Liquid Biopsy Combined with Multi-Omics Approaches in Diagnosis, Management, and Progression of Diabetic Retinopathy
Abstract
:1. Introduction
2. Liquid Biopsy Techniques
2.1. Principles of Liquid Biopsy
2.2. Common Biofluid Sampling
3. Liquid Biopsy Proteomics in Diabetic Retinopathy
3.1. Serum Biomarkers
3.2. Vitreous Humor Biomarkers
3.3. Aqueous Humor Biomarkers
3.4. Tear Biomarkers
4. Liquid Biopsy Metabolomics in Diabetic Retinopathy
5. Insights into the Clinical Workflow of Liquid Biopsy for Diabetic Retinopathy
6. Advantages, Challenges and Future Perspectives
6.1. Advantages of Liquid Biopsy in Diabetic Retinopathy
6.2. Challenges and Current Limitations
6.3. Emerging Role of Artificial Intelligence
6.4. Clinical Validation and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DR | Diabetic retinopathy |
VEGF | Vascular endothelial growth factor |
MMPs | Matrix metalloproteinases |
DME | Diabetic macular edema |
PDR | Proliferative diabetic retinopathy |
AI | Artificial intelligence |
IR | Insulin resistance |
IL | Interleukin |
NPDR | Non-proliferative diabetic retinopathy |
MBL | Mannose-binding lectin |
MCP-1 | Monocyte chemoattractant protein-1 |
ICAM-1 | Intercellular adhesion molecule-1 |
VCAM-1 | Vascular adhesion molecule-1 |
IL-1RA | IL-1 receptor antagonist |
LXAA | Lipoxin A4 |
TIMPs | Tissue inhibitors of metalloproteinases |
T1DM | Type 1 diabetes |
PEDF | Pigment epithelium-derived factor |
AGEs | Advanced glycation end-products |
RAGE | Advanced glycation end-products |
HbA1C | Hemoglobin A1C |
PDGF | Platelet-derived growth factor |
RBP3 | Retinol-binding protein 3 |
AH | Aqueous humor |
ELISA | Enzyme-linked immunosorbent assay |
OCT | Optical coherence tomography |
OCTA | Optical coherence tomography angiography |
ERG | Electroretinogram |
FA | Fluorescein angiography |
FDR | Functional diabetic retinopathy |
ECM | Extracellular matrix |
References
- Ting, D.S.W.; Cheung, G.C.M.; Wong, T.Y. Diabetic Retinopathy: Global Prevalence, Major Risk Factors, Screening Practices and Public Health Challenges: A Review. Clin. Exp. Ophthalmol. 2016, 44, 260–277. [Google Scholar] [CrossRef]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global Causes of Blindness and Distance Vision Impairment 1990-2020: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Sabanayagam, C. Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence. Ophthalmologica 2020, 243, 9–20. [Google Scholar] [CrossRef]
- Shi, Q.; Zhao, Y.; Fonseca, V.; Krousel-Wood, M.; Shi, L. Racial Disparity of Eye Examinations among the U.S. Working-Age Population with Diabetes: 2002–2009. Diabetes Care 2014, 37, 1321–1328. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; de la Riva-Fernandez, S.; Valls-Mateu, A.; Sagarra-Alamo, R.; Moreno-Ribas, A.; Soler, N.; Puig, D. Cost of Diabetic Retinopathy and Macular Oedema in a Population, an Eight Year Follow Up. BMC Ophthalmol. 2016, 16, 136. [Google Scholar] [CrossRef]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology 2020, 127, P66–P145. [Google Scholar] [CrossRef]
- Vujosevic, S.; Bini, S.; Torresin, T.; Berton, M.; Midena, G.; Parrozzani, R.; Martini, F.; Pucci, P.; Daniele, A.R.; Cavarzeran, F.; et al. Hyperreflective Retinal Spots in Normal and Diabetic Eyes: B-Scan and En Face Spectral Domain Optical Coherence Tomography Evaluation. Retina 2017, 37, 1092–1103. [Google Scholar] [CrossRef]
- Nesper, P.L.; Roberts, P.K.; Onishi, A.C.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO307–BIO315. [Google Scholar] [CrossRef]
- The Early Treatment Diabetic Retinopathy Study Group. Focal Photocoagulation Treatment of Diabetic Macular Edema. Relationship of Treatment Effect to Fluorescein Angiographic and Other Retinal Characteristics at Baseline: ETDRS Report No. 19. Early Treatment Diabetic Retinopathy Study Research Group. Arch. Ophthalmol. 1995, 113, 1144–1155. [Google Scholar] [CrossRef]
- Li, H.; Jia, W.; Vujosevic, S.; Sabanayagam, C.; Grauslund, J.; Sivaprasad, S.; Wong, T.Y. Current Research and Future Strategies for the Management of Vision-Threatening Diabetic Retinopathy. Asia Pac. J. Ophthalmol. 2024, 13, 100109. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Tham, Y.-C.; Yu, M.; Cheng, C.-Y.; Wong, T.Y.; Sabanayagam, C. Do We Have Enough Ophthalmologists to Manage Vision-Threatening Diabetic Retinopathy? A Global Perspective. Eye 2020, 34, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.M. Retinal Neurodegeneration in Diabetes: An Emerging Concept in Diabetic Retinopathy. Curr. Diab. Rep. 2021, 21, 65. [Google Scholar] [CrossRef]
- Rai, B.B.; Maddess, T.; Carle, C.F.; Rohan, E.M.F.; van Kleef, J.P.; Barry, R.C.; Essex, R.W.; Nolan, C.J.; Sabeti, F. Comparing Objective Perimetry, Matrix Perimetry, and Regional Retinal Thickness in Mild Diabetic Macular Edema. Transl. Vis. Sci. Technol. 2021, 10, 32. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.B.; Garvin, M.K.; Sonka, M.; Lee, K.; Devries, J.H.; Michels, R.P.J.; van Velthoven, M.E.J.; Schlingemann, R.O.; et al. Decreased Retinal Ganglion Cell Layer Thickness in Patients with Type 1 Diabetes. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3660–3665. [Google Scholar] [CrossRef]
- Mehboob, M.A.; Amin, Z.A.; Islam, Q.U. Comparison of Retinal Nerve Fiber Layer Thickness between Normal Population and Patients with Diabetes Mellitus Using Optical Coherence Tomography. Pak. J. Med. Sci. 2019, 35, 29–33. [Google Scholar] [CrossRef]
- Lopes de Faria, J.M.; Russ, H.; Costa, V.P. Retinal Nerve Fibre Layer Loss in Patients with Type 1 Diabetes Mellitus without Retinopathy. Br. J. Ophthalmol. 2002, 86, 725–728. [Google Scholar] [CrossRef]
