The Multi-Faceted Role of Gut Microbiota in Alopecia Areata
Abstract
1. Introduction
2. Immune Privileges and Their Collapse in Alopecia Areata
3. Gut Microbiota: Composition and Functions
4. Gut-Skin Axis and Its Role in the Pathogenesis of Alopecia Areata
4.1. Gut Microbiota and Immune System
4.2. Gut–Skin Axis
4.3. How Does the Gut Microbiota Influence the Pathogenesis of Alopecia Areata?
5. Gut Microbiota in Alopecia Areata
5.1. Evidence of Correlation Between Gut Microbiota and Alopecia Areata
5.2. Analysis of the Gut Microbiota in Alopecia Areata
6. Gut Microbiota as Therapeutic Target in Alopecia Areata
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pratt, C.H.; King, L.E.; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia areata. Nat. Rev. Dis. Primers 2017, 3, 17011. [Google Scholar] [CrossRef] [PubMed]
- Parsons, A.; Hurt, M.A.; Sperling, L.C.; Cowper, S.E.; Knopp, E.A. An Atlas of Hair Pathology with Clinical Correlations, 2nd ed.; Informa Healthcare: New York, NY, USA; London, UK, 2012; Dermatology Practical Conceptual: 2013; pp. 47–50. [Google Scholar] [CrossRef]
- Zhou, C.; Li, X.; Wang, C.; Zhang, J. Alopecia Areata: An Update on Etiopathogenesis, Diagnosis, and Management. Clin. Rev. Allergy Immunol. 2021, 61, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Strazzulla, L.C.; Wang, E.H.C.; Avila, L.; Sicco, K.L.; Brinster, N.; Christiano, A.M.; Shapiro, J. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J. Am. Acad. Dermatol. 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Finner, A.M. Alopecia areata: Clinical presentation, diagnosis, and unusual cases. Dermatol. Ther. 2011, 24, 348–354. [Google Scholar] [CrossRef]
- Lee, H.H.; Gwillim, E.; Patel, K.R.; Hua, T.; Rastogi, S.; Ibler, E.; Silverberg, J.I. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2020, 82, 675–682. [Google Scholar] [CrossRef]
- Yang, S.; Yang, J.; Liu, J.B.; Wang, H.Y.; Yang, Q.; Gao, M.; Liang, Y.H.; Lin, G.S.; Lin, D.; Hu, X.L.; et al. The genetic epidemiology of alopecia areata in China. Br. J. Dermatol. 2004, 151, 16–23. [Google Scholar] [CrossRef]
- Muller, S.A.; Winkelmann, R.K. Alopecia Areata: An Evaluation of 736 Patients. Arch Dermatol. 1963, 88, 290–297. [Google Scholar] [CrossRef]
- Asz-Sigall, D.; Ortega-Springall, M.F.; Smith-Pliego, M.; Rodríguez-Lobato, E.; Martinez-Velasco, M.A.; Arenas, R.; Vincenzi, C.; Tosti, A. White hair in alopecia areata: Clinical forms and proposed physiopathologic mechanisms. J. Am. Acad. Dermatol. 2023, 89, 758–763. [Google Scholar] [CrossRef]
- García-Hernández, M.J.; Rodríguez-Pichardo, A. Multivariate analysis in alopecia areata: Risk factors and validity of clinical forms. Arch. Dermatol. 1999, 135, 998–999. [Google Scholar] [CrossRef]
- Sharma, V.K.; Dawn, G.; Muralidhar, S.; Kumar, B. Nail changes in 1000 Indian patients with alopecia areata. J. Eur. Acad. Dermatol. Venereol. 1998, 10, 189–191. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Lee, C.H.; Lee, W.-S. Comorbidities in alopecia areata: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2019, 80, 466–477.e16. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh, A.; Feizi, M.A.H.; Fanid, L.M.; Ghanbari, M.; Roshangar, L. Effects of Hyperthermia on TRPV1 and TRPV4 Channels Expression and Oxidative Markers in Mouse Brain. Cell Mol. Neurobiol. 2021, 41, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Kates, M.M.; Tuli, S. Complications of Contact Lenses. JAMA 2021, 325, 1912. [Google Scholar] [CrossRef] [PubMed]
- Meah, N.; Wall, D.; York, K.; Bhoyrul, B.; Bokhari, L.; Sigall, D.A.; Bergfeld, W.F.; Betz, R.C.; Blume-Peytavi, U.; Callender, V.; et al. The Alopecia Areata Consensus of Experts (ACE) study: Results of an international expert opinion on treatments for alopecia areata. J. Am. Acad. Dermatol. 2020, 83, 123–130. [Google Scholar] [CrossRef]
- Carrington, A.E.; Maloh, J.; Nong, Y.; Agbai, O.N.; Bodemer, A.A.; Sivamani, R.K. The Gut and Skin Microbiome in Alopecia: Associations and Interventions. J. Clin. Aesthet. Dermatol. 2023, 16, 59–64. [Google Scholar]
