Genetic Animal Models of Idiopathic Generalized Epilepsies: What Can We Learn from Them?
Abstract
:1. Introduction
2. Childhood Absence Epilepsy (CAE)
2.1. Characteristics of CAE in Humans
2.2. The Thalamo-Cortical Loop: The Key Player in Absence Seizures
2.3. Spontaneous Models of Absence Epilepsy in Mammals
2.3.1. Monogenic Mutant Mouse Models
- Tottering mouse
- Stargazer mouse
- Lethargic mouse
- Slow-wave epilepsy mouse
2.3.2. Polygenic Rat Models
- GAERS model
- WAG/Rij model
2.4. Models of Absence Epilepsy Based on Genetic Manipulation of Candidate Genes
2.5. Optogenetic and Chemogenetic Models to Manipulate ASs
2.6. What Did We Learn from These Models of CAE?
3. Juvenile Myoclonic Epilepsy (JME)
3.1. Characteristics of JME in Humans
3.2. Spontaneous Models of JME in Mammals
3.2.1. Epileptic Baboons
3.2.2. Epileptic Dog Model
3.3. Models of JME Based on Genetic Manipulation of Mendelian Genes
3.3.1. GABRA1
3.3.2. EFHC1
3.3.3. GABRD
3.3.4. CASR
3.3.5. BRD2
3.3.6. CILK1/ICK
3.4. Models of JME Based on Genetic Manipulation of Other Mutated Genes
4. Generalized Tonic–Clonic Seizures Alone (GTCSA)
4.1. Characteristics of GTCSA in Humans
4.2. Spontaneous Models of GTCSA in Mammals
NER Model
5. Participation of the Thalamus in JME and GTCA Seizures
6. Non-Mammalian In Vivo Models
7. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Wirrell, E.C.; Nabbout, R.; Scheffer, I.E.; Alsaadi, T.; Bogacz, A.; French, J.A.; Hirsch, E.; Jain, S.; Kaneko, S.; Riney, K.; et al. Methodology for Classification and Definition of Epilepsy Syndromes with List of Syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1333–1348. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, E.; French, J.; Scheffer, I.E.; Bogacz, A.; Alsaadi, T.; Sperling, M.R.; Abdulla, F.; Zuberi, S.M.; Trinka, E.; Specchio, N.; et al. ILAE Definition of the Idiopathic Generalized Epilepsy Syndromes: Position Statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1475–1499. [Google Scholar] [CrossRef] [PubMed]
- Lennox, W.G. The Heredity of Epilepsy as Told by Relatives and Twins. J. Am. Med. Assoc. 1951, 146, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.A.; Mehler, M.F. Epigenetic Mechanisms Underlying Human Epileptic Disorders and the Process of Epileptogenesis. Neurobiol. Dis. 2010, 39, 53–60. [Google Scholar] [CrossRef]
- Wang, G.D.; Dai, Z.Y.; Song, W.G.; Wang, S.F.; Shi, H.C.; Pan, P.L.; Chen, F.; Xu, Y.; Zhong, J.G. Grey Matter Anomalies in Drug-Naïve Childhood Absence Epilepsy: A Voxel-Based Morphometry Study with MRI at 3.0T. Epilepsy Res. 2016, 124, 63–66. [Google Scholar] [CrossRef]
- Caplan, R.; Levitt, J.; Siddarth, P.; Wu, K.N.; Gurbani, S.; Sankar, R.; Shields, W.D. Frontal and Temporal Volumes in Childhood Absence Epilepsy. Epilepsia 2009, 50, 2466–2472. [Google Scholar] [CrossRef]
- Chan, C.H.; Briellmann, R.S.; Pell, G.S.; Scheffer, I.E.; Abbott, D.F.; Jackson, G.D. Thalamic Atrophy in Childhood Absence Epilepsy. Epilepsia 2006, 47, 399–405. [Google Scholar] [CrossRef]
- Tosun, D.; Siddarth, P.; Toga, A.W.; Hermann, B.; Caplan, R. Effects of Childhood Absence Epilepsy on Associations between Regional Cortical Morphometry and Aging and Cognitive Abilities. Hum. Brain Mapp. 2011, 32, 580–591. [Google Scholar] [CrossRef]
- Corrêa, D.G.; Ventura, N.; Zimmermann, N.; Doring, T.M.; Tukamoto, G.; Leme, J.; Pereira, M.; D’Andrea, I.; Rêgo, C.; Alves-Leon, S.V.; et al. Evaluation of Deep Gray Matter Volume, Cortical Thickness and White Matter Integrity in Patients with Typical Absence Epilepsy: A Study Using Voxelwise-Based Techniques. Neuroradiology 2017, 59, 237–245. [Google Scholar] [CrossRef]
- Verrotti, A.; Matricardi, S.; Rinaldi, V.E.; Prezioso, G.; Coppola, G. Neuropsychological Impairment in Childhood Absence Epilepsy: Review of the Literature. J. Neurol. Sci. 2015, 359, 59–66. [Google Scholar] [CrossRef]
- Hirose, S. Mutant GABA(A) Receptor Subunits in Genetic (Idiopathic) Epilepsy. Prog. Brain Res. 2014, 213, 55–85. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Monteil, A.; Bidaud, I.; Sugimoto, Y.; Suzuki, T.; Hamano, S.I.; Oguni, H.; Osawa, M.; Alonso, M.E.; Delgado-Escueta, A.V.; et al. Mutational Analysis of CACNA1G in Idiopathic Generalized Epilepsy. Mutation in Brief #962. Online. Hum. Mutat. 2007, 28, 524–525. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Liang, J.; Pan, H.; Wu, H.; Xu, K.; Liu, X.; Jiang, Y.; Shen, Y.; Wu, X. CACNA1I Is Not Associated with Childhood Absence Epilepsy in the Chinese Han Population. Pediatr. Neurol. 2006, 35, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Peloquin, J.B.; Khosravani, H.; Barr, W.; Bladen, C.; Evans, R.; Mezeyova, J.; Parker, D.; Snutch, T.P.; McRory, J.E.; Zamponi, G.W. Functional Analysis of Ca3.2 T-Type Calcium Channel Mutations Linked to Childhood Absence Epilepsy. Epilepsia 2006, 47, 655–658. [Google Scholar] [CrossRef]
- Marini, C.; Porro, A.; Rastetter, A.; Dalle, C.; Rivolta, I.; Bauer, D.; Oegema, R.; Nava, C.; Parrini, E.; Mei, D.; et al. HCN1 Mutation Spectrum: From Neonatal Epileptic Encephalopathy to Benign Generalized Epilepsy and Beyond. Brain 2018, 141, 3160–3178. [Google Scholar] [CrossRef] [PubMed]
- Abou-Khalil, B.; Auce, P.; Avbersek, A.; Bahlo, M.; Balding, D.J.; Bast, T.; Baum, L.; Becker, A.J.; Becker, F.; Berghuis, B.; et al. Genome-Wide Mega-Analysis Identifies 16 Loci and Highlights Diverse Biological Mechanisms in the Common Epilepsies. Nat. Commun. 2018, 9, 5269. [Google Scholar] [CrossRef]
- Stevelink, R.; Campbell, C.; Chen, S.; Abou-Khalil, B.; Adesoji, O.M.; Afawi, Z.; Amadori, E.; Anderson, A.; Anderson, J.; Andrade, D.M.; et al. GWAS Meta-Analysis of over 29,000 People with Epilepsy Identifies 26 Risk Loci and Subtype-Specific Genetic Architecture. Nat. Genet. 2023, 55, 1471–1482. [Google Scholar] [CrossRef]
- Avoli, M. A Brief History on the Oscillating Roles of Thalamus and Cortex in Absence Seizures. Epilepsia 2012, 53, 779–789. [Google Scholar] [CrossRef]
- Huguenard, J. Current Controversy: Spikes, Bursts, and Synchrony in Generalized Absence Epilepsy: Unresolved Questions Regarding Thalamocortical Synchrony in Absence Epilepsy. Epilepsy Curr. 2019, 19, 105–111. [Google Scholar] [CrossRef]
- Wakamori, M.; Yamazaki, K.; Matsunodaira, H.; Teramoto, T.; Tanaka, I.; Niidome, T.; Sawada, K.; Nishizawa, Y.; Sekiguchi, N.; Mori, E.; et al. Single Tottering Mutations Responsible for the Neuropathic Phenotype of the P-Type Calcium Channel. J. Biol. Chem. 1998, 273, 34857–34867. [Google Scholar] [CrossRef]
- Isaacs, K.R.; Abbott, L.C. Development of the Paramedian Lobule of the Cerebellum in Wild-Type and Tottering Mice. Dev. Neurosci. 1992, 14, 386–393. [Google Scholar] [CrossRef]
- Levitt, P.; Noebels, J.L. Mutant Mouse Tottering: Selective Increase of Locus Ceruleus Axons in a Defined Single-Locus Mutation. Proc. Natl. Acad. Sci. USA 1981, 78, 4630–4634. [Google Scholar] [CrossRef] [PubMed]
- Letts, V.A.; Felix, R.; Biddlecome, G.H.; Arikkath, J.; Mahaffey, C.L.; Valenzuela, A.; Bartlett, F.S.; Mori, Y.; Campbell, K.P.; Frankel, W.N. The Mouse Stargazer Gene Encodes a Neuronal Ca2+-Channel Gamma Subunit. Nat. Genet. 1998, 19, 340–347. [Google Scholar] [CrossRef]
- Menuz, K.; Nicoll, R.A. Loss of Inhibitory Neuron AMPA Receptors Contributes to Ataxia and Epilepsy in Stargazer Mice. J. Neurosci. 2008, 28, 10599–10603. [Google Scholar] [CrossRef] [PubMed]
- Leitch, B. The Impact of Glutamatergic Synapse Dysfunction in the Corticothalamocortical Network on Absence Seizure Generation. Front. Mol. Neurosci. 2022, 15, 836255. [Google Scholar] [CrossRef]
- Adotevi, N.K.; Leitch, B. Cortical Expression of AMPA Receptors during Postnatal Development in a Genetic Model of Absence Epilepsy. Int. J. Dev. Neurosci. 2019, 73, 19–25. [Google Scholar] [CrossRef]
- Khan, Z.; Carey, J.; Park, H.J.; Lehar, M.; Lasker, D.; Jinnah, H.A. Abnormal Motor Behavior and Vestibular Dysfunction in the Stargazer Mouse Mutant. Neuroscience 2004, 127, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.L.; Jones, J.M.; Meisler, M.H.; Noebels, J.L. Mutation of the Ca2+ Channel Beta Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (Lh) Mouse. Cell 1997, 88, 385–392. [Google Scholar] [CrossRef]
- McEnery, M.W.; Copeland, T.D.; Vance, C.L. Altered Expression and Assembly of N-Type Calcium Channel Alpha1B and Beta Subunits in Epileptic Lethargic (Lh/Lh) Mouse. J. Biol. Chem. 1998, 273, 21435–21438. [Google Scholar] [CrossRef]
- Lin, F.H.; Cao, Z.; Hosford, D.A. Increased Number of GABAB Receptors in the Lethargic (Lh/Lh) Mouse Model of Absence Epilepsy. Brain Res. 1993, 608, 101–106. [Google Scholar] [CrossRef]
- Cox, G.A.; Lutz, C.M.; Yang, C.L.; Biemesderfer, D.; Bronson, R.T.; Fu, A.; Aronson, P.S.; Noebels, J.L.; Frankel, W.N. Sodium/Hydrogen Exchanger Gene Defect in Slow-Wave Epilepsy Mutant Mice. Cell 1997, 91, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Vergnes, M.; Marescaux, C.; Micheletti, G.; Reis, J.; Depaulis, A.; Rumbach, L.; Warter, J.M. Spontaneous Paroxysmal Electroclinical Patterns in Rat: A Model of Generalized Non-Convulsive Epilepsy. Neurosci. Lett. 1982, 33, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Vergnes, M.; Marescaux, C.; Boehrer, A.; Depaulis, A. Are Rats with Genetic Absence Epilepsy Behaviorally Impaired? Epilepsy Res. 1991, 9, 97–104. [Google Scholar] [CrossRef]