- Glassman, A.R.; Elmasry, M.A.; Baskin, D.E.; Brigell, M.; Chong, V.; Davis, Q.; Lesmes, L.; Levin, L.A.; Maddess, T.; Taylor, L.J.; et al. Visual Function Measurements in Eyes With Diabetic Retinopathy: An Expert Opinion on Available Measures. Ophthalmol. Sci. 2024, 4, 100519. [Google Scholar] [CrossRef]
- Rai, B.B.; Maddess, T.; Nolan, C.J. Functional Diabetic Retinopathy: A New Concept to Improve Management of Diabetic Retinal Diseases. Surv. Ophthalmol. 2025, 70, 232–240. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; PramodKumar, T.A.; Naziyagulnaaz, A.S.; Anjana, R.M.; Raman, R.; Manikandan, S.; Mohan, V. Leveraging Artificial Intelligence for Diabetic Retinopathy Screening and Management: History and Current Advances. In Seminars in Ophthalmology; Taylor & Francis: Abingdon, UK, 2024; pp. 1–8. [Google Scholar]
- Wolf, J.; Franco, J.A.; Yip, R.; Dabaja, M.Z.; Velez, G.; Liu, F.; Bassuk, A.G.; Mruthyunjaya, P.; Dufour, A.; Mahajan, V.B. Liquid Biopsy Proteomics in Ophthalmology. J. Proteome Res. 2024, 23, 511. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid Biopsy in Cancer: Current Status, Challenges and Future Prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Zhang, H.; Cao, H.; Mao, J.; Chen, X.; Wang, L.; Zhang, N.; Luo, P.; Xue, J.; et al. Liquid Biopsy for Human Cancer: Cancer Screening, Monitoring, and Treatment. MedComm 2024, 5, e564. [Google Scholar] [CrossRef] [PubMed]
- Osop, H.; Xu, H.Y.; Fu, X. A Review of Approaches in the Development of Risk Stratification Models for Diabetic Patients at Risk of Vascular Complications. IFAC-PapersOnLine 2022, 55, 1631–1638. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Circulating Tumour Cells in Cancer Patients: Challenges and Perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; García Hernández, J.L.; García, A.C.; Córdova Martínez, A.; Mielgo-Ayuso, J.; Cruz-Hernández, J.J. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics 2020, 10, 215. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Lin, H.; Zhu, Y.; Huang, D.; Lai, M.; Xi, X.; Huang, J.; Zhang, W.; Zhong, T. Research Progress of CTC, ctDNA, and EVs in Cancer Liquid Biopsy. Front. Oncol. 2024, 14, 1303335. [Google Scholar] [CrossRef]
- Simó, R.; Villarroel, M.; Corraliza, L.; Hernández, C.; Garcia-Ramírez, M. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy. J. Biomed. Biotechnol. 2010, 2010, 190724. [Google Scholar] [CrossRef]
- Wolf, J.; Chemudupati, T.; Kumar, A.; Rasmussen, D.K.; Wai, K.M.; Chang, R.T.; Montague, A.A.; Tang, P.H.; Bassuk, A.G.; Dufour, A.; et al. Biobanking of Human Aqueous and Vitreous Liquid Biopsies for Molecular Analyses. J. Vis. Exp. 2023, 199, e65804. [Google Scholar] [CrossRef]
- Zhou, L.; Beuerman, R.W. Tear Analysis in Ocular Surface Diseases. Prog. Retin. Eye Res. 2012, 31, 527–550. [Google Scholar] [CrossRef]
- Bachhuber, F.; Huss, A.; Senel, M.; Tumani, H. Diagnostic Biomarkers in Tear Fluid: From Sampling to Preanalytical Processing. Sci. Rep. 2021, 11, 10064. [Google Scholar] [CrossRef]
- Pieczyński, J.; Szulc, U.; Harazna, J.; Szulc, A.; Kiewisz, J. Tear Fluid Collection Methods: Review of Current Techniques. Eur. J. Ophthalmol. 2021, 31, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, C.; Wang, X.; Mou, Y.; Yuan, K.; Huang, X.; Jin, X. Advances in Dry Eye Disease Examination Techniques. Front. Med. 2021, 8, 826530. [Google Scholar] [CrossRef] [PubMed]
- Markoulli, M.; Papas, E.; Petznick, A.; Holden, B. Validation of the Flush Method as an Alternative to Basal or Reflex Tear Collection. Curr. Eye Res. 2011, 36, 198–207. [Google Scholar] [CrossRef]
- Ablamowicz, A.F.; Nichols, J.J. Concentrations of MUC16 and MUC5AC Using Three Tear Collection Methods. Mol. Vis. 2017, 23, 529–537. [Google Scholar]
- Lam, S.M.; Tong, L.; Duan, X.; Petznick, A.; Wenk, M.R.; Shui, G. Extensive Characterization of Human Tear Fluid Collected Using Different Techniques Unravels the Presence of Novel Lipid Amphiphiles. J. Lipid Res. 2014, 55, 289–298. [Google Scholar] [CrossRef]
- López-Cisternas, J.; Castillo-Díaz, J.; Traipe-Castro, L.; López-Solís, R.O. Use of Polyurethane Minisponges to Collect Human Tear Fluid. Cornea 2006, 25, 312–318. [Google Scholar] [CrossRef]
- Esmaeelpour, M.; Cai, J.; Watts, P.; Boulton, M.; Murphy, P.J. Tear Sample Collection Using Cellulose Acetate Absorbent Filters. Ophthalmic Physiol. Opt. 2008, 28, 577–583. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.-P. Applications of Multi-Omics Analysis in Human Diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Fucito, M.; Spedicato, M.; Felletti, S.; Yu, A.C.; Busin, M.; Pasti, L.; Franchina, F.A.; Cavazzini, A.; De Luca, C.; Catani, M. A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research. ACS Meas. Sci. Au 2024, 4, 247–259. [Google Scholar] [CrossRef]
- Khanna, R.K.; Catanese, S.; Emond, P.; Corcia, P.; Blasco, H.; Pisella, P.J. Metabolomics and Lipidomics Approaches in Human Tears: A Systematic Review. Surv. Ophthalmol. 2022, 67, 1229–1243. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Xia, Z.; Feng, S.; Zhang, H.; Xu, C.; Zhang, H. Serum Biomarkers for Predicting Microvascular Complications of Diabetes Mellitus. Expert. Rev. Mol. Diagn. 2024, 24, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Simó, R. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO68–BIO75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hu, H.; Zhang, L.; Liu, Z.; Huang, Y.; Liu, Q.; Jin, L.; Zhu, M.; Zhang, L. Inflammation in Diabetes Complications: Molecular Mechanisms and Therapeutic Interventions. MedComm 2024, 5, e516. [Google Scholar] [CrossRef] [PubMed]
