Regulation of Interleukin 8 and Vascular Endothelial Growth Factor in Melanoma Cells: A Possible Escape Mechanism from Chemotherapy. Mol. Cancer Ther. 2003, 2, 753–763. [Google Scholar]
- VanderWalde, A.; Bellasea, S.L.; Kendra, K.L.; Khushalani, N.I.; Campbell, K.M.; Scumpia, P.O.; Kuklinski, L.F.; Collichio, F.; Sosman, J.A.; Ikeguchi, A.; et al. Ipilimumab with or without Nivolumab in PD-1 or PD-L1 Blockade Refractory Metastatic Melanoma: A Randomized Phase 2 Trial. Nat. Med. 2023, 29, 2278–2285. [Google Scholar] [CrossRef]
- Jung, T.; Haist, M.; Kuske, M.; Grabbe, S.; Bros, M. Immunomodulatory Properties of BRAF and MEK Inhibitors Used for Melanoma Therapy—Paradoxical ERK Activation and Beyond. Int. J. Mol. Sci. 2021, 22, 9890. [Google Scholar] [CrossRef] [PubMed]
- Erenler, R.; Demirtas, I.; Karan, T.; Altun, M.; Gul, F. Inhibitory Effect of 6,7-Dimethoxy-5-Hydroxyflavone on Human Cervix Carcinoma in Vitro. Int. J. Second. Metab. 2017, 4, 512–516. [Google Scholar] [CrossRef]
- Farid, M.M.; Marzouk, M.M.; El-Shabrawy, M.; Salem, M.A.; Mounier, M.M.; Hussein, S.R. Isoscutellarein 8, 4′-Dimethyl Ether Glycosides as Cytotoxic Agents and Chemotaxonomic Markers in Kickxia aegyptiaca. Biocatal. Agric. Biotechnol. 2019, 22, 101431. [Google Scholar] [CrossRef]
- Hermosaningtyas, A.A.; Totoń, E.; Lisiak, N.; Kruszka, D.; Budzianowska, A.; Kikowska, M. Evaluation of Cytotoxic Activity of Cell Biomass from Eryngium planum and Lychnis flos-cuculi on Melanoma Cancer Cell. Molecules 2024, 29, 5158. [Google Scholar] [CrossRef]
- Hei, B.; Wang, J.; Wu, G.; Ouyang, J.; Liu, R. Verbascoside Suppresses the Migration and Invasion of Human Glioblastoma Cells via Targeting C-Met-Mediated Epithelial-Mesenchymal Transition. Biochem. Biophys. Res. Commun. 2019, 514, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Daneshforouz, A.; Nazemi, S.; Gholami, O.; Kafami, M.; Amin, B. The Cytotoxicity and Apoptotic Effects of Verbascoside on Breast Cancer 4T1 Cell Line. BMC Pharmacol. Toxicol. 2021, 22, 72. [Google Scholar] [CrossRef]
- Wu, C.; Chen, C.; Hsieh, P.; Lee, Y.; Kuo, W.W.; Wu, R.C.; Hung, C.; Yang, Y.; Lin, V.C. Verbascoside Inhibits the Epithelial-mesenchymal Transition of Prostate Cancer Cells through High-mobility Group Box 1/Receptor for Advanced Glycation End-products/ TGF-β Pathway. Environ. Toxicol. 2021, 36, 1080–1089. [Google Scholar] [CrossRef]
- Budzianowska, A.; Totoń, E.; Romaniuk-Drapała, A.; Kikowska, M.; Budzianowski, J. Cytotoxic Effect of Phenylethanoid Glycosides Isolated from Plantago lanceolata L. Life 2023, 13, 556. Life 2023, 13, 556. [Google Scholar] [CrossRef]
- Cheimonidi, C.; Samara, P.; Polychronopoulos, P.; Tsakiri, E.N.; Nikou, T.; Myrianthopoulos, V.; Sakellaropoulos, T.; Zoumpourlis, V.; Mikros, E.; Papassideri, I.; et al. Selective Cytotoxicity of the Herbal Substance Acteoside against Tumor Cells and Its Mechanistic Insights. Redox Biol. 2018, 16, 169–178. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, M.; Xu, R.; Zhang, B.; Wang, S.; Li, B.; Kan, Y.; Cao, B.; Zheng, X.; Feng, W. Inhibitory Activity of Acteoside in Melanoma via Regulation of the ERβ-Ras/Raf1-STAT3 Pathway. Arch. Biochem. Biophys. 2021, 710, 108978. [Google Scholar] [CrossRef]