- Jarre, G.; Altwegg-Boussac, T.; Williams, M.S.; Studer, F.; Chipaux, M.; David, O.; Charpier, S.; Depaulis, A.; Mahon, S.; Guillemain, I. Building Up Absence Seizures in the Somatosensory Cortex: From Network to Cellular Epileptogenic Processes. Cereb. Cortex 2017, 27, 4607–4623. [Google Scholar] [CrossRef]
- Chahboune, H.; Mishra, A.M.; DeSalvo, M.N.; Staib, L.H.; Purcaro, M.; Scheinost, D.; Papademetris, X.; Fyson, S.J.; Lorincz, M.L.; Crunelli, V.; et al. DTI Abnormalities in Anterior Corpus Callosum of Rats with Spike-Wave Epilepsy. Neuroimage 2009, 47, 459–466. [Google Scholar] [CrossRef]
- Bouilleret, V.; Hogan, R.E.; Velakoulis, D.; Salzberg, M.R.; Wang, L.; Egan, G.F.; O’Brien, T.J.; Jones, N.C. Morphometric Abnormalities and Hyperanxiety in Genetically Epileptic Rats: A Model of Psychiatric Comorbidity? Neuroimage 2009, 45, 267–274. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, C.; Gruenbaum, B.F.; Tung, R.; Li, J.J.; Zheng, X.; Salvino, P.; Vincent, P.; Kratochvil, Z.; Ryu, J.H.; Khalaf, A.; et al. Decreased but Diverse Activity of Cortical and Thalamic Neurons in Consciousness-Impairing Rodent Absence Seizures. Nat. Commun. 2023, 14, 117. [Google Scholar] [CrossRef]
- Rudolf, G.; Bihoreau, M.T.; Godfrey, R.F.; Wilder, S.P.; Cox, R.D.; Lathrop, M.; Marescaux, C.; Gauguier, D. Polygenic Control of Idiopathic Generalized Epilepsy Phenotypes in the Genetic Absence Rats from Strasbourg (GAERS). Epilepsia 2004, 45, 301–308. [Google Scholar] [CrossRef]
- Holter, J.; Carter, D.; Leresche, N.; Crunelli, V.; Vincent, P. A TASK3 Channel (KCNK9) Mutation in a Genetic Model of Absence Epilepsy. J. Mol. Neurosci. 2005, 25, 37–51. [Google Scholar] [CrossRef]
- Powell, K.L.; Cain, S.M.; Ng, C.; Sirdesai, S.; David, L.S.; Kyi, M.; Garcia, E.; Tyson, J.R.; Reid, C.A.; Bahlo, M.; et al. A Cav3.2 T-Type Calcium Channel Point Mutation Has Splice-Variant-Specific Effects on Function and Segregates with Seizure Expression in a Polygenic Rat Model of Absence Epilepsy. J. Neurosci. 2009, 29, 371–380. [Google Scholar] [CrossRef]
- Casillas-Espinosa, P.M.; Lin, R.; Li, R.; Nandakumar, N.M.; Dawson, G.; Braine, E.L.; Martin, B.; Powell, K.L.; O’Brien, T.J. Effects of the T-Type Calcium Channel CaV3.2 R1584P Mutation on Absence Seizure Susceptibility in GAERS and NEC Congenic Rats Models. Neurobiol. Dis. 2023, 184, 106217. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Espinosa, P.M.; Powell, K.L.; Zhu, M.; Campbell, C.R.; Maia, J.M.; Ren, Z.; Jones, N.C.; O’Brien, T.J.; Petrovski, S. Evaluating Whole Genome Sequence Data from the Genetic Absence Epilepsy Rat from Strasbourg and Its Related Non-Epileptic Strain. PLoS ONE 2017, 12, 0179924. [Google Scholar] [CrossRef] [PubMed]
- Tsakiridou, E.; Bertollini, L.; De Curtis, M.; Avanzini, G.; Pape, H.C. Selective Increase in T-Type Calcium Conductance of Reticular Thalamic Neurons in a Rat Model of Absence Epilepsy. J. Neurosci. 1995, 15, 3110–3117. [Google Scholar] [CrossRef]
- Bessaïh, T.; Bourgeais, L.; Badiu, C.I.; Carter, D.A.; Toth, T.I.; Ruano, D.; Lambolez, B.; Crunelli, V.; Leresche, N. Nucleus-Specific Abnormalities of GABAergic Synaptic Transmission in a Genetic Model of Absence Seizures. J. Neurophysiol. 2006, 96, 3074–3081. [Google Scholar] [CrossRef] [PubMed]
- Kuisle, M.; Wanaverbecg, N.; Brewster, A.L.; Frère, S.G.A.; Pinault, D.; Baram, T.Z.; Lüthi, A. Functional Stabilization of Weakened Thalamic Pacemaker Channel Regulation in Rat Absence Epilepsy. J. Physiol. 2006, 575, 83–100. [Google Scholar] [CrossRef]
- Kennard, J.T.T.; Barmanray, R.; Sampurno, S.; Ozturk, E.; Reid, C.A.; Paradiso, L.; D’Abaco, G.M.; Kaye, A.H.; Foote, S.J.; O’Brien, T.J.; et al. Stargazin and AMPA Receptor Membrane Expression Is Increased in the Somatosensory Cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol. Dis. 2011, 42, 48–54. [Google Scholar] [CrossRef]
- Spreafico, R.; Mennini, T.; Danober, L.; Cagnotto, A.; Regondi, M.C.; Miari, A.; De Blas, A.; Vergnes, M.; Avanzini, G. GABAA Receptor Impairment in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS): An Immunocytochemical and Receptor Binding Autoradiographic Study. Epilepsy Res. 1993, 15, 229–238. [Google Scholar] [CrossRef]
- Snead, O.C.; Depaulis, A.; Banerjee, P.K.; Hechler, V.; Vergnes, M. The GABAA Receptor Complex in Experimental Absence Seizures in Rat: An Autoradiographic Study. Neurosci. Lett. 1992, 140, 9–12. [Google Scholar] [CrossRef]
- Sabers, A.; Møller, A.; Scheel-Krüger, J.; Mouritzen Dam, A. No Loss in Total Neuron Number in the Thalamic Reticular Nucleus and Neocortex in the Genetic Absence Epilepsy Rats from Strasbourg. Epilepsy Res. 1996, 26, 45–48. [Google Scholar] [CrossRef]
- Papp, P.; Kovács, Z.; Szocsics, P.; Juhász, G.; Maglóczky, Z. Alterations in Hippocampal and Cortical Densities of Functionally Different Interneurons in Rat Models of Absence Epilepsy. Epilepsy Res. 2018, 145, 40–50. [Google Scholar] [CrossRef]
- Dutuit, M.; Didier-Bazès, M.; Vergnes, M.; Mutin, M.; Conjard, A.; Akaoka, H.; Belin, M.F.; Touret, M. Specific Alteration in the Expression of Glial Fibrillary Acidic Protein, Glutamate Dehydrogenase, and Glutamine Synthetase in Rats with Genetic Absence Epilepsy. Glia 2000, 32, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Çavdar, S.; Kuvvet, Y.; Sur-Erdem, I.; Özgür, M.; Onat, F. Relationships between Astrocytes and Absence Epilepsy in Rat: An Experimental Study. Neurosci. Lett. 2019, 712, 134518. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.; Ravizza, T.; Maroso, M.; Carcak, N.; Eryigit, T.; Vanzulli, I.; Aker, R.G.; Vezzani, A.; Onat, F.Y. IL-1β Is Induced in Reactive Astrocytes in the Somatosensory Cortex of Rats with Genetic Absence Epilepsy at the Onset of Spike-and-Wave Discharges, and Contributes to Their Occurrence. Neurobiol. Dis. 2011, 44, 259–269. [Google Scholar] [CrossRef]
- Dutuit, M.; Touret, M.; Szymocha, R.; Nehlig, A.; Belin, M.F.; Didier-Bazès, M. Decreased Expression of Glutamate Transporters in Genetic Absence Epilepsy Rats before Seizure Occurrence. J. Neurochem. 2002, 80, 1029–1038. [Google Scholar] [CrossRef]
- Pirttimaki, T.; Parri, H.R.; Crunelli, V. Astrocytic GABA Transporter GAT-1 Dysfunction in Experimental Absence Seizures. J. Physiol. 2013, 591, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Deransart, C.; Hellwig, B.; Heupel-Reuter, M.; Léger, J.F.; Heck, D.; Lücking, C.H. Single-Unit Analysis of Substantia Nigra Pars Reticulata Neurons in Freely Behaving Rats with Genetic Absence Epilepsy. Epilepsia 2003, 44, 1513–1520. [Google Scholar] [CrossRef]
- Deransart, C.; Riban, V.; Lê, B.T.; Marescaux, C.; Depaulis, A. Dopamine in the Striatum Modulates Seizures in a Genetic Model of Absence Epilepsy in the Rat. Neuroscience 2000, 100, 335–344. [Google Scholar] [CrossRef]
- De Borman, B.; Lakaye, B.; Minet, A.; Zorzi, W.; Vergnes, M.; Marescaux, C.; Grisar, T. Expression of MRNA Encoding Alpha1E and Alpha1G Subunit in the Brain of a Rat Model of Absence Epilepsy. Neuroreport 1999, 10, 569–574. [Google Scholar] [CrossRef]
- van Luijtelaar, G.; Sitnikova, E. Global and Focal Aspects of Absence Epilepsy: The Contribution of Genetic Models. Neurosci. Biobehav. Rev. 2006, 30, 983–1003. [Google Scholar] [CrossRef]
- van Luijtelaar, E.L.J.M.; Coenen, A.M.L. Two Types of Electrocortical Paroxysms in an Inbred Strain of Rats. Neurosci. Lett. 1986, 70, 393–397. [Google Scholar] [CrossRef]
- Akman, O.; Demiralp, T.; Ates, N.; Onat, F.Y. Electroencephalographic Differences between WAG/Rij and GAERS Rat Models of Absence Epilepsy. Epilepsy Res. 2010, 89, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.M.L.; Van Luijtelaar, E.L.J.M. Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.M.; Bai, X.; Motelow, J.E.; Desalvo, M.N.; Danielson, N.; Sanganahalli, B.G.; Hyder, F.; Blumenfeld, H. Increased Resting Functional Connectivity in Spike-Wave Epilepsy in WAG/Rij Rats. Epilepsia 2013, 54, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Gauguier, D.; Van Luijtelaar, G.; Thérèse Bihoreau, M.; Wilder, S.P.; Godfrey, R.F.; Vossen, J.; Coenen, A.; Cox, R.D. Chromosomal Mapping of Genetic Loci Controlling Absence Epilepsy Phenotypes in the WAG/Rij Rat. Epilepsia 2004, 45, 908–915. [Google Scholar] [CrossRef]
- Strauss, U.; Kole, M.H.P.; Bräuer, A.U.; Pahnke, J.; Bajorat, R.; Rolfs, A.; Nitsch, R.; Deisz, R.A. An Impaired Neocortical Ih Is Associated with Enhanced Excitability and Absence Epilepsy. Eur. J. Neurosci. 2004, 19, 3048–3058. [Google Scholar] [CrossRef]
- Kole, M.H.P.; Bräuer, A.U.; Stuart, G.J. Inherited Cortical HCN1 Channel Loss Amplifies Dendritic Calcium Electrogenesis and Burst Firing in a Rat Absence Epilepsy Model. J. Physiol. 2007, 578, 507–525. [Google Scholar] [CrossRef]
- Wemhöner, K.; Kanyshkova, T.; Silbernagel, N.; Fernandez-Orth, J.; Bittner, S.; Kiper, A.K.; Rinné, S.; Netter, M.F.; Meuth, S.G.; Budde, T.; et al. An N-Terminal Deletion Variant of HCN1 in the Epileptic WAG/Rij Strain Modulates HCN Current Densities. Front. Mol. Neurosci. 2015, 8, 63. [Google Scholar] [CrossRef]
- Broicher, T.; Kanyshkova, T.; Meuth, P.; Pape, H.C.; Budde, T. Correlation of T-Channel Coding Gene Expression, IT, and the Low Threshold Ca2+ Spike in the Thalamus of a Rat Model of Absence Epilepsy. Mol. Cell Neurosci. 2008, 39, 384–399. [Google Scholar] [CrossRef]
- van de Bovenkamp-Janssen, M.C.; van der Kloet, J.C.; van Luijtelaar, G.; Roubos, E.W. NMDA-NR1 and AMPA-GluR4 Receptor Subunit Immunoreactivities in the Absence Epileptic WAG/Rij Rat. Epilepsy Res. 2006, 69, 119–128. [Google Scholar] [CrossRef]