- Doganay, S.; Evereklioglu, C.; Er, H.; Türköz, Y.; Sevinç, A.; Mehmet, N.; Savli, H. Comparison of Serum NO, TNF-Alpha, IL-1beta, sIL-2R, IL-6 and IL-8 Levels with Grades of Retinopathy in Patients with Diabetes Mellitus. Eye 2002, 16, 163–170. [Google Scholar] [CrossRef]
- Vos, S.; Aaron, R.; Weng, M.; Daw, J.; Rodriguez-Rivera, E.; Subauste, C.S. CD40 Upregulation in the Retina of Patients With Diabetic Retinopathy: Association With TRAF2/TRAF6 Upregulation and Inflammatory Molecule Expression. Investig. Ophthalmol. Vis. Sci. 2023, 64, 17. [Google Scholar] [CrossRef]
- Portillo, J.-A.C.; Pfaff, A.; Vos, S.; Weng, M.; Nagaraj, R.H.; Subauste, C.S. Advanced Glycation End Products Upregulate CD40 in Human Retinal Endothelial and Müller Cells: Relevance to Diabetic Retinopathy. Cells 2024, 13, 429. [Google Scholar] [CrossRef]
- Lamine, L.B.; Turki, A.; Al-Khateeb, G.; Sellami, N.; Amor, H.B.; Sarray, S.; Jailani, M.; Ghorbel, M.; Mahjoub, T.; Almawi, W.Y. Elevation in Circulating Soluble CD40 Ligand Concentrations in Type 2 Diabetic Retinopathy and Association with Its Severity. Exp. Clin. Endocrinol. Diabetes 2020, 128, 319–324. [Google Scholar] [CrossRef]
- Dias, P.B.; Messias-Reason, I.; Hokazono, K.; Nisihara, R. The Role of Mannose-Binding Lectin (MBL) in Diabetic Retinopathy: A Scoping Review. Immunol. Lett. 2024, 267, 106863. [Google Scholar] [CrossRef]
- Geng, P.; Ding, Y.; Qiu, L.; Lu, Y. Serum Mannose-Binding Lectin Is a Strong Biomarker of Diabetic Retinopathy in Chinese Patients with Diabetes. Diabetes Care 2015, 38, 868–875. [Google Scholar] [CrossRef]
- Hokazono, K.; Belizário, F.S.; Portugal, V.; Messias-Reason, I.; Nisihara, R. Mannose Binding Lectin and Pentraxin 3 in Patients with Diabetic Retinopathy. Arch. Med. Res. 2018, 49, 123–129. [Google Scholar] [CrossRef]
- Huang, Q.; Shang, G.; Deng, H.; Liu, J.; Mei, Y.; Xu, Y. High Mannose-Binding Lectin Serum Levels Are Associated with Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes. PLoS ONE 2015, 10, e0130665. [Google Scholar] [CrossRef] [PubMed]
- Man, X.; Zhang, H.; Yu, H.; Ma, L.; Du, J. Increased Serum Mannose Binding Lectin Levels Are Associated with Diabetic Retinopathy. J. Diabetes Complicat. 2015, 29, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Dahiya, R.; Nandave, M.; Sharma, K.; Goyal, R.K. Unveiling the Crucial Role of Intercellular Adhesion Molecule-1 in Secondary Diabetic Complications. Cell Biochem. Funct. 2024, 42, e4037. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, J. Relationship among Serum Homocysteine, Intercellular Adhesion Molecule-1, Monocyte Chemoattractant Protein-1, and Visual Impairment in Diabetic Macular Edema. J. Coll. Physicians Surg. Pak. 2022, 32, 57–60. [Google Scholar]
- Siddiqui, K.; George, T.P.; Mujammami, M.; Isnani, A.; Alfadda, A.A. The Association of Cell Adhesion Molecules and Selectins (VCAM-1, ICAM-1, E-Selectin, L-Selectin, and P-Selectin) with Microvascular Complications in Patients with Type 2 Diabetes: A Follow-up Study. Front. Endocrinol. 2023, 14, 1072288. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Z.; Liu, L.; Li, T.; Xing, C.; Han, F.; Mao, H. Causal Effects of Oxidative Stress on Diabetes Mellitus and Microvascular Complications: Insights Integrating Genome-Wide Mendelian Randomization, DNA Methylation, and Proteome. Antioxidants 2024, 13, 903. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, H.; Zhao, L. The Role of VCAM-1 in Diabetic Retinopathy: A Systematic Review and Meta-Analysis. J. Diabetes Complicat. 2023, 37, 108380. [Google Scholar] [CrossRef]
- van Hecke, M.V.; Dekker, J.M.; Nijpels, G.; Moll, A.C.; Heine, R.J.; Bouter, L.M.; Polak, B.C.P.; Stehouwer, C.D.A. Inflammation and Endothelial Dysfunction Are Associated with Retinopathy: The Hoorn Study. Diabetologia 2005, 48, 1300–1306. [Google Scholar] [CrossRef]
- Ekelund, C.; Dereke, J.; Nilsson, C.; Landin-Olsson, M. Are Soluble E-Selectin, ICAM-1, and VCAM-1 Potential Predictors for the Development of Diabetic Retinopathy in Young Adults, 15-34 Years of Age? A Swedish Prospective Cohort Study. PLoS ONE 2024, 19, e0304173. [Google Scholar] [CrossRef]
- Ballak, D.B.; Stienstra, R.; Tack, C.J.; Dinarello, C.A.; Diepen, J.A. van IL-1 Family Members in the Pathogenesis and Treatment of Metabolic Disease: Focus on Adipose Tissue Inflammation and Insulin Resistance. Cytokine 2015, 75, 280. [Google Scholar] [CrossRef]
- Hang, H.; Yuan, S.; Yang, Q.; Yuan, D.; Liu, Q. Multiplex Bead Array Assay of Plasma Cytokines in Type 2 Diabetes Mellitus with Diabetic Retinopathy. Mol. Vis. 2014, 20, 1137–1145. [Google Scholar] [PubMed]
- Chatziralli, I.; Sergentanis, T.N.; Crosby-Nwaobi, R.; Winkley, K.; Eleftheriadis, H.; Ismail, K.; Amiel, S.A.; Sivaprasad, S. Model for Risk-Based Screening of Diabetic Retinopathy in People With Newly-Diagnosed Type 2 Diabetes Mellitus. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO99–BIO105. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Hamberg, M.; Samuelsson, B. Lipoxins: Novel Series of Biologically Active Compounds Formed from Arachidonic Acid in Human Leukocytes. Proc. Natl. Acad. Sci. USA 1984, 81, 5335–5339. [Google Scholar] [CrossRef] [PubMed]
- Kaviarasan, K.; Jithu, M.; Arif Mulla, M.; Sharma, T.; Sivasankar, S.; Das, U.N.; Angayarkanni, N. Low Blood and Vitreal BDNF, LXA4 and Altered Th1/Th2 Cytokine Balance Are Potential Risk Factors for Diabetic Retinopathy. Metabolism 2015, 64, 958–966. [Google Scholar] [CrossRef]