- Smith, D.E.; Salerno, J.W. Selective Growth Inhibition of a Human Malignant Melanoma Cell Line by Sesame Oil in Vitro. Prostaglandins Leukot. Essent. Fat. Acids 1992, 46, 145–150. [Google Scholar] [CrossRef]
- De Sousa Andrade, L.N.; Lima, T.M.D.; Curi, R.; Castrucci, A.M.D.L. Toxicity of Fatty Acids on Murine and Human Melanoma Cell Lines. Toxicol. In Vitro 2005, 19, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Funasaka, Y.; Oka, M.; Ohashi, A.; Furumura, M.; Matsunaga, J.; Matsunaga, N.; Hearing, V.J.; Ichihashi, M. Possible Involvement of Proteolytic Degradation of Tyrosinase in the Regulatory Effect of Fatty Acids on Melanogenesis. J. Lipid Res. 1999, 40, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Watabe, H.; Valencia, J.C.; Yasumoto, K.; Furumura, M.; Funasaka, Y.; Oka, M.; Ichihashi, M.; Hearing, V.J. Fatty Acids Regulate Pigmentation via Proteasomal Degradation of Tyrosinase: A New Aspect of Ubiquitin-Proteasome Function. J. Biol. Chem. 2004, 279, 15427–15433. [Google Scholar] [CrossRef]
- Ando, H.; Wen, Z.-M.; Kim, H.-Y.; Valencia, J.C.; Costin, G.-E.; Watabe, H.; Yasumoto, K.; Niki, Y.; Kondoh, H.; Ichihashi, M.; et al. Intracellular Composition of Fatty Acid Affects the Processing and Function of Tyrosinase through the Ubiquitin–Proteasome Pathway. Biochem. J. 2006, 394, 43–50. [Google Scholar] [CrossRef]
- Chaikul, P.; Lourith, N.; Kanlayavattanakul, M. Antimelanogenesis and Cellular Antioxidant Activities of Rubber (Hevea brasiliensis) Seed Oil for Cosmetics. Ind. Crops Prod. 2017, 108, 56–62. [Google Scholar] [CrossRef]
- Yamada, H.; Hakozaki, M.; Uemura, A.; Yamashita, T. Effect of Fatty Acids on Melanogenesis and Tumor Cell Growth in Melanoma Cells. J. Lipid Res. 2019, 60, 1491–1502. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N.; Chaikul, P. Valorization of Spent Coffee Grounds as the Specialty Material for Dullness and Aging of Skin Treatments. Chem. Biol. Technol. Agric. 2021, 8, 55. [Google Scholar] [CrossRef]
Type of Explant | Plant Growth Regulators (mg L−1) | Induction Percentage (%) | Proliferation * | Morphology | ||
---|---|---|---|---|---|---|
Dic | 2,4-D | TDZ | ||||
Roots | 2.0 | 0.5 | - | 85.7 | +++ | Heterogeneous, friable, yellow-beige and green colour |
2.0 | 1.0 | - | 100 | ++ | Homogeneous, friable, watery, yellow-beige colour | |
2.0 | 2.0 | - | 100 | + | Homogeneous, friable, watery, beige colour | |
1.0 | 2.0 | - | 100 | + | Homogeneous, friable, watery, light beige colour | |
1.0 | 1.0 | - | 92.9 | ++ | Heterogeneous, friable, yellow-beige and green colour | |
1.0 | - | 0.1 | 100 | ++++ | Heterogeneous, clumpy and compact, beige and green colour | |
Stems | 2.0 | 0.5 | - | 70 | + | Homogeneous, friable, yellow-beige colour |
2.0 | 1.0 | - | 60 | + | Homogeneous, friable, yellow-beige colour | |