- Ngomba, R.T.; Ferraguti, F.; Badura, A.; Citraro, R.; Santolini, I.; Battaglia, G.; Bruno, V.; De Sarro, G.; Simonyi, A.; van Luijtelaar, G.; et al. Positive Allosteric Modulation of Metabotropic Glutamate 4 (MGlu4) Receptors Enhances Spontaneous and Evoked Absence Seizures. Neuropharmacology 2008, 54, 344–354. [Google Scholar] [CrossRef]
- Flor, P.J.; Battaglia, G.; Nicoletti, F.; Gasparini, F.; Bruno, V. Neuroprotective Activity of Metabotropic Glutamate Receptor Ligands. Adv. Exp. Med. Biol. 2002, 513, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Pisu, M.G.; Mostallino, M.C.; Dore, R.; Mura, M.L.; Maciocco, E.; Russo, E.; De Sarro, G.; Serra, M. Neuroactive Steroids and GABAA Receptor Plasticity in the Brain of the WAG/Rij Rat, a Model of Absence Epilepsy. J. Neurochem. 2008, 106, 2502–2514. [Google Scholar] [CrossRef] [PubMed]
- Merlo, D.; Mollinari, C.; Inaba, Y.; Cardinale, A.; Rinaldi, A.M.; D’Antuono, M.; D’Arcangelo, G.; Tancredi, V.; Ragsdale, D.; Avoli, M. Reduced GABAB Receptor Subunit Expression and Paired-Pulse Depression in a Genetic Model of Absence Seizures. Neurobiol. Dis. 2007, 25, 631–641. [Google Scholar] [CrossRef]
- Karpova, A.V.; Bikbaev, A.F.; Coenen, A.M.L.; Van Luijtelaar, G. Morphometric Golgi Study of Cortical Locations in WAG/Rij Rats: The Cortical Focus Theory. Neurosci. Res. 2005, 51, 119–128. [Google Scholar] [CrossRef]
- Sitnikova, E.; Kulikova, S.; Birioukova, L.; Raevsky, V.V. Cellular Neuropathology of Absence Epilepsy in the Neocortex: A Population of Glial Cells Rather than Neurons Is Impaired in Genetic Rat Model. Acta Neurobiol. Exp. 2011, 71, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.K.; Xu, H.; Soane, C.; Batra, A.; Saucedo, T.; Frost, E.; Tam, L.T.; Fraga, D.; Ni, L.; Villar, K.; et al. Maladaptive Myelination Promotes Generalized Epilepsy Progression. Nat. Neurosci. 2022, 25, 596–606. [Google Scholar] [CrossRef]
- Schofield, C.M.; Kleiman-Weiner, M.; Rudolph, U.; Huguenard, J.R. A Gain in GABAA Receptor Synaptic Strength in Thalamus Reduces Oscillatory Activity and Absence Seizures. Proc. Natl. Acad. Sci. USA 2009, 106, 7630–7635. [Google Scholar] [CrossRef]
- DeLorey, T.M.; Handforth, A.; Anagnostaras, S.G.; Homanics, G.E.; Minassian, B.A.; Asatourian, A.; Fanselow, M.S.; Delgado-Escueta, A.; Ellison, G.D.; Olsen, R.W. Mice Lacking the Beta3 Subunit of the GABAA Receptor Have the Epilepsy Phenotype and Many of the Behavioral Characteristics of Angelman Syndrome. J. Neurosci. 1998, 18, 8505–8514. [Google Scholar] [CrossRef]
- Gassmann, M.; Shaban, H.; Vigot, R.; Sansig, G.; Haller, C.; Barbieri, S.; Humeau, Y.; Schuler, V.; Müller, M.; Kinzel, B.; et al. Redistribution of GABAB(1) Protein and Atypical GABAB Responses in GABAB(2)-Deficient Mice. J. Neurosci. 2004, 24, 6086–6097. [Google Scholar] [CrossRef]
- Schuler, V.; Lüscher, C.; Blanchet, C.; Klix, N.; Sansig, G.; Klebs, K.; Schmutz, M.; Heid, J.; Gentry, C.; Urban, L.; et al. Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABA(B) Responses in Mice Lacking GABA(B(1)). Neuron 2001, 31, 47–58. [Google Scholar] [CrossRef]
- Cope, D.W.; Di Giovanni, G.; Fyson, S.J.; Orbán, G.; Errington, A.C.; Lrincz, M.L.; Gould, T.M.; Carter, D.A.; Crunelli, V. Enhanced Tonic GABAA Inhibition in Typical Absence Epilepsy. Nat. Med. 2009, 15, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Song, I.; Keum, S.; Lee, T.; Jeong, M.J.; Kim, S.S.; McEnery, M.W.; Shin, H.S. Lack of the Burst Firing of Thalamocortical Relay Neurons and Resistance to Absence Seizures in Mice Lacking α1G T-Type Ca2+ Channels. Neuron 2001, 31, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Ernst, W.L.; Zhang, Y.; Yoo, J.W.; Ernst, S.J.; Noebels, J.L. Genetic Enhancement of Thalamocortical Network Activity by Elevating Alpha 1g-Mediated Low-Voltage-Activated Calcium Current Induces Pure Absence Epilepsy. J. Neurosci. 2009, 29, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mori, M.; Burgess, D.L.; Noebels, J.L. Mutations in High-Voltage-Activated Calcium Channel Genes Stimulate Low-Voltage-Activated Currents in Mouse Thalamic Relay Neurons. J. Neurosci. 2002, 22, 6362–6371. [Google Scholar] [CrossRef]
- Song, I.; Kim, D.; Choi, S.; Sun, M.; Kim, Y.; Shin, H.S. Role of the Alpha1G T-Type Calcium Channel in Spontaneous Absence Seizures in Mutant Mice. J. Neurosci. 2004, 24, 5249–5257. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, J.; Latchoumane, C.; Lee, B.; Oh, S.J.; Saud, Z.A.; Park, C.; Sun, N.; Cheong, E.; Chen, C.C.; et al. Rebound Burst Firing in the Reticular Thalamus Is Not Essential for Pharmacological Absence Seizures in Mice. Proc. Natl. Acad. Sci. USA 2014, 111, 11828–11833. [Google Scholar] [CrossRef]
- Huang, Z.; Walker, M.C.; Shah, M.M. Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis. J. Neurosci. 2009, 29, 10979–10988. [Google Scholar] [CrossRef]
- Santoro, B.; Lee, J.Y.; Englot, D.J.; Gildersleeve, S.; Piskorowski, R.A.; Siegelbaum, S.A.; Winawer, M.R.; Blumenfeld, H. Increased Seizure Severity and Seizure-Related Death in Mice Lacking HCN1 Channels. Epilepsia 2010, 51, 1624–1627. [Google Scholar] [CrossRef]
- Nishitani, A.; Kunisawa, N.; Sugimura, T.; Sato, K.; Yoshida, Y.; Suzuki, T.; Sakuma, T.; Yamamoto, T.; Asano, M.; Saito, Y.; et al. Loss of HCN1 Subunits Causes Absence Epilepsy in Rats. Brain Res. 2019, 1706, 209–217. [Google Scholar] [CrossRef]
- Frankel, W.N.; Mahaffey, C.L.; McGarr, T.C.; Beyer, B.J.; Letts, V.A. Unraveling Genetic Modifiers in the Gria4 Mouse Model of Absence Epilepsy. PLoS Genet. 2014, 10, 1004454. [Google Scholar] [CrossRef]
- Ludwig, A.; Budde, T.; Stieber, J.; Moosmang, S.; Wahl, C.; Holthoff, K.; Langebartels, A.; Wotjak, C.; Munsch, T.; Zong, X.; et al. Absence Epilepsy and Sinus Dysrhythmia in Mice Lacking the Pacemaker Channel HCN2. EMBO J. 2003, 22, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.W.; Jia, F.; Abbas, S.Y.; Hofmann, F.; Ludwig, A.; Goldstein, P.A. Dendritic HCN2 Channels Constrain Glutamate-Driven Excitability in Reticular Thalamic Neurons. J. Neurosci. 2007, 27, 8719–8732. [Google Scholar] [CrossRef]
- Zobeiri, M.; Chaudhary, R.; Blaich, A.; Rottmann, M.; Herrmann, S.; Meuth, P.; Bista, P.; Kanyshkova, T.; Lüttjohann, A.; Narayanan, V.; et al. The Hyperpolarization-Activated HCN4 Channel Is Important for Proper Maintenance of Oscillatory Activity in the Thalamocortical System. Cereb. Cortex 2019, 29, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.L.; Herlitze, S.; Mark, M.D.; Noebels, J.L. Adult Loss of Cacna1a in Mice Recapitulates Childhood Absence Epilepsy by Distinct Thalamic Bursting Mechanisms. Brain 2020, 143, 161–174. [Google Scholar] [CrossRef]
- Bomben, V.C.; Aiba, I.; Qian, J.; Mark, M.D.; Herlitze, S.; Noebels, J.L. Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J. Neurosci. 2016, 36, 405–418. [Google Scholar] [CrossRef]
- Gawel, K.; Turski, W.A.; van der Ent, W.; Mathai, B.J.; Kirstein-Smardzewska, K.J.; Simonsen, A.; Esguerra, C.V. Phenotypic Characterization of Larval Zebrafish (Danio Rerio) with Partial Knockdown of the Cacna1a Gene. Mol. Neurobiol. 2020, 57, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.M.; Schreiner, C.M.; Schultheis, P.J.; Miller, M.L.; Evans, R.L.; Vorhees, C.V.; Shull, G.E.; Scott, W.J. Targeted Disruption of the Murine Nhe1 Locus Induces Ataxia, Growth Retardation, and Seizures. Am. J. Physiol. 1999, 276, C788–C795. [Google Scholar] [CrossRef]
- Xia, Y.; Zhao, P.; Xue, J.; Gu, X.Q.; Sun, X.; Yao, H.; Haddad, G.G. Na+ Channel Expression and Neuronal Function in the Na+/H+ Exchanger 1 Null Mutant Mouse. J. Neurophysiol. 2003, 89, 229–236. [Google Scholar] [CrossRef]
- Campos-Rodriguez, C.; Palmer, D.; Forcelli, P.A. Optogenetic Stimulation of the Superior Colliculus Suppresses Genetic Absence Seizures. Brain 2023, 146, 4320–4335. [Google Scholar] [CrossRef]
- Hyder, S.K.; Lazarini-Lopes, W.; Toib, J.; Williams, G.; Sukharev, A.; Forcelli, P.A. Optogenetic Stimulation of Dorsal Striatum Bidirectionally Controls Seizures. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kros, L.; Eelkman Rooda, O.H.J.; Spanke, J.K.; Alva, P.; Van Dongen, M.N.; Karapatis, A.; Tolner, E.A.; Strydis, C.; Davey, N.; Winkelman, B.H.J.; et al. Cerebellar Output Controls Generalized Spike-and-Wave Discharge Occurrence. Ann. Neurol. 2015, 77, 1027–1049. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, J.C.; Pakusch, J.; Mücher, B.; Brückner, A.; Depke, D.A.; Fenzl, T.; De Zeeuw, C.I.; Kros, L.; Hoebeek, F.E.; Mark, M.D. Controlling Absence Seizures from the Cerebellar Nuclei via Activation of the Gq Signaling Pathway. Cell Mol. Life Sci. 2022, 79, 197. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Bakhurin, K.; Li, Y.; Mikati, M.A.; Cui, J.; Grill, W.M.; Yin, H.H.; Yang, H. Attenuating Midline Thalamus Bursting to Mitigate Absence Epilepsy. Proc. Natl. Acad. Sci. USA 2024, 121, e2403763121. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, M.; Özyurt, M.G.; Arkan, S.; Cavdar, S. The Effects of Optogenetic Activation of Astrocytes on Spike-and-Wave Discharges in Genetic Absence Epileptic Rats. Ann. Neurosci. 2022, 29, 53–61. [Google Scholar] [CrossRef]
- Panthi, S.; Leitch, B. The Impact of Silencing Feed-Forward Parvalbumin-Expressing Inhibitory Interneurons in the Cortico-Thalamocortical Network on Seizure Generation and Behaviour. Neurobiol. Dis. 2019, 132, 104610. [Google Scholar] [CrossRef]
- Panthi, S.; Leitch, B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front. Cell Neurosci. 2021, 15, 688905. [Google Scholar] [CrossRef]