- Serhan, C.N. Lipoxins and Aspirin-Triggered 15-Epi-Lipoxins Are the First Lipid Mediators of Endogenous Anti-Inflammation and Resolution. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 141–162. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic Vascular Diseases: Molecular Mechanisms and Therapeutic Strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef]
- Abu-Yaghi, N.E.; Abu Tarboush, N.M.; Abojaradeh, A.M.; Al-Akily, A.S.; Abdo, E.M.; Emoush, L.O. Relationship between Serum Vascular Endothelial Growth Factor Levels and Stages of Diabetic Retinopathy and Other Biomarkers. J. Ophthalmol. 2020, 2020, 8480193. [Google Scholar] [CrossRef]
- Hu, W.; Wang, R.; Li, J.; Zhang, J.; Wang, W. Association of Irisin Concentrations with the Presence of Diabetic Nephropathy and Retinopathy. Ann. Clin. Biochem. 2016, 53, 67–74. [Google Scholar] [CrossRef]
- Whitehead, M.; Osborne, A.; Widdowson, P.S.; Yu-Wai-Man, P.; Martin, K.R. Angiopoietins in Diabetic Retinopathy: Current Understanding and Therapeutic Potential. J. Diabetes Res. 2019, 2019, 5140521. [Google Scholar] [CrossRef]
- Khalaf, N.; Helmy, H.; Labib, H.; Fahmy, I.; El Hamid, M.A.; Moemen, L. Role of Angiopoietins and Tie-2 in Diabetic Retinopathy. Electron. Physician 2017, 9, 5031–5035. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, J.; Niu, T.; Xing, X.; Wang, H.; Shi, X.; Liu, Y.; Liu, X.; Chen, C.; Liu, K. Serum Ang-1/Ang-2 Ratio May Be a Promising Biomarker for Evaluating Severity of Diabetic Retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Sayed, K.M.; Mahmoud, A.A. Heat Shock Protein-70 and Hypoxia Inducible Factor-1α in Type 2 Diabetes Mellitus Patients Complicated with Retinopathy. Acta Ophthalmol. 2016, 94, e361–e366. [Google Scholar] [CrossRef] [PubMed]
- Davidović, S.; Babić, N.; Jovanović, S.; Barišić, S.; Grković, D.; Miljković, A. Serum Erythropoietin Concentration and Its Correlation with Stage of Diabetic Retinopathy. BMC Ophthalmol. 2019, 19, 227. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front. Endocrinol. 2022, 13, 816400. [Google Scholar] [CrossRef]
- Salzmann, J.; Limb, G.A.; Khaw, P.T.; Gregor, Z.J.; Webster, L.; Chignell, A.H.; Charteris, D.G. Matrix Metalloproteinases and Their Natural Inhibitors in Fibrovascular Membranes of Proliferative Diabetic Retinopathy. Br. J. Ophthalmol. 2000, 84, 1091–1096. [Google Scholar] [CrossRef]
- Hector, S.; Thulesius, H.O.; Thunander, M.; Hillman, M.; Landin-Olsson, M.; Melin, E.O. Plasma Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases Explored in Relation to the Severity and Progression of Diabetic Retinopathy in Patients with Type 1 Diabetes: Baseline and Prospective Analyses. BMJ Open Ophthalmol. 2024, 9, e001583. [Google Scholar] [CrossRef]
- Gaonkar, B.; Prabhu, K.; Rao, P.; Kamat, A.; Rao Addoor, K.; Varma, M. Plasma Angiogenesis and Oxidative Stress Markers in Patients with Diabetic Retinopathy. Biomarkers 2020, 25, 397–401. [Google Scholar] [CrossRef]
- Ritu; Goyal, R.K.; Narwal, S.; Bhatt, A.; Sehrawat, R.; Devi, P.; Gulati, M.; Singla, R.K. Role of MMP-9 and NF-κB in Diabetic Retinopathy: Progression and Potential Role of Bioflavonoids in the Mitigation of Diabetic Retinopathy. Curr. Med. Chem. 2024, 32, 4992–5007. [Google Scholar]
- Toni, M.; Hermida, J.; Goñi, M.J.; Fernández, P.; Parks, W.C.; Toledo, E.; Montes, R.; Díez, N. Matrix Metalloproteinase-10 Plays an Active Role in Microvascular Complications in Type 1 Diabetic Patients. Diabetologia 2013, 56, 2743–2752. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Gao, S.; Li, N.; Huang, H.; Liu, X.; Yao, H.; Shen, X. Pigment Epithelium-Derived Factor Exerts Neuroprotection in Oxygen-Induced Retinopathy by Targeting Endoplasmic Reticulum Stress and Oxidative Stress. Exp. Eye Res. 2024, 249, 110147. [Google Scholar] [CrossRef]
- Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Beisswenger, P.J.; Makita, Z.; Curphey, T.J.; Moore, L.L.; Jean, S.; Brinck-Johnsen, T.; Bucala, R.; Vlassara, H. Formation of Immunochemical Advanced Glycosylation End Products Precedes and Correlates with Early Manifestations of Renal and Retinal Disease in Diabetes. Diabetes 1995, 44, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Zhengran, L.; Yingli, L.; Tong, W.; Liyang, C.; Xi, G.; Xiongyi, Y.; Mingzhe, C.; Guoguo, Y. The Contribution of Adiponectin to Diabetic Retinopathy Progression: Association with the AGEs-RAGE Pathway. Heliyon 2024, 10, e36111. [Google Scholar] [CrossRef]
- Dong, N.; Shi, H.; Xu, B.; Cai, Y. Increased Plasma S100A12 Levels Are Associated With Diabetic Retinopathy and Prognostic Biomarkers of Macrovascular Events in Type 2 Diabetic Patients. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4177–4185. [Google Scholar] [CrossRef]
- Setareh, J.; Hoseinzade, G.; Khoundabi, B.; Kamali, M.; Ebrahimi, A.; Fazlollahpour-Naghibi, A.; Zareei, M.; Mohamaditabar, M.; Makaremi, A. Can the Level of HbA1C Predict Diabetic Retinopathy among Type II Diabetic Patients? BMC Ophthalmol. 2022, 22, 415. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Pettitt, D.J.; Hanson, R.L.; Charles, M.A.; Klein, R.; Bennett, P.H.; Knowler, W.C. Glycated Haemoglobin, Plasma Glucose and Diabetic Retinopathy: Cross-Sectional and Prospective Analyses. Diabetologia 1993, 36, 428–432. [Google Scholar] [CrossRef]
- Merchant, M.L.; Klein, J.B. Proteomics and Diabetic Retinopathy. Clin. Lab. Med. 2009, 29, 139–149. [Google Scholar] [CrossRef]
- Semeraro, F.; Morescalchi, F.; Cancarini, A.; Russo, A.; Rezzola, S.; Costagliola, C. Diabetic Retinopathy, a Vascular and Inflammatory Disease: Therapeutic Implications. Diabetes Metab. 2019, 45, 517–527. [Google Scholar] [CrossRef]