2.0 | 2.0 | - | 86.7 | + | Homogeneous, friable, yellow-beige colour | |
1.0 | 2.0 | - | 70 | + | Homogeneous, friable, yellow-beige colour | |
1.0 | 1.0 | - | 40 | + | Homogeneous, friable, yellow and beige colour | |
1.0 | - | 0.1 | 100 | ++++ | Heterogeneous, clumpy and compact, beige and green colour, organogenesis | |
Petioles | 2.0 | 0.5 | - | 100 | + | Homogeneous, friable, yellow-beige colour |
2.0 | 1.0 | - | 100 | + | Homogeneous, friable, yellow-beige colour | |
2.0 | 2.0 | - | 100 | + | Homogeneous, friable, yellow-beige colour | |
1.0 | 2.0 | - | 100 | + | Homogeneous, friable, yellow-beige colour | |
1.0 | 1.0 | - | 100 | ++ | Homogeneous, friable, yellow-beige colour | |
1.0 | - | 0.1 | 100 | +++ | Heterogeneous, clumpy and compact, yellow-beige colour, organogenesis | |
Leaves | 2.0 | 0.5 | - | 100 | +++ | Homogeneous, friable, yellow-beige colour |
2.0 | 1.0 | - | 100 | +++ | Homogeneous, friable, yellow-beige colour | |
2.0 | 2.0 | - | 100 | ++ | Homogeneous, friable, yellow-beige colour | |
1.0 | 2.0 | - | 100 | ++ | Homogeneous, friable, cream colour | |
1.0 | 1.0 | - | 100 | ++ | Homogeneous, friable, cream colour | |
1.0 | - | 0.1 | 100 | ++++ | Homogeneous, clumpy and compact, organogenesis |
Callus Growth Index (%) ± SE | Mean | p-Value | ||
---|---|---|---|---|
2.0 mg L−1 Dic 2.0 mg L−1 2,4-D (root-derived) | Passage 5 | 418.83 ± 36.41 | 351.71 ± 27.77 | 0.286 |
Passage 6 | 272.81 ± 46.75 | |||
Passage 7 | 303.31 ± 28.01 | |||
Passage 8 | 398.25 ± 27.97 | |||
Passage 9 | 365.33 ± 41.79 | |||
2.0 mg L−1 Dic 0.5 mg L−1 2,4-D (leaf-derived) | Passage 4 | 273.65 ± 9.97 | 288.05 ± 42.60 | |
Passage 5 | 267.51 ± 25.70 | |||
Passage 6 | 406.86 ± 34.55 | |||
Passage 7 | 204.19 ± 13.77 |
Plant Material | DNA Content (pg/2C ± SD) |
---|---|
Seeds | 2.720 ± 0.111 c * |
In vitro-derived shoot passage 5 | 2.916 ± 0.021 b |
Cell suspension culture passage 3 | 3.165 ± 0.017 a |
No | RT (min) | Formula | Adduct Type | Measured m/z | Reference m/z | Metabolite Name | Ontology |
---|---|---|---|---|---|---|---|
1 | 2.78 | C9H11NO2 | [M-H]- | 164.0704 | 164.0717 | Phenylalanine | Phenylalanine and derivatives |
2 | 3.22 | C9H17NO5 | [M-H]- | 218.1029 | 218.1034 | Pantothenate | Secondary alcohols |
3 | 3.89 | C11H12N2O2 | [M-H]- | 203.0818 | 203.0826 | Tryptophan | Indolyl carboxylic acids and derivatives |
4 | 4.50 | C7H12O5 | [M-H]- | 175.06 | 175.0612 | 2-Isopropylmalic acid | Hydroxy fatty acids |
5 | 4.64 | C19H28O11 | [M-H]- | 431.1556 | 431.1559 | (2R,3S,4S,5R,6R)-5-[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4-diol | Phenylpropanoids |
6 | 5.32 | C9H8O4 | [M-H]- | 179.034 | 179.035 | Caffeic acid | Hydroxycinnamic acids |
7 | 5.84 | C19H28O10 | [M-H]- | 415.1614 | 415.161 | (2R,3S,4S,5R,6R)-2-[[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxymethyl]-6-(2-phenylethoxy)oxane-3,4,5-triol | Phenylpropanoids |
8 | 6.19 | C35H46O20 | [M-H]- | 785.2514 | 785.251 | Echinacoside | Phenylpropanoids |