- Abdelaal, M.S.; Midorikawa, M.; Suzuki, T.; Kobayashi, K.; Takata, N.; Miyata, M.; Mimura, M.; Tanaka, K.F. Dysfunction of Parvalbumin-Expressing Cells in the Thalamic Reticular Nucleus Induces Cortical Spike-and-Wave Discharges and an Unconscious State. Brain Commun. 2022, 4, fcac010. [Google Scholar] [CrossRef]
- Stevelink, R.; Koeleman, B.P.C.; Sander, J.W.; Jansen, F.E.; Braun, K.P.J. Refractory Juvenile Myoclonic Epilepsy: A Meta-Analysis of Prevalence and Risk Factors. Eur. J. Neurol. 2019, 26, 856–864. [Google Scholar] [CrossRef]
- Silvennoinen, K.; de Lange, N.; Zagaglia, S.; Balestrini, S.; Androsova, G.; Wassenaar, M.; Auce, P.; Avbersek, A.; Becker, F.; Berghuis, B.; et al. Comparative Effectiveness of Antiepileptic Drugs in Juvenile Myoclonic Epilepsy. Epilepsia Open 2019, 4, 420–430. [Google Scholar] [CrossRef]
- Meencke, H.; Veith, G. The Relevance of Slight Migrational Disturbances (Microdysgenesis) to the Etiology of the Epilepsies; Delgado-Escueta, A.V., Wilson, W.A., Olsen, R.W., Porter, R.J., Eds.; Advances in Neurology; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1999; Volume 79. [Google Scholar]
- Gilsoul, M.; Grisar, T.; Delgado-Escueta, A.V.; de Nijs, L.; Lakaye, B. Subtle Brain Developmental Abnormalities in the Pathogenesis of Juvenile Myoclonic Epilepsy. Front. Cell Neurosci. 2019, 13, 00433. [Google Scholar] [CrossRef]
- Caciagli, L.; Wandschneider, B.; Xiao, F.; Vollmar, C.; Centeno, M.; Vos, S.B.; Trimmel, K.; Sidhu, M.K.; Thompson, P.J.; Winston, G.P.; et al. Abnormal Hippocampal Structure and Function in Juvenile Myoclonic Epilepsy and Unaffected Siblings. Brain 2019, 142, 2670–2687. [Google Scholar] [CrossRef] [PubMed]
- Bajic, D.; Ewald, U.; Raininko, R. Hippocampal Development at Gestation Weeks 23 to 36. An Ultrasound Study on Preterm Neonates. Neuroradiology 2010, 52, 489–494. [Google Scholar] [CrossRef]
- Lin, J.J.; Dabbs, K.; Riley, J.D.; Jones, J.E.; Jackson, D.C.; Hsu, D.A.; Stafstrom, C.E.; Seidenberg, M.; Hermann, B.P. Neurodevelopment in New-Onset Juvenile Myoclonic Epilepsy over the First 2 Years. Ann. Neurol. 2014, 76, 660–668. [Google Scholar] [CrossRef]
- Perani, S.; Tierney, T.M.; Centeno, M.; Shamshiri, E.A.; Yaakub, S.N.; O’Muircheartaigh, J.; Carmichael, D.W.; Richardson, M.P. Thalamic Volume Reduction in Drug-Naive Patients with New-Onset Genetic Generalized Epilepsy. Epilepsia 2018, 59, 226–234. [Google Scholar] [CrossRef]
- Ekmekci, B.; Bulut, H.T.; Gümüştaş, F.; Yıldırım, A.; Kuştepe, A. The Relationship between White Matter Abnormalities and Cognitive Functions in New-Onset Juvenile Myoclonic Epilepsy. Epilepsy Behav. 2016, 62, 166–170. [Google Scholar] [CrossRef]
- Wight, J.E.; Nguyen, V.H.; Medina, M.T.; Patterson, C.; Durón, R.M.; Molina, Y.; Lin, Y.C.; Martínez-Juárez, I.E.; Ochoa, A.; Jara-Prado, A.; et al. Chromosome Loci Vary by Juvenile Myoclonic Epilepsy Subsyndromes: Linkage and Haplotype Analysis Applied to Epilepsy and EEG 3.5-6.0 Hz Polyspike Waves. Mol. Genet. Genomic Med. 2016, 4, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Escueta, A.V.; Koeleman, B.P.C.; Bailey, J.N.; Medina, M.T.; Durón, R.M. The Quest for Juvenile Myoclonic Epilepsy Genes. Epilepsy Behav. 2013, 28 (Suppl. S1), S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Killam, E.K.; Stark, L.G.; Killam, K.F. Photic-Stimulation in Three Species of Baboons. Life Sci. 1967, 6, 1569–1574. [Google Scholar] [CrossRef]
- Szabó, C.Á.; Knape, D.K.; Leland, M.M.; Cwikla, J.D.; Williams-Blangero, S.; Williams, T.J. Epidemiology and Characterization of Seizures in a Pedigreed Baboon Colony. Comp. Med. 2012, 62, 535–538. [Google Scholar]
- Croll, L.; Szabo, C.A.; Abou-Madi, N.; Devinsky, O. Epilepsy in Nonhuman Primates. Epilepsia 2019, 60, 1526–1538. [Google Scholar] [CrossRef]
- Young, N.A.; Szabó, C.A.; Phelix, C.F.; Flaherty, D.K.; Balaram, P.; Foust-Yeoman, K.B.; Collins, C.E.; Kaas, J.H. Epileptic Baboons Have Lower Numbers of Neurons in Specific Areas of Cortex. Proc. Natl. Acad. Sci. USA 2013, 110, 19107–19112. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.Á.; Salinas, F.S. Voxel-Based Morphometry in Epileptic Baboons: Parallels to Human Juvenile Myoclonic Epilepsy. Epilepsy Res. 2016, 124, 34–39. [Google Scholar] [CrossRef]
- Kos, M.Z.; Carless, M.A.; Blondell, L.; Leland, M.M.; Knape, K.D.; Göring, H.H.H.; Szabó, C.Á. Whole Genome Sequence Data from Captive Baboons Implicate RBFOX1 in Epileptic Seizure Risk. Front. Genet. 2021, 12, 714282. [Google Scholar] [CrossRef] [PubMed]
- Gehman, L.T.; Stoilov, P.; Maguire, J.; Damianov, A.; Lin, C.H.; Shiue, L.; Ares, M.; Mody, I.; Black, D.L. The Splicing Regulator Rbfox1 (A2BP1) Controls Neuronal Excitation in the Mammalian Brain. Nat. Genet. 2011, 43, 706–711. [Google Scholar] [CrossRef]
- Vuong, C.K.; Wei, W.; Lee, J.A.; Lin, C.H.; Damianov, A.; de la Torre-Ubieta, L.; Halabi, R.; Otis, K.O.; Martin, K.C.; O’Dell, T.J.; et al. Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific VSNARE Vamp1. Neuron 2018, 98, 127–141.e7. [Google Scholar] [CrossRef] [PubMed]
- Wamsley, B.; Jaglin, X.H.; Favuzzi, E.; Quattrocolo, G.; Nigro, M.J.; Yusuf, N.; Khodadadi-Jamayran, A.; Rudy, B.; Fishell, G. Rbfox1 Mediates Cell-Type-Specific Splicing in Cortical Interneurons. Neuron 2018, 100, 846–859.e7. [Google Scholar] [CrossRef]
- Smemo, S.; Tena, J.J.; Kim, K.H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; et al. Obesity-Associated Variants within FTO Form Long-Range Functional Connections with IRX3. Nature 2014, 507, 371–375. [Google Scholar] [CrossRef]
- Wielaender, F.; Sarviaho, R.; James, F.; Hytönen, M.K.; Cortez, M.A.; Kluger, G.; Koskinen, L.L.E.; Arumilli, M.; Kornberg, M.; Bathen-Noethen, A.; et al. Generalized Myoclonic Epilepsy with Photosensitivity in Juvenile Dogs Caused by a Defective DIRAS Family GTPase 1. Proc. Natl. Acad. Sci. USA 2017, 114, 2669–2674. [Google Scholar] [CrossRef]
- Tada, M.; Gengyo-Ando, K.; Kobayashi, T.; Fukuyama, M.; Mitani, S.; Kontani, K.; Katada, T. Neuronally Expressed Ras-Family GTPase Di-Ras Modulates Synaptic Activity in Caenorhabditis Elegans. Genes. Cells 2012, 17, 778–789. [Google Scholar] [CrossRef]
- Yeh, C.W.; Hsu, L.S. Zebrafish Diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway. Mol. Neurobiol. 2016, 53, 6594–6607. [Google Scholar] [CrossRef]
- Cossette, P.; Liu, L.; Brisebois, K.; Dong, H.; Lortie, A.; Vanasse, M.; Saint-Hilaire, J.M.; Carmant, L.; Verner, A.; Lu, W.Y.; et al. Mutation of GABRA1 in an Autosomal Dominant Form of Juvenile Myoclonic Epilepsy. Nat. Genet. 2002, 31, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.J.; Ding, L.; Maheshwari, A.; Macdonald, R.L. The GABAA Receptor Alpha1 Subunit Epilepsy Mutation A322D Inhibits Transmembrane Helix Formation and Causes Proteasomal Degradation. Proc. Natl. Acad. Sci. USA 2007, 104, 12999–13004. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Feng, H.J.; Macdonald, R.L.; Botzolakis, E.J.; Hu, N.; Gallagher, M.J. GABA(A) Receptor Alpha1 Subunit Mutation A322D Associated with Autosomal Dominant Juvenile Myoclonic Epilepsy Reduces the Expression and Alters the Composition of Wild Type GABA(A) Receptors. J. Biol. Chem. 2010, 285, 26390–26405. [Google Scholar] [CrossRef] [PubMed]
- Arain, F.M.; Boyd, K.L.; Gallagher, M.J. Decreased Viability and Absence-like Epilepsy in Mice Lacking or Deficient in the GABAA Receptor α1 Subunit. Epilepsia 2012, 53, e161–e165. [Google Scholar] [CrossRef]
- Arain, F.; Zhou, C.; Ding, L.; Zaidi, S.; Gallagher, M.J. The Developmental Evolution of the Seizure Phenotype and Cortical Inhibition in Mouse Models of Juvenile Myoclonic Epilepsy. Neurobiol. Dis. 2015, 82, 164–175. [Google Scholar] [CrossRef]
- Samarut, É.; Swaminathan, A.; Riché, R.; Liao, M.; Hassan-Abdi, R.; Renault, S.; Allard, M.; Dufour, L.; Cossette, P.; Soussi-Yanicostas, N.; et al. γ-Aminobutyric Acid Receptor Alpha 1 Subunit Loss of Function Causes Genetic Generalized Epilepsy by Impairing Inhibitory Network Neurodevelopment. Epilepsia 2018, 59, 2061–2074. [Google Scholar] [CrossRef]
- Suzuki, T.; Delgado-Escueta, V.A.; Aguan, K.; Alonso, M.E.; Shi, J.; Haras, Y.; Nishidas, M.; Numata, T.; Medina, M.T.; Takeuchi, T.; et al. Mutations in EFHC1 Cause Juvenile Myoclonic Epilepsy. Nat. Genet. 2004, 36, 842–849. [Google Scholar] [CrossRef]
- Annesi, F.; Gambardella, A.; Michelucci, R.; Bianchi, A.; Marini, C.; Canevini, M.P.; Capovilla, G.; Elia, M.; Buti, D.; Chifari, R.; et al. Mutational Analysis of EFHC1 Gene in Italian Families with Juvenile Myoclonic Epilepsy. Epilepsia 2007, 48, 1686–1690. [Google Scholar] [CrossRef]
- Bailey, J.N.; Patterson, C.; De Nijs, L.; Durón, R.M.; Nguyen, V.H.; Tanaka, M.; Medina, M.T.; Jara-Prado, A.; Martínez-Juárez, I.E.; Ochoa, A.; et al. EFHC1 Variants in Juvenile Myoclonic Epilepsy: Reanalysis According to NHGRI and ACMG Guidelines for Assigning Disease Causality. Genet. Med. 2017, 19, 144–156. [Google Scholar] [CrossRef]
- Ikeda, K.; Brown, J.A.; Yagi, T.; Norrander, J.M.; Hirono, M.; Eccleston, E.; Kamiya, R.; Linck, R.W. Rib72, a Conserved Protein Associated with the Ribbon Compartment of Flagellar A-Microtubules and Potentially Involved in the Linkage between Outer Doublet Microtubules. J. Biol. Chem. 2003, 278, 7725–7734. [Google Scholar] [CrossRef]