- Trotta, M.C.; Gesualdo, C.; Petrillo, F.; Lepre, C.C.; Della Corte, A.; Cavasso, G.; Maggiore, G.; Hermenean, A.; Simonelli, F.; D’Amico, M.; et al. Resolution of Inflammation in Retinal Disorders: Briefly the State. Int. J. Mol. Sci. 2022, 23, 4501. [Google Scholar] [CrossRef]
- Tang, L.; Xu, G.-T.; Zhang, J.-F. Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regen. Res. 2023, 18, 976–982. [Google Scholar]
- Zeng, Y.; Cao, D.; Yu, H.; Hu, Y.; He, M.; Yang, D.; Zhuang, X.; Zhang, L. Comprehensive Analysis of Vitreous Humor Chemokines in Type 2 Diabetic Patients with and without Diabetic Retinopathy. Acta Diabetol. 2019, 56, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Phone, A.; Lamy, R.; Ma, D.; Laotaweerungsawat, S.; Chen, Y.; Zhao, T.; Ma, W.; Zhang, F.; Psaras, C.; et al. Correlation of Aqueous, Vitreous, and Plasma Cytokine Levels in Patients With Proliferative Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 26. [Google Scholar] [CrossRef] [PubMed]
- Funk, M.; Schmidinger, G.; Maar, N.; Bolz, M.; Benesch, T.; Zlabinger, G.J.; Schmidt-Erfurth, U.M. Angiogenic and Inflammatory Markers in the Intraocular Fluid of Eyes with Diabetic Macular Edema and Influence of Therapy with Bevacizumab. Retina 2010, 30, 1412–1419. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Xie, R.; Wang, J.; Zhang, W.; Jiang, F.; Du, M.; Wang, X.; Huang, B.; Brant, R.; et al. Intraocular Tumour Necrosis Factor Ligand Related Molecule 1 A Links Disease Progression of Proliferative Diabetic Retinopathy after Primary Vitrectomy. Clin. Exp. Pharmacol. Physiol. 2020, 47, 966–976. [Google Scholar] [CrossRef]
- Loporchio, D.F.; Tam, E.K.; Cho, J.; Chung, J.; Jun, G.R.; Xia, W.; Fiorello, M.G.; Siegel, N.H.; Ness, S.; Stein, T.D.; et al. Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells 2021, 10, 1069. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; Ahmad, A.; Siddiquei, M.M.; De Zutter, A.; Allegaert, E.; Gikandi, P.W.; De Hertogh, G.; Van Damme, J.; Opdenakker, G.; Struyf, S. The Proinflammatory and Proangiogenic Macrophage Migration Inhibitory Factor Is a Potential Regulator in Proliferative Diabetic Retinopathy. Front. Immunol. 2019, 10, 2752. [Google Scholar] [CrossRef]
- Bromberg-White, J.L.; Glazer, L.; Downer, R.; Furge, K.; Boguslawski, E.; Duesbery, N.S. Identification of VEGF-Independent Cytokines in Proliferative Diabetic Retinopathy Vitreous. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6472–6480. [Google Scholar] [CrossRef]
- Taghavi, Y.; Hassanshahi, G.; Kounis, N.G.; Koniari, I.; Khorramdelazad, H. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) in Diabetic Retinopathy: Latest Evidence and Clinical Considerations. J. Cell Commun. Signal. 2019, 13, 451–462. [Google Scholar] [CrossRef]
- Al-Dwairi, R.; El-Elimat, T.; Aleshawi, A.; Al Sharie, A.H.; Abu Mousa, B.M.; Al Beiruti, S.; Alkazaleh, A.; Mohidat, H. Vitreous Levels of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor in Patients with Proliferative Diabetic Retinopathy: A Clinical Correlation. Biomolecules 2023, 13, 1630. [Google Scholar] [CrossRef]
- Suzuki, Y.; Suzuki, K.; Kudo, T.; Metoki, T.; Nakazawa, M. Level of Vascular Endothelial Growth Factor in the Vitreous Fluid of Proliferative Diabetic Retinopathy Patients and Prognosis after Vitrectomy. Ophthalmologica 2016, 236, 133–138. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Jiang, F.; You, C.; Mao, C.; Yu, J.; Han, J.; Zhang, Z.; Yan, H. Vitreous and Plasma VEGF Levels as Predictive Factors in the Progression of Proliferative Diabetic Retinopathy after Vitrectomy. PLoS ONE 2014, 9, e110531. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-J.; Ma, Z.-Z.; Li, Y.; Wang, C.-G. Change of Vascular Endothelial Growth Factor Levels Following Vitrectomy in Eyes with Proliferative Diabetic Retinopathy. J. Ophthalmol. 2019, 2019, 6764932. [Google Scholar] [CrossRef] [PubMed]
- El-Asrar, A.M.A.; Mohammad, G.; Nawaz, M.I.; Siddiquei, M.M.; Eynde, K.V.d.; Mousa, A.; Hertogh, G.D.; Opdenakker, G. Relationship between Vitreous Levels of Matrix Metalloproteinases and Vascular Endothelial Growth Factor in Proliferative Diabetic Retinopathy. PLoS ONE 2013, 8, e85857. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.; Zhu, R.; Zhao, R.; Chen, J.; Jin, J.; Tian, Y.; Su, S.B. The Profile of Angiogenic Factors in Vitreous Humor of the Patients with Proliferative Diabetic Retinopathy. Curr. Mol. Med. 2017, 17, 280–286. [Google Scholar] [CrossRef]
- Zarbin, M.; Tabano, D.; Ahmed, A.; Amador, M.; Ding, A.; Holekamp, N.; Lu, X.-Y.; Stoilov, I.; Yang, M. Efficacy of Faricimab versus Aflibercept in Diabetic Macular Edema in the 20/50 or Worse Vision Subgroup in Phase III YOSEMITE and RHINE Trials. Ophthalmology 2024, 131, 1258–1270. [Google Scholar] [CrossRef]
- Loukovaara, S.; Koivunen, P.; Inglés, M.; Escobar, J.; Vento, M.; Andersson, S. Elevated Protein Carbonyl and HIF-1α Levels in Eyes with Proliferative Diabetic Retinopathy. Acta Ophthalmol. 2014, 92, 323–327. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Balaiya, S.; Zhou, Z.; Chalam, K.V. Characterization of Vitreous and Aqueous Proteome in Humans With Proliferative Diabetic Retinopathy and Its Clinical Correlation. Proteom. Insights 2017, 8, 1178641816686078. [Google Scholar] [CrossRef]
- García-Ramírez, M.; Canals, F.; Hernández, C.; Colomé, N.; Ferrer, C.; Carrasco, E.; García-Arumí, J.; Simó, R. Proteomic Analysis of Human Vitreous Fluid by Fluorescence-Based Difference Gel Electrophoresis (DIGE): A New Strategy for Identifying Potential Candidates in the Pathogenesis of Proliferative Diabetic Retinopathy. Diabetologia 2007, 50, 1294–1303. [Google Scholar] [CrossRef]