9 | 6.31 | C34H44O19 | [M-H]- | 755.2402 | 755.2404 | Lavandulifolioside | Phenylpropanoids |
10 | 6.67 | C29H36O15 | [M-H]- | 623.1978 | 623.1981 | Acteoside | Phenylpropanoids |
11 | 6.71 | C10H18O5 | [M-H]- | 217.1074 | 217.1082 | Hydroxysebacic acid | Medium-chain hydroxy acids and derivatives |
12 | 6.92 | C9H8O3 | [M-H]- | 163.0389 | 163.0401 | trans-4-Coumaric acid | Hydroxycinnamic acids |
13 | 7.09 | C29H36O15 | [M-H]- | 623.1979 | 623.1981 | Isoacteoside | Phenylpropanoids |
14 | 7.19 | C30H37O15 | [M-H]- | 637.2136 | 637.2127 | ((2R,3R,4R,5R,6R)-6-(2-(3,4-dihydroxyphenyl)ethoxy)-5-hydroxy-2-(hydroxymethyl)-4-((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-3-yl) (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate | Phenylpropanoids |
15 | 7.39 | C9H16O4 | [M-H]- | 187.0965 | 187.0976 | Azelaic acid | Medium-chain fatty acids |
16 | 9.17 | C18H34O5 | [M-H]- | 329.2335 | 329.2333 | (Z)-5,8,11-trihydroxyoctadec-9-enoic acid | Long-chain fatty acids |
17 | 10.61 | C18H30O4 | [M-H]- | 309.2074 | 309.2071 | FA 18:3 + 2O | Linoleic acids and derivatives |
18 | 14.10 | C18H32O3 | [M-H]- | 295.2277 | 295.2279 | 9-HODE | Linoleic acids and derivatives |
19 | 14.77 | C18H34O3 | [M-H]- | 297.2434 | 297.2435 | FA 18:1 + 1O | Linoleic acids and derivatives |
20 | 14.91 | C18H32O2 | [M-H]- | 279.2327 | 279.2329 | Linoleic acid | Linoleic acids and derivatives |
IC50 [µg mL−1] | ||||
---|---|---|---|---|
Cell Line | Time | Extract | Fraction 40% MeOH | Reference (Acteoside) |
MRC-5 | 24 h | >800 | >800 | 105 ± 1 |
48 h | 268 ± 12 | 549 ± 5 | 79 ± 8 | |
72 h | 166 ± 10 | 231 ± 12 | 35.5 ± 1 | |
MeWo | 24 h | 345 ± 5 | 340 ± 15 | 75 ± 7 |
48 h | 125 ± 8 | 214 ± 12 | 35 ± 1 | |
72 h | 117 ± 7 | 162 ± 10 | 22 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermosaningtyas, A.A.; Totoń, E.; Budzianowska, A.; Lisiak, N.; Romaniuk-Drapała, A.; Kruszka, D.; Rewers, M.; Kikowska, M. Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells. Biomedicines 2025, 13, 1382. https://doi.org/10.3390/biomedicines13061382
Hermosaningtyas AA, Totoń E, Budzianowska A, Lisiak N, Romaniuk-Drapała A, Kruszka D, Rewers M, Kikowska M. Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells. Biomedicines. 2025; 13(6):1382. https://doi.org/10.3390/biomedicines13061382
Chicago/Turabian StyleHermosaningtyas, Anastasia Aliesa, Ewa Totoń, Anna Budzianowska, Natalia Lisiak, Aleksandra Romaniuk-Drapała, Dariusz Kruszka, Monika Rewers, and Małgorzata Kikowska. 2025. "Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells" Biomedicines 13, no. 6: 1382. https://doi.org/10.3390/biomedicines13061382
APA StyleHermosaningtyas, A. A., Totoń, E., Budzianowska, A., Lisiak, N., Romaniuk-Drapała, A., Kruszka, D., Rewers, M., & Kikowska, M. (2025). Biotechnology Production of Cell Biomass from the Endangered Kickxia elatine (L.) Dumort: Its Untargeted Metabolomic Analysis and Cytotoxic Potential Against Melanoma Cells. Biomedicines, 13(6), 1382. https://doi.org/10.3390/biomedicines13061382