- Ikeda, T.; Ikeda, K.; Enomoto, M.; Park, M.K.; Hirono, M.; Kamiya, R. The Mouse Ortholog of EFHC1 Implicated in Juvenile Myoclonic Epilepsy Is an Axonemal Protein Widely Conserved among Organisms with Motile Cilia and Flagella. FEBS Lett. 2005, 579, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Stoyanova, M.; Rademacher, G.; Dutcher, S.K.; Brown, A.; Zhang, R. Structure of the Decorated Ciliary Doublet Microtubule. Cell 2019, 179, 909–922.e12. [Google Scholar] [CrossRef]
- Stoddard, D.; Zhao, Y.; Bayless, B.A.; Gui, L.; Louka, P.; Dave, D.; Suryawanshi, S.; Tomasi, R.F.X.; Dupuis-Williams, P.; Baroud, C.N.; et al. Tetrahymena RIB72A and RIB72B Are Microtubule Inner Proteins in the Ciliary Doublet Microtubules. Mol. Biol. Cell 2018, 29, 2566–2577. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Miyamoto, H.; Nakahari, T.; Inoue, I.; Suemoto, T.; Jiang, B.; Hirota, Y.; Itohara, S.; Saido, T.C.; Tsumoto, T.; et al. Efhc1 Deficiency Causes Spontaneous Myoclonus and Increased Seizure Susceptibility. Hum. Mol. Genet. 2009, 18, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Loucks, C.M.; Park, K.; Walker, D.S.; McEwan, A.H.; Timbers, T.A.; Ardiel, E.L.; Grundy, L.J.; Li, C.; Johnson, J.L.; Kennedy, J.; et al. EFHC1, Implicated in Juvenile Myoclonic Epilepsy, Functions at the Cilium and Synapse to Modulate Dopamine Signaling. Elife 2019, 8, 37271. [Google Scholar] [CrossRef]
- Rossetto, M.G.; Zanarella, E.; Orso, G.; Scorzeto, M.; Megighian, A.; Kumar, V.; Delgado-escueta, A.V.; Daga, A. Defhc1.1, a Homologue of the Juvenile Myoclonic Gene EFHC1, Modulates Architecture and Basal Activity of the Neuromuscular Junction in Drosophila. Hum. Mol. Genet. 2011, 20, 4248–4257. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, J.; Winey, M.; Klymkowsky, M.W. Identifying Domains of EFHC1 Involved in Ciliary Localization, Ciliogenesis, and the Regulation of Wnt Signaling. Dev. Biol. 2016, 411, 257–265. [Google Scholar] [CrossRef]
- de Nijs, L.; Lakaye, B.; Coumans, B.; Léon, C.; Ikeda, T.; Delgado-Escueta, A.V.; Grisar, T.; Chanas, G. EFHC1, a Protein Mutated in Juvenile Myoclonic Epilepsy, Associates with the Mitotic Spindle through Its N-Terminus. Exp. Cell Res. 2006, 312, 2872–2879. [Google Scholar] [CrossRef]
- De Nijs, L.; Léon, C.; Nguyen, L.; Loturco, J.J.; Delgado-Escueta, A.V.; Grisar, T.; Lakaye, B. EFHC1 Interacts with Microtubules to Regulate Cell Division and Cortical Development. Nat. Neurosci. 2009, 12, 1266–1274. [Google Scholar] [CrossRef]
- Raju, P.K.; Satishchandra, P.; Nayak, S.; Iyer, V.; Sinha, S.; Anand, A. Microtubule-Associated Defects Caused by EFHC1 Mutations in Juvenile Myoclonic Epilepsy. Hum. Mutat. 2017, 38, 816–826. [Google Scholar] [CrossRef]
- De Nijs, L.; Wolkoff, N.; Coumans, B.; Delgado-Escueta, A.V.; Grisar, T.; Lakaye, B. Mutations of EFHC1, Linked to Juvenile Myoclonic Epilepsy, Disrupt Radial and Tangential Migrations during Brain Development. Hum. Mol. Genet. 2012, 21, 5106–5117. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, N. Influence of Mutated Forms of EFHC1 (or Myoclonin 1), a Protein Involved in Juvenile Myoclonic Epilepsy, on Cerebral Corticogenesis. Ph.D. Thesis, University of Liège, Liège, Belgium, 2014. [Google Scholar]
- Linck, R.; Fu, X.; Lin, J.; Ouch, C.; Schefter, A.; Steffen, W.; Warren, P.; Nicastro, D. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules: Tektins, Ca2+-Binding Proteins, and Stable Protofilaments. J. Biol. Chem. 2014, 289, 17427–17444. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.K.; Kubo, S.; Black, C.S.; Peri, K.; Dai, D.; Legal, T.; Valente-Paterno, M.; Gaertig, J.; Bui, K.H. Effect of α-Tubulin Acetylation on the Doublet Microtubule Structure. Elife 2024, 12, 92219. [Google Scholar] [CrossRef]
- Fabritius, A.S.; Bayless, B.A.; Li, S.; Stoddard, D.; Heydeck, W.; Ebmeier, C.C.; Anderson, L.; Gunnels, T.; Nachiappan, C.; Whittall, J.B.; et al. Proteomic Analysis of Microtubule Inner Proteins (MIPs) in Rib72 Null Tetrahymena Cells Reveals Functional MIPs. Mol. Biol. Cell 2021, 32, br8. [Google Scholar] [CrossRef]
- Chakraborty, S.; Martinez-Sanchez, A.; Beck, F.; Toro-Nahuelpan, M.; Hwang, I.-Y.; Noh, K.-M.; Baumeister, W.; Mahamid, J. Cryo-Electron Tomography Suggests Tubulin Chaperones Form a Subset of Microtubule Lumenal Particles with a Role in Maintaining Neuronal Microtubules. bioRxiv 2022. [Google Scholar] [CrossRef]
- Tsuji, C.; Dodding, M.P. Lumenal Components of Cytoplasmic Microtubules. Biochem. Soc. Trans. 2022, 50, 1953–1962. [Google Scholar] [CrossRef]
- Kar, S.; Fan, J.; Smith, M.J.; Goedert, M.; Amos, L.A. Repeat Motifs of Tau Bind to the Insides of Microtubules in the Absence of Taxol. EMBO J. 2003, 22, 70–77. [Google Scholar] [CrossRef] [PubMed]
- de Nijs, L.; Wolkoff, N.; Grisar, T.; Lakaye, B. Juvenile Myoclonic Epilepsy as a Possible Neurodevelopmental Disease: Role of EFHC1 or Myoclonin1. Epilepsy Behav. 2013, 28 (Suppl. S1), S58–S60. [Google Scholar] [CrossRef]
- Fame, R.M.; Lehtinen, M.K. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev. Cell 2020, 52, 261–275. [Google Scholar] [CrossRef]
- Chikina, A.S.; Zholudeva, A.O.; Lomakina, M.E.; Kireev, I.I.; Dayal, A.A.; Minin, A.A.; Maurin, M.; Svitkina, T.M.; Alexandrova, A.Y. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024, 13, 105. [Google Scholar] [CrossRef]
- Fourriere, L.; Jimenez, A.J.; Perez, F.; Boncompain, G. The Role of Microtubules in Secretory Protein Transport. J. Cell Sci. 2020, 133, 237016. [Google Scholar] [CrossRef] [PubMed]
- Courtney, Y.; Head, J.P.; Yimer, E.D.; Dani, N.; Shipley, F.B.; Libermann, T.A.; Lehtinen, M.K. A Choroid Plexus Apocrine Secretion Mechanism Shapes CSF Proteome and Embryonic Brain Development. bioRxiv 2024. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Yamakawa, G.R.; Shultz, S.R.; Mychasiuk, R. Is the Glymphatic System the Missing Link between Sleep Impairments and Neurological Disorders? Examining the Implications and Uncertainties. Prog. Neurobiol. 2021, 198, 101917. [Google Scholar] [CrossRef]
- Lundgaard, I.; Wang, W.; Eberhardt, A.; Vinitsky, H.S.; Reeves, B.C.; Peng, S.; Lou, N.; Hussain, R.; Nedergaard, M. Beneficial Effects of Low Alcohol Exposure, but Adverse Effects of High Alcohol Intake on Glymphatic Function. Sci. Rep. 2018, 8, 2246. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, D.A.; Shin, K.J.; Park, K.M. Glymphatic System Dysfunction in Patients with Juvenile Myoclonic Epilepsy. J. Neurol. 2022, 269, 2133–2139. [Google Scholar] [CrossRef]
- Dibbens, L.M.; Feng, H.J.; Richards, M.C.; Harkin, L.A.; Hodgson, B.L.; Scott, D.; Jenkins, M.; Petrou, S.; Sutherland, G.R.; Scheffer, I.E.; et al. GABRD Encoding a Protein for Extra- or Peri-Synaptic GABAA Receptors Is a Susceptibility Locus for Generalized Epilepsies. Hum. Mol. Genet. 2004, 13, 1315–1319. [Google Scholar] [CrossRef]
- Feng, H.J.; Kang, J.Q.; Song, L.; Dibbens, L.; Mulley, J.; Macdonald, R.L. Delta Subunit Susceptibility Variants E177A and R220H Associated with Complex Epilepsy Alter Channel Gating and Surface Expression of Alpha4beta2delta GABAA Receptors. J. Neurosci. 2006, 26, 1499–1506. [Google Scholar] [CrossRef]
- Glykys, J.; Mann, E.O.; Mody, I. Which GABA(A) Receptor Subunits Are Necessary for Tonic Inhibition in the Hippocampus? J. Neurosci. 2008, 28, 1421–1426. [Google Scholar] [CrossRef]
- Cope, D.W.; Hughes, S.W.; Crunelli, V. GABAA Receptor-Mediated Tonic Inhibition in Thalamic Neurons. J. Neurosci. 2005, 25, 11553–11563. [Google Scholar] [CrossRef]
- Spigelman, I.; Li, Z.; Banerjee, P.K.; Mihalek, R.M.; Homanics, G.E.; Olsen, R.W. Behavior and Physiology of Mice Lacking the GABAA-Receptor Delta Subunit. Epilepsia 2002, 43 (Suppl. S5), 3–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.; Maguire, J. Impact of Inhibitory Constraint of Interneurons on Neuronal Excitability. J. Neurophysiol. 2013, 110, 2520–2535. [Google Scholar] [CrossRef] [PubMed]
- Ahring, P.K.; Liao, V.W.Y.; Gardella, E.; Johannesen, K.M.; Krey, I.; Selmer, K.K.; Stadheim, B.F.; Davis, H.; Peinhardt, C.; Koko, M.; et al. Gain-of-Function Variants in GABRD Reveal a Novel Pathway for Neurodevelopmental Disorders and Epilepsy. Brain 2022, 145, 1299–1309. [Google Scholar] [CrossRef]
- Kapoor, A.; Satishchandra, P.; Ratnapriya, R.; Reddy, R.; Kadandale, J.; Shankar, S.K.; Anand, A. An Idiopathic Epilepsy Syndrome Linked to 3q13.3-Q21 and Missense Mutations in the Extracellular Calcium Sensing Receptor Gene. Ann. Neurol. 2008, 64, 158–167. [Google Scholar] [CrossRef]
- Junjie, N.; Lina, Q. Analysis of CASR Gene Variant in a Child with Idiopathic Epilepsy and Autism. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2022, 39, 309–311. [Google Scholar] [CrossRef]
- Stepanchick, A.; McKenna, J.; McGovern, O.; Huang, Y.; Breitwieser, G.E. Calcium Sensing Receptor Mutations Implicated in Pancreatitis and Idiopathic Epilepsy Syndrome Disrupt an Arginine-Rich Retention Motif. Cell Physiol. Biochem. 2010, 26, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Lu, Y.S.; Gao, J.Y.; Marshall, C.; Xiao, M.; Miao, D.S.; Karaplis, A.; Goltzman, D.; Ding, J. Calcium Sensing Receptor Absence Delays Postnatal Brain Development via Direct and Indirect Mechanisms. Mol. Neurobiol. 2013, 48, 590–600. [Google Scholar] [CrossRef]
- Ruat, M.; Traiffort, E. Roles of the Calcium Sensing Receptor in the Central Nervous System. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 429–442. [Google Scholar] [CrossRef]
- Marques, S.; Zeisel, A.; Codeluppi, S.; Van Bruggen, D.; Falcão, A.M.; Xiao, L.; Li, H.; Häring, M.; Hochgerner, H.; Romanov, R.A.; et al. Oligodendrocyte Heterogeneity in the Mouse Juvenile and Adult Central Nervous System. Science 2016, 352, 1326–1329. [Google Scholar] [CrossRef]