- Ebrahem, Q.; Chaurasia, S.S.; Vasanji, A.; Qi, J.H.; Klenotic, P.A.; Cutler, A.; Asosingh, K.; Erzurum, S.; Anand-Apte, B. Cross-Talk between Vascular Endothelial Growth Factor and Matrix Metalloproteinases in the Induction of Neovascularization in Vivo. Am. J. Pathol. 2010, 176, 496–503. [Google Scholar] [CrossRef]
- Ünal, A.; Baykal, O.; Öztürk, N. Comparison of Matrix Metalloproteinase 9 and 14 Levels in Vitreous Samples in Diabetic and Non-Diabetic Patients: A Case Control Study. Int. J. Retina Vitreous 2022, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Deuchler, S.; Schubert, R.; Singh, P.; Chedid, A.; Brui, N.; Kenikstul, N.; Kohnen, T.; Ackermann, H.; Koch, F. Vitreous Expression of Cytokines and Growth Factors in Patients with Diabetic Retinopathy-An Investigation of Their Expression Based on Clinical Diabetic Retinopathy Grade. PLoS ONE 2021, 16, e0248439. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, V.; Gessa, L.; Kumar, N.; Fernandes, H. Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int. J. Mol. Sci. 2023, 24, 4408. [Google Scholar] [CrossRef]
- Simó, R.; Hernández, C. European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) Neurodegeneration in the Diabetic Eye: New Insights and Therapeutic Perspectives. Trends Endocrinol. Metab. 2014, 25, 23–33. [Google Scholar] [CrossRef]
- Fickweiler, W.; Park, H.; Park, K.; Mitzner, M.G.; Chokshi, T.; Boumenna, T.; Gautier, J.; Zaitsu, Y.; Wu, I.-H.; Cavallerano, J.; et al. Elevated Retinol Binding Protein 3 Concentrations Are Associated With Decreased Vitreous Inflammatory Cytokines, VEGF, and Progression of Diabetic Retinopathy. Diabetes Care 2022, 45, 2159–2162. [Google Scholar] [CrossRef]
- Yokomizo, H.; Maeda, Y.; Park, K.; Clermont, A.C.; Hernandez, S.L.; Fickweiler, W.; Li, Q.; Wang, C.-H.; Paniagua, S.M.; Simao, F.; et al. Retinol Binding Protein 3 Is Increased in the Retina of Patients with Diabetes Resistant to Diabetic Retinopathy. Sci. Transl. Med. 2019, 11, eaau6627. [Google Scholar] [CrossRef]
- Fickweiler, W.; Chokshi, T.; Jangolla, S.; Mitzner, M.; Wu, I.-H.; Park, H.; Park, K.; Aiello, L.P.; Sun, J.; King, G.L. Clinical Characterization of Aqueous and Vitreous Retinol-Binding Protein 3 Concentrations in Relation to Diabetic Retinopathy Severity, Retinal Structures, and Systemic Complications. Retina 2024, 44, 1026. [Google Scholar] [CrossRef]
- Wolf, J.; Rasmussen, D.K.; Sun, Y.J.; Vu, J.T.; Wang, E.; Espinosa, C.; Bigini, F.; Chang, R.T.; Montague, A.A.; Tang, P.H.; et al. Liquid-Biopsy Proteomics Combined with AI Identifies Cellular Drivers of Eye Aging and Disease in Vivo. Cell 2023, 186, 4868–4884.e12. [Google Scholar] [CrossRef]
- Chowdhury, U.R.; Madden, B.J.; Charlesworth, M.C.; Fautsch, M.P. Proteome Analysis of Human Aqueous Humor. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4921–4931. [Google Scholar] [CrossRef]
- Midena, E.; Frizziero, L.; Midena, G.; Pilotto, E. Intraocular Fluid Biomarkers (Liquid Biopsy) in Human Diabetic Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 3549. [Google Scholar] [CrossRef]
- Tashimo, A.; Mitamura, Y.; Nagai, S.; Nakamura, Y.; Ohtsuka, K.; Mizue, Y.; Nishihira, J. Aqueous Levels of Macrophage Migration Inhibitory Factor and Monocyte Chemotactic Protein-1 in Patients with Diabetic Retinopathy. Diabet. Med. 2004, 21, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.K.; Kim, S.-W.; Oh, J.; Lee, T.S.; Huh, K. Inflammatory and Angiogenic Factors in the Aqueous Humor and the Relationship to Diabetic Retinopathy. Curr. Eye Res. 2010, 35, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Liao, N.; Wen, F. Assessment of Biomarkers Using Multiplex Assays in Aqueous Humor of Patients with Diabetic Retinopathy. BMC Ophthalmol. 2017, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Funatsu, H.; Yamashita, H.; Noma, H.; Mimura, T.; Nakamura, S.; Sakata, K.; Hori, S. Aqueous Humor Levels of Cytokines Are Related to Vitreous Levels and Progression of Diabetic Retinopathy in Diabetic Patients. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 243, 3–8. [Google Scholar] [CrossRef]
- Saucedo, L.; Pfister, I.B.; Zandi, S.; Gerhardt, C.; Garweg, J.G. Ocular TGF-β, Matrix Metalloproteinases, and TIMP-1 Increase with the Development and Progression of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Mediat. Inflamm. 2021, 2021, 9811361. [Google Scholar] [CrossRef]
- Udaondo, P.; Hernández, C.; Briansó-Llort, L.; García-Delpech, S.; Simó-Servat, O.; Simó, R. Usefulness of Liquid Biopsy Biomarkers from Aqueous Humor in Predicting Anti-VEGF Response in Diabetic Macular Edema: Results of a Pilot Study. J. Clin. Med. 2019, 8, 1841. [Google Scholar] [CrossRef]
- Chokshi, T.; Fickweiler, W.; Jangolla, S.; Park, K.; Wu, I.-H.; Shah, H.; Sun, J.K.; Aiello, L.P.; King, G.L. Reduced Aqueous Retinol-Binding Protein 3 Concentration Is Associated With Diabetic Macular Edema and Progression of Diabetic Retinopathy. Diabetes Care 2024, 48, dc241260. [Google Scholar] [CrossRef]
- Amorim, M.; Martins, B.; Caramelo, F.; Gonçalves, C.; Trindade, G.; Simão, J.; Barreto, P.; Marques, I.; Leal, E.C.; Carvalho, E.; et al. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front. Med. 2022, 9, 873483. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, P.-K.; Yoo, H.-S.; Kim, C.-W. Comparison of Tear Proteins between Healthy and Early Diabetic Retinopathy Patients. Clin. Biochem. 2012, 45, 60–67. [Google Scholar] [CrossRef]
- Csősz, É.; Boross, P.; Csutak, A.; Berta, A.; Tóth, F.; Póliska, S.; Török, Z.; Tőzsér, J. Quantitative Analysis of Proteins in the Tear Fluid of Patients with Diabetic Retinopathy. J. Proteomics 2012, 75, 2196–2204. [Google Scholar] [CrossRef]