- Kobylarski, M.; Monsigny, L.; Thuéry, P.; Berthet, J.-C.; Cantat, T. Uranyl(VI) Triflate as Catalyst for the Meerwein-Ponndorf-Verley Reaction. Inorg. Chem. 2021, 60, 16140–16148. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, W.; Yang, C.; Wang, Z.; Zhang, J.; Xu, D.; Sun, X.; Sun, W. Emerging role of gut microbiota in autoimmune diseases. Front. Immunol. 2024, 15, 1365554. [Google Scholar] [CrossRef]
- Bai, B.; Ji, Z.; Wang, F.; Qin, C.; Zhou, H.; Li, D.; Wu, Y. CTRP12 ameliorates post-myocardial infarction heart failure through down-regulation of cardiac apoptosis, oxidative stress and inflammation by influencing the TAK1-p38 MAPK/JNK pathway. Inflamm. Res. 2023, 72, 1375–1390. [Google Scholar] [CrossRef]
- Bayram, D.; Aydin, V.; Sanli, A.; Abanoz, M.N.; Sibic, B.; Pala, S.; Atac, O.; Akici, A. Comparison of paracetamol and diclofenac prescribing preferences for adults in primary care. Prim. Health Care Res. Dev. 2021, 22, e78. [Google Scholar] [CrossRef]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.; Hoskin, M.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef]
- Triana, J.; Montagud, A.; Siurana, M.; Fuente, D.; Urchueguía, A.; Gamermann, D.; Torres, J.; Tena, J.; De Córdoba, P.F.; Urchueguía, J.F. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942. Metabolites 2014, 4, 680–698. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, S.; Hu, L.; Feng, S.; Wu, Z.; Liu, S.; Duan, S.; Chen, Z.; Zhou, C.; Zhao, X. Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats. Contrast Media Mol. Imaging 2019, 2019, 3687537. [Google Scholar] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Chung, J.; Battaglia, T.; Henderson, N.; Jay, M.; Li, H.; Lieber, A.D.; Wu, F.; Perez-Perez, G.I.; Chen, Y.; et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016, 8, 343ra82. [Google Scholar] [CrossRef]
- Di Pierro, F. Microbiota—Struttura e Traslazione; Edizioni Scripta Manent: Milan, Italy, 2022. [Google Scholar]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.-Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Korem, T.; Dohnalová, L.; Shapiro, H.; Jaitin, D.A.; David, E.; Winter, D.R.; Gury-BenAri, M.; Tatirovsky, E.; et al. Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell 2016, 167, 1495–1510.e12. [Google Scholar] [CrossRef]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef]
- Laterza, L.; Rizzatti, G.; Gaetani, E.; Chiusolo, P.; Gasbarrini, A. The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016025. [Google Scholar] [CrossRef] [PubMed]
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Ringel, Y.; Maharshak, N.; Ringel-Kulka, T.; Wolber, E.A.; Sartor, R.B.; Carroll, I.M. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Gut Microbes 2015, 6, 173–181. [Google Scholar] [CrossRef]
- Crovesy, L.; Masterson, D.; Rosado, E.L. Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr. 2020, 74, 1251–1262. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Gieryńska, M.; Szulc-Dąbrowska, L.; Struzik, J.; Mielcarska, M.B.; Gregorczyk-Zboroch, K.P. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota—A Mutual Relationship. Animals 2022, 12, 145. [Google Scholar] [CrossRef]
- Khosravi, A.; Mazmanian, S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 2013, 16, 221–227. [Google Scholar] [CrossRef]
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota—Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Severino, A.; Tohumcu, E.; Tamai, L.; Dargenio, P.; Porcari, S.; Rondinella, D.; Venturini, I.; Maida, M.; Gasbarrini, A.; Cammarota, G.; et al. The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Pract. Res. Clin. Gastroenterol. 2024, 72, 101923. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol. 2018, 9, 1853. [Google Scholar] [CrossRef]
- Levkovich, T.; Poutahidis, T.; Smillie, C.; Varian, B.J.; Ibrahim, Y.M.; Lakritz, J.R.; Alm, E.J.; Erdman, S.E. Probiotic Bacteria Induce a ‘Glow of Health’. PLoS ONE 2013, 8, e53867. [Google Scholar] [CrossRef]