- Vizard, T.N.; O’Keeffe, G.W.; Gutierrez, H.; Kos, C.H.; Riccardi, D.; Davies, A.M. Regulation of Axonal and Dendritic Growth by the Extracellular Calcium-Sensing Receptor. Nat. Neurosci. 2008, 11, 285–291. [Google Scholar] [CrossRef]
- Pal, D.K.; Evgrafov, O.V.; Tabares, P.; Zhang, F.; Durner, M.; Greenberg, D.A. BRD2 (RING3) Is a Probable Major Susceptibility Gene for Common Juvenile Myoclonic Epilepsy. Am. J. Hum. Genet. 2003, 73, 261–270. [Google Scholar] [CrossRef]
- Pathak, S.; Miller, J.; Morris, E.C.; Stewart, W.C.L.; Greenberg, D.A. DNA Methylation of the BRD2 Promoter Is Associated with Juvenile Myoclonic Epilepsy in Caucasians. Epilepsia 2018, 59, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Ruppert, A.K.; Zara, F.; Madia, F.; Iacomino, M.; Vari, M.S.; Balagura, G.; Minetti, C.; Striano, P.; Bianchi, A.; et al. No Evidence for a BRD2 Promoter Hypermethylation in Blood Leukocytes of Europeans with Juvenile Myoclonic Epilepsy. Epilepsia 2019, 60, e31–e36. [Google Scholar] [CrossRef] [PubMed]
- Cavalleri, G.L.; Walley, N.M.; Soranzo, N.; Mulley, J.; Doherty, C.P.; Kapoor, A.; Depondt, C.; Lynch, J.M.; Scheffer, I.E.; Heils, A.; et al. A Multicenter Study of BRD2 as a Risk Factor for Juvenile Myoclonic Epilepsy. Epilepsia 2007, 48, 706–712. [Google Scholar] [CrossRef]
- Hnilicová, J.; Hozeifi, S.; Stejskalová, E.; Dušková, E.; Poser, I.; Humpolíčková, J.; Hof, M.; Staněk, D. The C-Terminal Domain of Brd2 Is Important for Chromatin Interaction and Regulation of Transcription and Alternative Splicing. Mol. Biol. Cell 2013, 24, 3557–3568. [Google Scholar] [CrossRef]
- Shang, E.; Wang, X.; Wen, D.; Greenberg, D.A.; Wolgemuth, D.J. Double Bromodomain-Containing Gene Brd2 Is Essential for Embryonic Development in Mouse. Dev. Dyn. 2009, 238, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Velíšek, L.; Shang, E.; Velíšková, J.; Chachua, T.; Macchiarulo, S.; Maglakelidze, G.; Wolgemuth, D.J.; Greenberg, D.A. GABAergic Neuron Deficit as an Idiopathic Generalized Epilepsy Mechanism: The Role of BRD2 Haploinsufficiency in Juvenile Myoclonic Epilepsy. PLoS ONE 2011, 6, 23656. [Google Scholar] [CrossRef]
- McCarthy, E.; Shakil, F.; Saint Ange, P.; Morris Cameron, E.; Miller, J.; Pathak, S.; Greenberg, D.A.; Velíšková, J.; Velíšek, L. Developmental Decrease in Parvalbumin-Positive Neurons Precedes Increase in Flurothyl-Induced Seizure Susceptibility in the Brd2+/- Mouse Model of Juvenile Myoclonic Epilepsy. Epilepsia 2020, 61, 892–902. [Google Scholar] [CrossRef]
- Murphy, T.; Melville, H.; Fradkin, E.; Bistany, G.; Branigan, G.; Olsen, K.; Comstock, C.R.; Hanby, H.; Garbade, E.; DiBenedetto, A.J. Knockdown of Epigenetic Transcriptional Co-Regulator Brd2a Disrupts Apoptosis and Proper Formation of Hindbrain and Midbrain-Hindbrain Boundary (MHB) Region in Zebrafish. Mech. Dev. 2017, 146, 10–30. [Google Scholar] [CrossRef]
- Branigan, G.L.; Olsen, K.S.; Burda, I.; Haemmerle, M.W.; Ho, J.; Venuto, A.; D’antonio, N.D.; Briggs, I.E.; Dibenedetto, A.J. Zebrafish Paralogs Brd2a and Brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J. Dev. Biol. 2021, 9, 46. [Google Scholar] [CrossRef]
- Bailey, J.N.; de Nijs, L.; Bai, D.; Suzuki, T.; Miyamoto, H.; Tanaka, M.; Patterson, C.; Lin, Y.-C.; Medina, M.T.; Alonso, M.E.; et al. Variant Intestinal-Cell Kinase in Juvenile Myoclonic Epilepsy. N. Engl. J. Med. 2018, 378, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Lahiry, P.; Wang, J.; Robinson, J.F.; Turowec, J.P.; Litchfield, D.W.; Lanktree, M.B.; Gloor, G.B.; Puffenberger, E.G.; Strauss, K.A.; Martens, M.B.; et al. A Multiplex Human Syndrome Implicates a Key Role for Intestinal Cell Kinase in Development of Central Nervous, Skeletal, and Endocrine Systems. Am. J. Hum. Genet. 2009, 84, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.P.; Bosakova, M.K.; Varecha, M.; Balek, L.; Barta, T.; Trantirek, L.; Jelinkova, I.; Duran, I.; Vesela, I.; Forlenza, K.N.; et al. An Inactivating Mutation in Intestinal Cell Kinase, ICK, Impairs Hedgehog Signalling and Causes Short Rib-Polydactyly Syndrome. Hum. Mol. Genet. 2016, 25, 3998–4011. [Google Scholar] [CrossRef]
- Fu, Z.; Gailey, C.D.; Wang, E.J.; Brautigan, D.L. Ciliogenesis Associated Kinase 1: Targets and Functions in Various Organ Systems. FEBS Lett. 2019, 593, 2990–3002. [Google Scholar] [CrossRef]
- Fu, Z.; Larson, K.A.; Chitta, R.K.; Parker, S.A.; Turk, B.E.; Lawrence, M.W.; Kaldis, P.; Galaktionov, K.; Cohn, S.M.; Shabanowitz, J.; et al. Identification of Yin-Yang Regulators and a Phosphorylation Consensus for Male Germ Cell-Associated Kinase (MAK)-Related Kinase. Mol. Cell Biol. 2006, 26, 8639–8654. [Google Scholar] [CrossRef]
- Bosakova, M.K.; Nita, A.; Gregor, T.; Varecha, M.; Gudernova, I.; Fafilek, B.; Barta, T.; Basheer, N.; Abraham, S.P.; Balek, L.; et al. Fibroblast Growth Factor Receptor Influences Primary Cilium Length through an Interaction with Intestinal Cell Kinase. Proc. Natl. Acad. Sci. USA 2019, 116, 4316–4325. [Google Scholar] [CrossRef]
- Tong, Y.; Park, S.; Wu, D.; Harris, T.E.; Moskaluk, C.A.; Brautigan, D.L.; Fu, Z. Modulation of GSK3β Autoinhibition by Thr-7 and Thr-8. FEBS Lett. 2018, 592, 537–546. [Google Scholar] [CrossRef]
- Oh, Y.S.; Wang, E.J.; Gailey, C.D.; Brautigan, D.L.; Allen, B.L.; Fu, Z. Ciliopathy-Associated Protein Kinase ICK Requires Its Non-Catalytic Carboxyl-Terminal Domain for Regulation of Ciliogenesis. Cells 2019, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chapman, J.R.; Wang, L.; Harris, T.E.; Shabanowitz, J.; Hunt, D.F.; Fu, Z. Intestinal Cell Kinase (ICK) Promotes Activation of MTOR Complex 1 (MTORC1) through Phosphorylation of Raptor Thr-908. J. Biol. Chem. 2012, 287, 12510–12519. [Google Scholar] [CrossRef]
- Tsutsumi, R.; Chaya, T.; Tsujii, T.; Furukawa, T. The Carboxyl-Terminal Region of SDCCAG8 Comprises a Functional Module Essential for Cilia Formation as Well as Organ Development and Homeostasis. J. Biol. Chem. 2022, 298, 101686. [Google Scholar] [CrossRef]
- Fu, Z.; Schroeder, M.J.; Shabanowitz, J.; Kaldis, P.; Togawa, K.; Rustgi, A.K.; Hunt, D.F.; Sturgill, T.W. Activation of a Nuclear Cdc2-Related Kinase within a Mitogen-Activated Protein Kinase-like TDY Motif by Autophosphorylation and Cyclin-Dependent Protein Kinase-Activating Kinase. Mol. Cell Biol. 2005, 25, 6047–6064. [Google Scholar] [CrossRef] [PubMed]
- Chaya, T.; Omori, Y.; Kuwahara, R.; Furukawa, T. ICK Is Essential for Cell Type-Specific Ciliogenesis and the Regulation of Ciliary Transport. EMBO J. 2014, 33, 1227–1242. [Google Scholar] [CrossRef]
- Moon, H.; Song, J.; Shin, J.O.; Lee, H.; Kim, H.K.; Eggenschwiller, J.T.; Bok, J.; Ko, H.W. Intestinal Cell Kinase, a Protein Associated with Endocrine-Cerebro-Osteodysplasia Syndrome, Is a Key Regulator of Cilia Length and Hedgehog Signaling. Proc. Natl. Acad. Sci. USA 2014, 111, 8541–8546. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.J.; Gailey, C.D.; Brautigan, D.L.; Fu, Z. Functional Alterations in Ciliogenesis-Associated Kinase 1 (CILK1) That Result from Mutations Linked to Juvenile Myoclonic Epilepsy. Cells 2020, 9, 694. [Google Scholar] [CrossRef]
- Lu, I.L.; Chen, C.; Tung, C.Y.; Chen, H.H.; Pan, J.P.; Chang, C.H.; Cheng, J.S.; Chen, Y.A.; Wang, C.H.; Huang, C.W.; et al. Identification of Genes Associated with Cortical Malformation Using a Transposon-Mediated Somatic Mutagenesis Screen in Mice. Nat. Commun. 2018, 9, 2498. [Google Scholar] [CrossRef]
- Sapio, M.R.; Vessaz, M.; Thomas, P.; Genton, P.; Fricker, L.D.; Salzmann, A. Novel Carboxypeptidase A6 (CPA6) Mutations Identified in Patients with Juvenile Myoclonic and Generalized Epilepsy. PLoS ONE 2015, 10, 123180. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.W.; Sapio, M.R.; Leal, R.B.; Fricker, L.D. Knockdown of Carboxypeptidase A6 in Zebrafish Larvae Reduces Response to Seizure-Inducing Drugs and Causes Changes in the Level of MRNAs Encoding Signaling Molecules. PLoS ONE 2016, 11, 152905. [Google Scholar] [CrossRef]
- Layouni, S.; Chouchane, L.; Malafosse, A.; Dogui, M. Dimorphism of TAP-1 Gene in Caucasian with Juvenile Myoclonic Epilepsy and in Tunisian with Idiopathic Generalized Epilepsies. Int. J. Immunogenet. 2010, 37, 117–123. [Google Scholar] [CrossRef]
- Goddard, C.A.; Butts, D.A.; Shatz, C.J. Regulation of CNS Synapses by Neuronal MHC Class I. Proc. Natl. Acad. Sci. USA 2007, 104, 6828–6833. [Google Scholar] [CrossRef]
- Roshandel, D.; Sanders, E.J.; Shakeshaft, A.; Panjwani, N.; Lin, F.; Collingwood, A.; Hall, A.; Keenan, K.; Deneubourg, C.; Mirabella, F.; et al. SLCO5A1 and Synaptic Assembly Genes Contribute to Impulsivity in Juvenile Myoclonic Epilepsy. NPJ Genom. Med. 2023, 8, 28. [Google Scholar] [CrossRef]
- Holtkamp, M.; Kowski, A.B.; Merkle, H.; Janz, D. Long-Term Outcome in Epilepsy with Grand Mal on Awakening: Forty Years of Follow-Up. Ann. Neurol. 2014, 75, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Rohracher, A.; Brigo, F.; Höfler, J.; Kalss, G.; Neuray, C.; Dobesberger, J.; Kuchukhidze, G.; Leitinger, M.; Trinka, E. Perampanel for the Treatment of Primary Generalized Tonic-Clonic Seizures in Idiopathic Generalized Epilepsy. Expert. Opin. Pharmacother. 2016, 17, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, B.C.; Rozen, D.A.; Worsley, K.J.; Evans, A.C.; Bernasconi, N.; Bernasconi, A. Thalamo-Cortical Network Pathology in Idiopathic Generalized Epilepsy: Insights from MRI-Based Morphometric Correlation Analysis. Neuroimage 2009, 46, 373–381. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Chen, Q.; Wang, X.; Qing, Z.; Zhang, W.; Lu, J.; Wang, J.; Zhang, X.; Liu, J.; et al. Atrophy in the Left Amygdala Predicted Drug Responses in Idiopathic Generalized Epilepsy Patients with Tonic-Clonic Seizures. Front. Neurosci. 2021, 15, 640016. [Google Scholar] [CrossRef] [PubMed]