- Bohler, F.; Bohler, L.; Taranikanti, V. Targeting Pericyte Retention in Diabetic Retinopathy: A Review. Ann. Med. 2024, 56, 2398200. [Google Scholar] [CrossRef]
- Alseekh, S.; Fernie, A.R. Metabolomics 20 Years on: What Have We Learned and What Hurdles Remain? Plant J. 2018, 94, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Young, S.P.; Wallace, G.R. Metabolomic Analysis of Human Disease and Its Application to the Eye. J. Ocul. Biol. Dis. Inform. 2009, 2, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, M.; Pariente, A.; Oca, A.I.; Peláez, R.; Pérez-Sala, Á.; Larráyoz, I.M. Biomarkers as Predictive Factors of Anti-VEGF Response. Biomedicines 2022, 10, 1003. [Google Scholar] [CrossRef]
- Xuan, Q.; Ouyang, Y.; Wang, Y.; Wu, L.; Li, H.; Luo, Y.; Zhao, X.; Feng, D.; Qin, W.; Hu, C.; et al. Multiplatform Metabolomics Reveals Novel Serum Metabolite Biomarkers in Diabetic Retinopathy Subjects. Adv. Sci. 2020, 7, 2001714. [Google Scholar] [CrossRef]
- Curovic, V.R.; Suvitaival, T.; Mattila, I.; Ahonen, L.; Trošt, K.; Theilade, S.; Hansen, T.W.; Legido-Quigley, C.; Rossing, P. Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals With Type 1 Diabetes. Diabetes 2020, 69, 2217–2226. [Google Scholar] [CrossRef]
- Sumarriva, K.; Uppal, K.; Ma, C.; Herren, D.J.; Wang, Y.; Chocron, I.M.; Warden, C.; Mitchell, S.L.; Burgess, L.G.; Goodale, M.P.; et al. Arginine and Carnitine Metabolites Are Altered in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3119–3126. [Google Scholar] [CrossRef]
- Tomita, Y.; Cagnone, G.; Fu, Z.; Cakir, B.; Kotoda, Y.; Asakage, M.; Wakabayashi, Y.; Hellström, A.; Joyal, J.-S.; Talukdar, S.; et al. Vitreous Metabolomics Profiling of Proliferative Diabetic Retinopathy. Diabetologia 2021, 64, 70–82. [Google Scholar] [CrossRef]
- Haines, N.R.; Manoharan, N.; Olson, J.L.; D’Alessandro, A.; Reisz, J.A. Metabolomics Analysis of Human Vitreous in Diabetic Retinopathy and Rhegmatogenous Retinal Detachment. J. Proteome Res. 2018, 17, 2421–2427. [Google Scholar] [CrossRef]
- Lei, J.; Ding, G.; Xie, A.; Hu, Y.; Gao, N.; Fan, X. Aqueous Humor Monocyte Chemoattractant Protein-1 Predicted Long-Term Visual Outcome of Proliferative Diabetic Retinopathy Undergone Intravitreal Injection of Bevacizumab and Vitrectomy. PLoS ONE 2021, 16, e0248235. [Google Scholar] [CrossRef]
- Aydin, S.; Emre, E.; Ugur, K.; Aydin, M.A.; Sahin, İ.; Cinar, V.; Akbulut, T. An Overview of ELISA: A Review and Update on Best Laboratory Practices for Quantifying Peptides and Proteins in Biological Fluids. J. Int. Med. Res. 2025, 53, 03000605251315913. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Shakour, N.; Iranshahi, M.; Butler, A.E.; Sahebkar, A. Aptamer-Based Biosensors: Promising Sensing Technology for Diabetes Diagnosis in Biological Fluids. Curr. Med. Chem. 2023, 30, 3441–3471. [Google Scholar] [CrossRef] [PubMed]
- Belin, P.J.; Parke, D.W. Complications of Vitreoretinal Surgery. Curr. Opin. Ophthalmol. 2020, 31, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Eliott, D. Postoperative Endophthalmitis: A Review of Risk Factors, Prophylaxis, Incidence, Microbiology, Treatment, and Outcomes. Semin. Ophthalmol. 2018, 33, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Tzekov, R.; Li, W.; Jiang, F.; Mao, S.; Tong, Y. Incidence of Endophthalmitis after Vitrectomy: A Systematic Review and Meta-Analysis. Retina 2019, 39, 844–852. [Google Scholar] [CrossRef]
- Dasari, N.; Jiang, A.; Skochdopole, A.; Chung, J.; Reece, E.M.; Vorstenbosch, J.; Winocour, S. Updates in Diabetic Wound Healing, Inflammation, and Scarring. Semin. Plast. Surg. 2021, 35, 153–158. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Antonsen, E.L. Immune and Vascular Dysfunction in Diabetic Wound Healing. J. Wound Care 2016, 25, S35–S46. [Google Scholar] [CrossRef]
- Moutschen, M.P.; Scheen, A.J.; Lefebvre, P.J. Impaired Immune Responses in Diabetes Mellitus: Analysis of the Factors and Mechanisms Involved. Relevance to the Increased Susceptibility of Diabetic Patients to Specific Infections. Diabete Metab. 1992, 18, 187–201. [Google Scholar]
- El-Mollayess, G.M.; Saadeh, J.S.; Salti, H.I. Exogenous Endophthalmitis in Diabetic Patients: A Systemic Review. ISRN Ophthalmol. 2012, 2012, 456209. [Google Scholar] [CrossRef]
- Mishra, K.; Velez, G.; Chemudupati, T.; Tang, P.H.; Mruthyunjaya, P.; Sanislo, S.R.; Mahajan, V.B. Intraoperative Complications With Vitreous Biopsy for Molecular Proteomics. Ophthalmic Surg. Lasers Imaging Retin. 2023, 54, 32–36. [Google Scholar] [CrossRef]
- Motoda, S.; Shiraki, N.; Ishihara, T.; Sakaguchi, H.; Kabata, D.; Takahara, M.; Kimura, T.; Kozawa, J.; Imagawa, A.; Nishida, K.; et al. Predictors of Postoperative Bleeding after Vitrectomy for Vitreous Hemorrhage in Patients with Diabetic Retinopathy. J. Diabetes Investig. 2018, 9, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.; Denniston, A.K.O.; Murray, P.I. Safety Profile of Anterior Chamber Paracentesis Performed at the Slit Lamp. Clin. Exp. Ophthalmol. 2011, 39, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, K.; Sotozono, C.; Koizumi, N.; Nagata, K.; Inatomi, T.; Sasaki, H.; Kinoshita, S. Safety of Anterior Chamber Paracentesis Using a 30-Gauge Needle Integrated with a Specially Designed Disposable Pipette. Br. J. Ophthalmol. 2017, 101, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, S.; Saba, M.; Patel, R.; Fisher, G.; Schroeder, T.; Arnolda, G.; Luo, D.; Warburton, L.; Gray, E.; Long, G.; et al. A Scoping Review of Factors Influencing the Implementation of Liquid Biopsy for Cancer Care. J. Exp. Clin. Cancer Res. 2025, 44, 50. [Google Scholar] [CrossRef]