- O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays 2016, 38, 1167–1176. [Google Scholar] [CrossRef]
- Mahmud, R.; Akter, S.; Tamanna, S.K.; Mazumder, L.; Esti, I.Z.; Banerjee, S.; Akter, S.; Hasan, R.; Acharjee, M.; Hossain, S.; et al. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022, 14, 2096995. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Slack, E.; Geuking, M.B.; McCoy, K.D. The mucosal firewalls against commensal intestinal microbes. Semin. Immunopathol. 2009, 31, 145–149. [Google Scholar] [CrossRef]
- Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, 69, 52–60. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013, 24, 160–168. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Ryguła, I.; Pikiewicz, W.; Grabarek, B.O.; Wójcik, M.; Kaminiów, K. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int. J. Mol. Sci. 2024, 25, 1984. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-y, M.; Glickman, J.N.; Garrett, W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Borde, A.; Åstrand, A. Alopecia areata and the gut—The link opens up for novel therapeutic interventions. Expert Opin. Ther. Targets 2018, 22, 503–511. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Sánchez-Pellicer, P.; Navarro-Moratalla, L.; Núñez-Delegido, E.; Agüera-Santos, J.; Navarro-López, V. How Our Microbiome Influences the Pathogenesis of Alopecia Areata. Genes 2022, 13, 1860. [Google Scholar] [CrossRef]
- Mu, Q.; Kirby, J.; Reilly, C.M.; Luo, X.M. Leaky Gut as a Danger Signal for Autoimmune Diseases. Front. Immunol. 2017, 8, 598. [Google Scholar] [CrossRef]
- Hacınecipoğlu, F.; Gönül, M.; Özdemir, Ş.; Demir, Ö.F. Is there a link between alopecia areata and gut? J. Cosmet. Dermatol. 2022, 21, 6049–6055. [Google Scholar] [CrossRef]
- Rafik, D.; Younis, I.; Atef, R.; Eid, H. Claudin-3 is a novel intestinal integrity marker in patients with alopecia areata: Correlation with the disease severity. J. Cosmet. Dermatol. 2023, 22, 1377–1381. [Google Scholar] [CrossRef]
- McElwee, K.J.; Niiyama, S.; Freyschmidt-Paul, P.; Wenzel, E.; Kissling, S.; Sundberg, J.P.; Hoffmann, R. Dietary soy oil content and soy-derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice. Exp. Dermatol. 2003, 12, 30–36. [Google Scholar] [CrossRef]
- Nair, L.; Dai, Z.; Christiano, A.M. 649 Gut microbiota plays a role in the development of alopecia areata. J. Investig. Dermatol. 2017, 137, S112. [Google Scholar] [CrossRef]
- Rebello, D.; Wang, E.; Yen, E.; Lio, P.A.; Kelly, C.R. Hair Growth in Two Alopecia Patients after Fecal Microbiota Transplant. ACG Case Rep. J. 2017, 4, e107. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.-R.; Yang, X.-Y.; Xia, H.H.-X.; Wu, L.-H.; He, X.-X. Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: A case report and review of the literature. World J. Clin. Cases 2019, 7, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Arrones, O.; Serrano-Villar, S.; Perez-Brocal, V.; Saceda-Corralo, D.; Morales-Raya, C.; Rodrigues-Barata, R.; Moya, A.; Jaen-Olasolo, P.; Vano-Galvan, S. Analysis of the gut microbiota in alopecia areata: Identification of bacterial biomarkers. Acad. Dermatol. Venereol. 2020, 34, 400–405. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, P.; Hu, R.; Qi, S.; Zhao, Y.; Miao, Y.; Han, Y.; Zhou, L.; Yang, Q. Gut microbiota characterization in Chinese patients with alopecia areata. J. Dermatol. Sci. 2021, 102, 109–115. [Google Scholar] [CrossRef]
- Rangu, S.; Lee, J.-J.; Hu, W.; Bittinger, K.; Castelo-Soccio, L. Understanding the Gut Microbiota in Pediatric Patients with Alopecia Areata and their Siblings: A Pilot Study. JID Innov. 2021, 1, 100051. [Google Scholar] [CrossRef]
- Lee, J.H.; Shin, J.H.; Kim, J.Y.; Ju, H.J.; Kim, G.M. Exploring the Role of Gut Microbiota in Patients with Alopecia Areata. Int. J. Mol. Sci. 2024, 25, 4256. [Google Scholar] [CrossRef]
- Nikoloudaki, O.; Pinto, D.; Albiac, M.A.; Celano, G.; Da Ros, A.; De Angelis, M.; Rinaldi, F.; Gobbetti, M.; Di Cagno, R. Exploring the Gut Microbiome and Metabolome in Individuals with Alopecia Areata Disease. Nutrients 2024, 16, 858. [Google Scholar] [CrossRef]