- Abarrategui, B.; Parejo-Carbonell, B.; García García, M.E.; Di Capua, D.; García-Morales, I. The Cognitive Phenotype of Idiopathic Generalized Epilepsy. Epilepsy Behav. 2018, 89, 99–104. [Google Scholar] [CrossRef]
- Noda, A.; Hashizume, R.; Maihara, T.; Tomizawa, Y.; Ito, Y.; Inoue, M.; Kobayashi, K.; Asano, Y.; Sasa, M.; Serikawa, T. NER Rat Strain: A New Type of Genetic Model in Epilepsy Research. Epilepsia 1998, 39, 99–107. [Google Scholar] [CrossRef]
- Inoue, M.; Yamamoto, A.; Kaneko, Y.; Noda, A.; Naito, H. Effects of Conventional Anticonvulsant Drugs on Generalized Tonic-Clonic Seizures in Noda Epileptic Rats. Epilepsy Res. 2014, 108, 1158–1167. [Google Scholar] [CrossRef]
- Maihara, T.; Noda, A.; Yamazoe, H.; Voigt, B.; Kitada, K.; Serikawa, T. Chromosomal Mapping of Genes for Epilepsy in NER: A Rat Strain with Tonic-Clonic Seizures. Epilepsia 2000, 41, 941–949. [Google Scholar] [CrossRef]
- Kuramoto, T.; Voigt, B.; Nakanishi, S.; Kitada, K.; Nakamura, T.; Wakamatsu, K.; Yoshihara, M.; Suyama, M.; Uemura, R.; Tanaka, M.; et al. Identification of Candidate Genes for Generalized Tonic-Clonic Seizures in Noda Epileptic Rat. Behav. Genet. 2017, 47, 609–619. [Google Scholar] [CrossRef]
- Ohno, Y.; Shimizu, S.; Harada, Y.; Morishita, M.; Ishihara, S.; Kumafuji, K.; Sasa, M.; Serikawa, T. Regional Expression of Fos-like Immunoreactivity Following Seizures in Noda Epileptic Rat (NER). Epilepsy Res. 2009, 87, 70–76. [Google Scholar] [CrossRef]
- Sejima, H.; Ito, M.; Kishi, K.; Noda, A.; Serikawa, T. Regional Excitatory and Inhibitory Amino Acid Concentrations in Noda Epileptic Rat (NER) Brain. Brain Dev. 1999, 21, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Jinde, S.; Masui, A.; Morinobu, S.; Takahashi, Y.; Tsunashima, K.; Noda, A.; Yamada, N.; Kato, N. Elevated Neuropeptide Y and Corticotropin-Releasing Factor in the Brain of a Novel Epileptic Mutant Rat: Noda Epileptic Rat. Brain Res. 1999, 833, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Jinde, S.; Masui, A.; Morinobu, S.; Noda, A.; Kato, N. Differential Changes in Messenger RNA Expressions and Binding Sites of Neuropeptide Y Y1, Y2 and Y5 Receptors in the Hippocampus of an Epileptic Mutant Rat: Noda Epileptic Rat. Neuroscience 2002, 115, 1035–1045. [Google Scholar] [CrossRef]
- Kiura, Y.; Hanaya, R.; Serikawa, T.; Kurisu, K.; Sakai, N.; Sasa, M. Involvement of Ca2+ Channels in Abnormal Excitability of Hippocampal CA3 Pyramidal Cells in Noda Epileptic Rats. J. Pharmacol. Sci. 2003, 91, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Nagao, Y.; Shimizu, S.; Serikawa, T.; Terada, R.; Fujimoto, M.; Okuda, A.; Mukai, T.; Sasa, M.; Kurachi, Y.; et al. Expressional Analysis of Inwardly Rectifying Kir4.1 Channels in Noda Epileptic Rat (NER). Brain Res. 2013, 1517, 141–149. [Google Scholar] [CrossRef]
- Mukai, T.; Kinboshi, M.; Nagao, Y.; Shimizu, S.; Ono, A.; Sakagami, Y.; Okuda, A.; Fujimoto, M.; Ito, H.; Ikeda, A.; et al. Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front. Pharmacol. 2018, 9, 845. [Google Scholar] [CrossRef]
- Park, J.C.; Luebbers, A.; Dao, M.; Semeano, A.; Nguyen, A.M.; Papakonstantinou, M.P.; Broselid, S.; Yano, H.; Martemyanov, K.A.; Garcia-Marcos, M. Fine-Tuning GPCR-Mediated Neuromodulation by Biasing Signaling through Different G Protein Subunits. Mol. Cell 2023, 83, 2540–2558.e12. [Google Scholar] [CrossRef]
- Lüttjohann, A.; van Luijtelaar, G. The Role of Thalamic Nuclei in Genetic Generalized Epilepsies. Epilepsy Res. 2022, 182, 106918. [Google Scholar] [CrossRef]
- Guillery, R.W.; Feig, S.L.; Lozsádi, D.A. Paying Attention to the Thalamic Reticular Nucleus. Trends Neurosci. 1998, 21, 28–32. [Google Scholar] [CrossRef]
- Çavdar, S.; Onat, F.Y.; Çakmak, Y.Ö.; Yananli, H.R.; Gülçebi, M.; Aker, R. The Pathways Connecting the Hippocampal Formation, the Thalamic Reuniens Nucleus and the Thalamic Reticular Nucleus in the Rat. J. Anat. 2008, 212, 249–256. [Google Scholar] [CrossRef]
- Pantoja-Jiménez, C.R.; Magdaleno-Madrigal, V.M.; Almazán-Alvarado, S.; Fernández-Mas, R. Anti-Epileptogenic Effect of High-Frequency Stimulation in the Thalamic Reticular Nucleus on PTZ-Induced Seizures. Brain Stimul. 2014, 7, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.J.; Chang, W.P.; Shyu, B.C. Suppression of Cortical Seizures by Optic Stimulation of the Reticular Thalamus in PV-MhChR2-YFP BAC Transgenic Mice. Mol. Brain 2017, 10, 42. [Google Scholar] [CrossRef]
- Clemente-Perez, A.; Makinson, S.R.; Higashikubo, B.; Brovarney, S.; Cho, F.S.; Urry, A.; Holden, S.S.; Wimer, M.; Dávid, C.; Fenno, L.E.; et al. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Rep. 2017, 19, 2130–2142. [Google Scholar] [CrossRef] [PubMed]
- Saalmann, Y.B. Intralaminar and Medial Thalamic Influence on Cortical Synchrony, Information Transmission and Cognition. Front. Syst. Neurosci. 2014, 8, 83. [Google Scholar] [CrossRef]
- Mirski, M.A.; Ferrendelli, J.A. Anterior Thalamic Mediation of Generalized Pentylenetetrazol Seizures. Brain Res. 1986, 399, 212–223. [Google Scholar] [CrossRef]
- Onat, F.Y.; van Luijtelaar, G.; Nehlig, A.; Snead, O.C. The Involvement of Limbic Structures in Typical and Atypical Absence Epilepsy. Epilepsy Res. 2013, 103, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhao, L. The Origin and Structural Evolution of de Novo Genes in Drosophila. Nat. Commun. 2024, 15, 810. [Google Scholar] [CrossRef]
- Fischer, F.P.; Karge, R.A.; Weber, Y.G.; Koch, H.; Wolking, S.; Voigt, A. Drosophila Melanogaster as a Versatile Model Organism to Study Genetic Epilepsies: An Overview. Front. Mol. Neurosci. 2023, 16, 1116000. [Google Scholar] [CrossRef]
- Burg, M.G.; Wu, C.F. Mechanical and Temperature Stressor-Induced Seizure-and-Paralysis Behaviors in Drosophila Bang-Sensitive Mutants. J. Neurogenet. 2012, 26, 189–197. [Google Scholar] [CrossRef]
- Giachello, C.N.G.; Baines, R.A. Inappropriate Neural Activity during a Sensitive Period in Embryogenesis Results in Persistent Seizure-like Behavior. Curr. Biol. 2015, 25, 2964–2968. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Hasani, H.; Sun, J.; Zhu, S.I.; Rong, Q.; Willomitzer, F.; Amor, R.; McConnell, G.; Cossairt, O.; Goodhill, G.J. Whole-Brain Imaging of Freely-Moving Zebrafish. Front. Neurosci. 2023, 17, 1127574. [Google Scholar] [CrossRef] [PubMed]
- Burrows, D.R.W.; Samarut; Liu, J.; Baraban, S.C.; Richardson, M.P.; Meyer, M.P.; Rosch, R.E. Imaging Epilepsy in Larval Zebrafish. Eur. J. Paediatr. Neurol. 2020, 24, 70–80. [Google Scholar] [CrossRef]
- D’Amora, M.; Galgani, A.; Marchese, M.; Tantussi, F.; Faraguna, U.; De Angelis, F.; Giorgi, F.S. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int. J. Mol. Sci. 2023, 24, 7702. [Google Scholar] [CrossRef] [PubMed]
- Herculano-Houzel, S. The Glia/Neuron Ratio: How It Varies Uniformly across Brain Structures and Species and What That Means for Brain Physiology and Evolution. Glia 2014, 62, 1377–1391. [Google Scholar] [CrossRef]
- Kremer, M.C.; Jung, C.; Batelli, S.; Rubin, G.M.; Gaul, U. The Glia of the Adult Drosophila Nervous System. Glia 2017, 65, 606–638. [Google Scholar] [CrossRef]
- Kozol, R.A.; Abrams, A.J.; James, D.M.; Buglo, E.; Yan, Q.; Dallman, J.E. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front. Mol. Neurosci. 2016, 9, 55. [Google Scholar] [CrossRef]
- Hinsch, K.; Zupanc, G.K.H. Generation and Long-Term Persistence of New Neurons in the Adult Zebrafish Brain: A Quantitative Analysis. Neuroscience 2007, 146, 679–696. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef]
- Depaulis, A.; David, O.; Charpier, S. The Genetic Absence Epilepsy Rat from Strasbourg as a Model to Decipher the Neuronal and Network Mechanisms of Generalized Idiopathic Epilepsies. J. Neurosci. Methods 2016, 260, 159–174. [Google Scholar] [CrossRef]
- Sitnikova, E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Charloteaux, B.; Zhong, Q.; Dreze, M.; Cusick, M.E.; Hill, D.E.; Vidal, M. Protein-Protein Interactions and Networks: Forward and Reverse Edgetics. Methods Mol. Biol. 2011, 759, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.; Verster, A.J.; Schertzberg, M.; Chuluunbaatar, T.; Spensley, M.; Pajkic, D.; Hart, G.T.; Moffat, J.; Fraser, A.G. Natural Variation in Gene Expression Modulates the Severity of Mutant Phenotypes. Cell 2015, 162, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Sittig, L.J.; Carbonetto, P.; Engel, K.A.; Krauss, K.S.; Barrios-Camacho, C.M.; Palmer, A.A. Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron 2016, 91, 1253–1259. [Google Scholar] [CrossRef]
- Milutinovic, S.; Detich, N.; Szyf, M. Valproate Induces Widespread Epigenetic Reprogramming Which Involves Demethylation of Specific Genes. Carcinogenesis 2007, 28, 560–571. [Google Scholar] [CrossRef]
- Silva, C.G.; Peyre, E.; Adhikari, M.H.; Tielens, S.; Tanco, S.; Van Damme, P.; Magno, L.; Krusy, N.; Agirman, G.; Magiera, M.M.; et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell 2018, 172, 1063–1078.e19. [Google Scholar] [CrossRef]