- Goh, J.K.H.; Cheung, C.Y.; Sim, S.S.; Tan, P.C.; Tan, G.S.W.; Wong, T.Y. Retinal Imaging Techniques for Diabetic Retinopathy Screening. J. Diabetes Sci. Technol. 2016, 10, 282–294. [Google Scholar] [CrossRef]
- Englmeier, F.; Bleckmann, A.; Brückl, W.; Griesinger, F.; Fleitz, A.; Nagels, K. Clinical Benefit and Cost-Effectiveness Analysis of Liquid Biopsy Application in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC): A Modelling Approach. J. Cancer Res. Clin. Oncol. 2023, 149, 1495–1511. [Google Scholar] [CrossRef]
- Aziz, Z.; Wagner, S.; Agyekum, A.; Pumpalova, Y.S.; Prest, M.; Lim, F.; Rustgi, S.; Kastrinos, F.; Grady, W.M.; Hur, C. Cost-Effectiveness of Liquid Biopsy for Colorectal Cancer Screening in Patients Who Are Unscreened. JAMA Netw. Open 2023, 6, e2343392. [Google Scholar] [CrossRef]
- Ginghina, O.; Hudita, A.; Zamfir, M.; Spanu, A.; Mardare, M.; Bondoc, I.; Buburuzan, L.; Georgescu, S.E.; Costache, M.; Negrei, C.; et al. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient’s Stratification. Front. Oncol. 2022, 12, 856575. [Google Scholar] [CrossRef]
- Yang, Q.; Bee, Y.M.; Lim, C.C.; Sabanayagam, C.; Yim-Lui Cheung, C.; Wong, T.Y.; Ting, D.S.W.; Lim, L.-L.; Li, H.; He, M.; et al. Use of Artificial Intelligence with Retinal Imaging in Screening for Diabetes-Associated Complications: Systematic Review. EClinicalMedicine 2025, 81, 103089. [Google Scholar] [CrossRef]
- Barker, A.D.; Alba, M.M.; Mallick, P.; Agus, D.B.; Lee, J.S.H. An Inflection Point in Cancer Protein Biomarkers: What Was and What’s Next. Mol. Cell. Proteomics 2023, 22, 100569. [Google Scholar] [CrossRef]
- Bitiņa-Barlote, Ē.; Bļizņuks, D.; Siliņa, S.; Šatcs, M.; Vjaters, E.; Lietuvietis, V.; Nakazawa-Miklaševiča, M.; Plonis, J.; Miklaševičs, E.; Daneberga, Z.; et al. Liquid Biopsy Based Bladder Cancer Diagnostic by Machine Learning. Diagnostics 2025, 15, 492. [Google Scholar] [CrossRef] [PubMed]
- Albitar, M.; Charifa, A.; Agersborg, S.; Pecora, A.; Ip, A.; Goy, A. Expanding the Clinical Utility of Liquid Biopsy by Using Liquid Transcriptome and Artificial Intelligence. J. Liq. Biopsy 2024, 6, 100270. [Google Scholar] [CrossRef] [PubMed]
- Muni, R.H.; Kohly, R.P.; Lee, E.Q.; Manson, J.E.; Semba, R.D.; Schaumberg, D.A. Prospective Study of Inflammatory Biomarkers and Risk of Diabetic Retinopathy in the Diabetes Control and Complications Trial. JAMA Ophthalmol. 2013, 131, 514–521. [Google Scholar] [CrossRef]
Serum | Vitreous Fluid | Aqueous Humor | Tears | |
---|---|---|---|---|
Composition | Water, proteins, electrolytes, hormones, nutrients | Water, proteins, electrolytes, collagen fibers, hyaluronic acid | Water, proteins, glucose, amino acids, vitamins, electrolytes | Water, electrolytes, lipids, proteins |
Collection | Venipuncture | Vitrectomy or vitreous aspiration | Aqueous tap or direct collection at the beginning of intraocular surgeries | Schirmer’s strip or glass microcapillary tube or flush tear collection approach or collection with surgical sponges |
Collection site | Outpatient clinic | Operating room | Outpatient clinic or operating room | Outpatient clinic |
Protein concentration | 6.0–8.3 g/dL | ~5 mg/dL | ~20 mg/dL | 3–4 μg/μL |
Invasiveness | Minimally invasive | Highly invasive | Moderately invasive | None |
Relevance to ocular disorders | Limited | Significant | Significant | Present |
Indications | Sample | Analytical Techniques | Key Biomarkers | Clinical Value | Ref. |
---|---|---|---|---|---|
NDR | Serum | Multiplex Analyses | TNF-α, IL-6, IL-8, sCD40L, MBL, IL-1RA | The early diagnosis of DR | [45,48,50,51,52,53,62,63] |
ELISA | MCP-1 | Predicting the risk of DME | [55] | ||
Tears | ELISA | IL-5, IL-18 | The early diagnosis of DR | [129] | |
ELISA | HbA1C | Predicting the progression of DR in T1DM | [86,87] | ||
AH | ELISA | RBP3 | Predicting DR progression | [128] | |
Multiplex Analyses | TNF-α, IL-1β, IL-6, IL-8, VEGF | DR staging and predicting the risk of PDR | [94] | ||
NPDR | Serum | Multiplex Analyses | IL-1β, VEGF, Ang-1/Ang-2, EPO, MMP-9 | Predicting DR progression | [45,68,72,74,77,79] |
VH | Multiplex Analyses | IL-15, IL-16, sCD40L | DR staging and predicting the risk of PDR | [96,98] | |
AH | ELISA | TGF-β, MMP-3 | Predicting the risk of PDR | [126] | |
PDR | VH | Multiplex Analyses | MMP-1, MMP-2, MMP-9, MMP-14, RBP3, HIF-1α, MCP-1 | Assessing PDR severity | [99,104,107,112] |
ELISA | VEGF, MCP-1 | Predicting the progression of PDR after treatment | [101,102,103,104,141] | ||
DME | AH | ELISA | VEGF | Predicting response to anti-VEGF therapy | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Chen, Y.; Mou, K.; Zhang, M. Liquid Biopsy Combined with Multi-Omics Approaches in Diagnosis, Management, and Progression of Diabetic Retinopathy. Biomedicines 2025, 13, 1306. https://doi.org/10.3390/biomedicines13061306
Chen Q, Chen Y, Mou K, Zhang M. Liquid Biopsy Combined with Multi-Omics Approaches in Diagnosis, Management, and Progression of Diabetic Retinopathy. Biomedicines. 2025; 13(6):1306. https://doi.org/10.3390/biomedicines13061306
Chicago/Turabian StyleChen, Qing, Yi Chen, Kefan Mou, and Ming Zhang. 2025. "Liquid Biopsy Combined with Multi-Omics Approaches in Diagnosis, Management, and Progression of Diabetic Retinopathy" Biomedicines 13, no. 6: 1306. https://doi.org/10.3390/biomedicines13061306
APA StyleChen, Q., Chen, Y., Mou, K., & Zhang, M. (2025). Liquid Biopsy Combined with Multi-Omics Approaches in Diagnosis, Management, and Progression of Diabetic Retinopathy. Biomedicines, 13(6), 1306. https://doi.org/10.3390/biomedicines13061306