- Bi, D.; Tey, J.T.; Yao, D.; Cao, Y.; Qian, M.; Shi, J.; Guo, S. The causal relationship between gut microbiota and alopecia areata: A Mendelian randomization analysis. Front. Microbiol. 2024, 15, 1431646. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, L.; Song, X. Exploring the link between gut microbiota and alopecia areata: A two-sample Mendelian randomization analysis. Int. J. Dermatol. 2024, 63, 597–603. [Google Scholar] [CrossRef]
- Kimoto-Nira, H.; Suzuki, C.; Kobayashi, M.; Sasaki, K.; Kurisaki, J.-I.; Mizumachi, K. Anti-ageing effect of a lactococcal strain: Analysis using senescence-accelerated mice. Br. J. Nutr. 2007, 98, 1178–1186. [Google Scholar] [CrossRef]
Study | Country | Study Population | Control Population | Analysis Methodology | Quantitative Differences | Qualitative Differences |
---|---|---|---|---|---|---|
Moreno-Arrones 2020 [66] | Spain | 15 patients affected by alopecia universalis Mean age: 42.3 years. Disease duration > 6 months: 13 patients | 15 healthy controls Mean age: 37.9 years | 16SrRNA of stool samples | No significant differences in alpha and beta-diversity | Enriched presence of Holdemania filiformis, Erysipelotrichacea, Lachnospiraceae, Parabacteroides johnsonii, Clostridiales vadin BB60 group, Bacteroides eggerthii, and Parabacteroides distasonis |
Lu 2021 [67] | China | 33 patients affected by alopecia areata Mean age: 33.8 years | 35 healthy controls Mean age: 37.3 years | 16SrRNA of stool samples | No significant differences in alpha diversity | Enriched presence of Blautia, Anaerostipes, Erysipelotrichaceae (uncultured), Dorea, Collinsella, Megasphaera, and Achromobacter |
Rangu 2021 [68] | USA | 41 children with alopecia areata Age: 4–17 years | 41 healthy siblings Age: 4–17 years | Shotgun metagenomic sequencing of stool samples | No significant differences in alpha diversity | Decrease in relative abundance of Ruminococcus bicirculans |
Lee 2024 [69] | Korea | 19 patients affected by alopecia areata Mean age: 44.6 years Mean disease duration: 12 months | 20 healthy controls Mean age: 50.5 years | 16SrRNA of stool samples | No significant differences in alpha diversity | Enriched presence of Blautia, Dorea, Collinsella, Anaerostipes, and Eubacterium_g5; decrease in relative abundance of Ruminococcacae and Bacteroides |
Nikoloudaki 2024 [70] | Italy | 24 patients affected by alopecia areata Mean age: 40 years | 18 healthy controls Mean age: 45 years | 16SrRNA of stool samples | No significant differences in alpha diversity | Enriched presence of Firmicutes, Lachnospirales, and Blautia. Descrease in relative abundance of Coprococcus |
Study | Country | Protective Role | Causative Role |
---|---|---|---|
Bi 2024 [71] | China |
|
|
Xu 2024 [72] | China |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino, A.; Porcari, S.; Rondinella, D.; Capuano, E.; Rozera, T.; Kaitsas, F.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. The Multi-Faceted Role of Gut Microbiota in Alopecia Areata. Biomedicines 2025, 13, 1379. https://doi.org/10.3390/biomedicines13061379
Severino A, Porcari S, Rondinella D, Capuano E, Rozera T, Kaitsas F, Gasbarrini A, Cammarota G, Ianiro G. The Multi-Faceted Role of Gut Microbiota in Alopecia Areata. Biomedicines. 2025; 13(6):1379. https://doi.org/10.3390/biomedicines13061379
Chicago/Turabian StyleSeverino, Andrea, Serena Porcari, Debora Rondinella, Enrico Capuano, Tommaso Rozera, Francesco Kaitsas, Antonio Gasbarrini, Giovanni Cammarota, and Gianluca Ianiro. 2025. "The Multi-Faceted Role of Gut Microbiota in Alopecia Areata" Biomedicines 13, no. 6: 1379. https://doi.org/10.3390/biomedicines13061379
APA StyleSeverino, A., Porcari, S., Rondinella, D., Capuano, E., Rozera, T., Kaitsas, F., Gasbarrini, A., Cammarota, G., & Ianiro, G. (2025). The Multi-Faceted Role of Gut Microbiota in Alopecia Areata. Biomedicines, 13(6), 1379. https://doi.org/10.3390/biomedicines13061379