- Picardo, M.A.; Guigue, P.; Bonifazi, P.; Batista-Brito, R.; Allene, C.; Ribas, A.; Fishell, G.; Baude, A.; Cossart, R. Pioneer GABA Cells Comprise a Subpopulation of Hub Neurons in the Developing Hippocampus. Neuron 2011, 71, 695–709. [Google Scholar] [CrossRef]
- Wang, C.Z.; Ma, J.; Xu, Y.Q.; Jiang, S.N.; Chen, T.Q.; Yuan, Z.L.; Mao, X.Y.; Zhang, S.Q.; Liu, L.Y.; Fu, Y.; et al. Early-Generated Interneurons Regulate Neuronal Circuit Formation during Early Postnatal Development. Elife 2019, 8, 44649. [Google Scholar] [CrossRef]
- Bitzenhofer, S.H.; Pöpplau, J.A.; Chini, M.; Marquardt, A.; Hanganu-Opatz, I.L. A Transient Developmental Increase in Prefrontal Activity Alters Network Maturation and Causes Cognitive Dysfunction in Adult Mice. Neuron 2021, 109, 1350–1364.e6. [Google Scholar] [CrossRef]
- Favuzzi, E.; Huang, S.; Saldi, G.A.; Binan, L.; Ibrahim, L.A.; Fernández-Otero, M.; Cao, Y.; Zeine, A.; Sefah, A.; Zheng, K.; et al. GABA-Receptive Microglia Selectively Sculpt Developing Inhibitory Circuits. Cell 2021, 184, 4048–4063.e32. [Google Scholar] [CrossRef]
- Poskanzer, K.E.; Yuste, R. Astrocytes Regulate Cortical State Switching in Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, E2675–E2684. [Google Scholar] [CrossRef] [PubMed]
- Downes, N.; Mullins, P. The Development of Myelin in the Brain of the Juvenile Rat. Toxicol. Pathol. 2014, 42, 913–922. [Google Scholar] [CrossRef]
- Williamson, J.M.; Lyons, D.A. Myelin Dynamics Throughout Life: An Ever-Changing Landscape? Front. Cell Neurosci. 2018, 12, 424. [Google Scholar] [CrossRef]
- Lindhout, F.W.; Krienen, F.M.; Pollard, K.S.; Lancaster, M.A. A Molecular and Cellular Perspective on Human Brain Evolution and Tempo. Nature 2024, 630, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Degl’Innocenti, E.; Dell’Anno, M.T. Human and Mouse Cortical Astrocytes: A Comparative View from Development to Morphological and Functional Characterization. Front. Neuroanat. 2023, 17, 1130729. [Google Scholar] [CrossRef]
- He, Z.; Han, D.; Efimova, O.; Guijarro, P.; Yu, Q.; Oleksiak, A.; Jiang, S.; Anokhin, K.; Velichkovsky, B.; Grünewald, S.; et al. Comprehensive Transcriptome Analysis of Neocortical Layers in Humans, Chimpanzees and Macaques. Nat. Neurosci. 2017, 20, 886–895. [Google Scholar] [CrossRef]
- Ma, S.; Skarica, M.; Li, Q.; Xu, C.; Risgaard, R.D.; Tebbenkamp, A.T.N.; Mato-Blanco, X.; Kovner, R.; Krsnik, Ž.; de Martin, X.; et al. Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex. Science 2022, 377, ABO7257. [Google Scholar] [CrossRef]
- Jorstad, N.L.; Song, J.H.T.; Exposito-Alonso, D.; Suresh, H.; Castro-Pacheco, N.; Krienen, F.M.; Yanny, A.M.; Close, J.; Gelfand, E.; Long, B.; et al. Comparative Transcriptomics Reveals Human-Specific Cortical Features. Science 2023, 382, ADE9516. [Google Scholar] [CrossRef] [PubMed]
- Berto, S.; Mendizabal, I.; Usui, N.; Toriumi, K.; Chatterjee, P.; Douglas, C.; Tamminga, C.A.; Preuss, T.M.; Yi, S.V.; Konopka, G. Accelerated Evolution of Oligodendrocytes in the Human Brain. Proc. Natl. Acad. Sci. USA 2019, 116, 24334–24342. [Google Scholar] [CrossRef]
- Xiang, Y.; Tanaka, Y.; Cakir, B.; Patterson, B.; Kim, K.Y.; Sun, P.; Kang, Y.J.; Zhong, M.; Liu, X.; Patra, P.; et al. HESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. Cell Stem Cell 2019, 24, 487–497.e7. [Google Scholar] [CrossRef]
- Kim, J.; Miura, Y.; Li, M.-Y.; Revah, O.; Selvaraj, S.; Birey, F.; Meng, X.; Thete, M.V.; Pavlov, S.D.; Andersen, J.; et al. Human Assembloids Reveal the Consequences of CACNA1G Gene Variants in the Thalamocortical Pathway. Neuron 2024, 112, 4048–4059.e7. [Google Scholar] [CrossRef] [PubMed]
- Kiral, F.R.; Cakir, B.; Tanaka, Y.; Kim, J.; Yang, W.S.; Wehbe, F.; Kang, Y.J.; Zhong, M.; Sancer, G.; Lee, S.H.; et al. Generation of Ventralized Human Thalamic Organoids with Thalamic Reticular Nucleus. Cell Stem Cell 2023, 30, 677–688.e5. [Google Scholar] [CrossRef]
- Tringham, E.; Powell, K.L.; Cain, S.M.; Kuplast, K.; Mezeyova, J.; Weerapura, M.; Eduljee, C.; Jiang, X.; Smith, P.; Morrison, J.L.; et al. T-Type Calcium Channel Blockers That Attenuate Thalamic Burst Firing and Suppress Absence Seizures. Sci. Transl. Med. 2012, 4, 3003120. [Google Scholar] [CrossRef] [PubMed]
- Crunelli, V.; Leresche, L. Block of Thalamic T-Type Ca2+ Channels by Ethosuximide Is Not the Whole Story. Epilepsy Curr. 2002, 2, 53–56. [Google Scholar] [CrossRef]
- Shalomov, B.; Friesacher, T.; Yakubovich, D.; Combista, J.C.; Reddy, H.P.; Dabbah, S.; Bernsteiner, H.; Zangerl-Plessl, E.; Stary-Weinzinger, A.; Dascal, N. Ethosuximide: Subunit- and Gβγ-Dependent Blocker and Reporter of Allosteric Changes in GIRK Channels. Br. J. Pharmacol. 2025, 182, 1704–1718. [Google Scholar] [CrossRef] [PubMed]
- Glauser, T.A.; Holland, K.; O’Brien, V.P.; Keddache, M.; Martin, L.J.; Clark, P.O.; Cnaan, A.; Dlugos, D.; Hirtz, D.G.; Shinnar, S.; et al. Pharmacogenetics of Antiepileptic Drug Efficacy in Childhood Absence Epilepsy. Ann. Neurol. 2017, 81, 444–453. [Google Scholar] [CrossRef]
- Lin, C.H.; Ho, C.J.; Chen, S.Y.; Lu, Y.T.; Tsai, M.H. Review of Pharmacogenetics of Antiseizure Medications: Focusing on Genetic Variants of Mechanistic Targets. Front. Pharmacol. 2024, 15, 1411487. [Google Scholar] [CrossRef]
- Gouveia, F.V.; Warsi, N.M.; Suresh, H.; Matin, R.; Ibrahim, G.M. Neurostimulation Treatments for Epilepsy: Deep Brain Stimulation, Responsive Neurostimulation and Vagus Nerve Stimulation. Neurotherapeutics 2024, 21, e00308. [Google Scholar] [CrossRef]
- Velasco, A.L.; Velasco, F.; Jiménez, F.; Velasco, M.; Castro, G.; Carrillo-Ruiz, J.D.; Fanghänel, G.; Boleaga, B. Neuromodulation of the Centromedian Thalamic Nuclei in the Treatment of Generalized Seizures and the Improvement of the Quality of Life in Patients with Lennox-Gastaut Syndrome. Epilepsia 2006, 47, 1203–1212. [Google Scholar] [CrossRef]
- Sisterson, N.D.; Kokkinos, V.; Urban, A.; Li, N.; Richardson, R.M. Responsive Neurostimulation of the Thalamus Improves Seizure Control in Idiopathic Generalised Epilepsy: Initial Case Series. J. Neurol. Neurosurg. Psychiatry 2022, 93, 491–498. [Google Scholar] [CrossRef]
Species | Strain | Gene | Mutation | Seizure Description |
---|---|---|---|---|
Absence epilepsy | ||||
Spontaneous models | ||||
Mouse | tg | Cacna1a | P601L | Spontaneous SWDs. Ataxia |
Mouse | stg | Cacng2 | Transposon | Spontaneous SWDs. Ataxia |
Mouse | lh | Cacnb4 | 4nt insertion | Spontaneous SWDs. Severe ataxia |
Mouse | swe | Nhe1 | K442X | Spontaneous SWDs. Ataxia |
Rat | GAERS | Cacn1h/Polygenic | R1548P | Spontaneous SWDs |
Rat | WAG/Rij | Unknown/Polygenic | - | Spontaneous SWDs |
Genetic manipulation of candidate genes | ||||
Mouse | Gabra3 | Deletion | No spontaneous SWDs | |
Mouse | Gabrb3 | Deletion | Rare spontaneous SWDs | |
Mouse | Gabbr1 | Deletion | Rare spontaneous SWDs | |
Mouse | Gabbr2 | Deletion | No spontaneous SWDs | |
Mouse | Gat-1 | Deletion | Spontaneous SWDs | |
Mouse | Cacna1g | Deletion | No spontaneous SWDs. Resistant to GHB, Baclofen | |
Mouse | Cacna1g | Overexpression | Spontaneous SWDs | |
Mouse | Cacna1i | Deletion | No spontaneous SWDs. Increased sensitivity to GHB | |
Mouse | Cacna1h/1i | Deletion | No spontaneous SWDs. Increased sensitivity to GBL | |
Mouse | Hcn1 | Deletion | No spontaneous SWDs | |
Rat | Hcn1 | Deletion | Spontaneous SWDs | |
Mouse | Hcn2 | Deletion | Spontaneous SWDs | |
Mouse | Hcn4 | Deletion | No spontaneous SWDs | |
Juvenile Myoclonic Epilepsy | ||||
Spontaneous models | ||||
Baboon | Hamadryas | RBFOX1 | SNP | Spontaneous myoclonus and GTCS |
Dog | Ridgeback | DIRAS1 | 4nt deletion | Myoclonic jerks and GTCS |
Genetic manipulation of Mendelian genes | ||||
Mouse | Gabra1 | Deletion | Myoclonic seizures, PSD, absence seizure | |
Mouse | Gabra1 | A322D | Myoclonic seizures, PSD | |
Zebrafish | gabra1 | Deletion | Light induced seizure inhibited by VPA | |
Mouse | Efhc1 | Deletion | Spontaneous myoclonus. Increased sensitivity to PTZ | |
Fly | Defhc1.1 | Deletion | Not studied | |
Mouse | Gabrd | Deletion | Increased sensitivity to PTZ | |
Mouse | CaSR | Deletion | Not studied | |
Mouse | Brd2 | Deletion | Spontaneous seizures in some females and increased sensitivity to flurothyl in both sexes | |
Mouse | Cilk1/Ick | Deletion | Tonic–clonic and PSD under isoflurane | |
Genetic manipulation of other mutated genes | ||||
Zebrafish | Cpa6 | knockdown | Resistance to PTZ and pilocarpine induced seizures | |
Fly | Oatp308 | Knockdown | Hyperthermia seizure-like and vibration over-reaction | |
Generalized Tonic–Clonic Seizures Alone epilepsy | ||||
Spontaneous models | ||||
Rat | NER | Phf24 | Retrovirus insertion | GTCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakaye, B.; Nguyen, L. Genetic Animal Models of Idiopathic Generalized Epilepsies: What Can We Learn from Them? Biomedicines 2025, 13, 1301. https://doi.org/10.3390/biomedicines13061301
Lakaye B, Nguyen L. Genetic Animal Models of Idiopathic Generalized Epilepsies: What Can We Learn from Them? Biomedicines. 2025; 13(6):1301. https://doi.org/10.3390/biomedicines13061301
Chicago/Turabian StyleLakaye, Bernard, and Laurent Nguyen. 2025. "Genetic Animal Models of Idiopathic Generalized Epilepsies: What Can We Learn from Them?" Biomedicines 13, no. 6: 1301. https://doi.org/10.3390/biomedicines13061301
APA StyleLakaye, B., & Nguyen, L. (2025). Genetic Animal Models of Idiopathic Generalized Epilepsies: What Can We Learn from Them? Biomedicines, 13(6), 1301. https://doi.org/10.3390/biomedicines13061301