CD133 and CD166 Stem Cells Markers Expression, Clinicopathological Parameters, and Fragmentation Response Patterns of ypT3 Rectal Cancer Following Neoadjuvant Chemoradiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Immunohistochemical Method
2.3. Evaluation of CD133 and CD166 Immunoexpression
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics
3.2. Qualitative and Semi-Quantitative Assessment of CD133 and CD166 Immunoexpression
3.3. Correlation Between CD133 and CD166 Immunoexpression and Clinicopathological Characteristics
3.4. Correlation Between CD133 and CD166 Expression and Survival
4. Discussion
High CD166 Expression | |||
---|---|---|---|
Associated Clinicopathological Features | Non-Associated Clinicopathological Features | No. of Cases | Reference |
|
| 405 | [27] |
| - | 299 | [28] |
|
| 110 | [71] |
| - | 94 | [53] |
|
| 2048 * | [30] |
| - | 1521 * | [57] |
1420 | [68] | ||
45 | [72] | ||
120 | [73] | ||
- |
| 3332 | [70] |
| - | 112 | [29] |
Low CD166 expression | |||
| - | 1420 | [68] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABCG5 | ATP-binding cassette subfamily G member 5 |
ALDH1 | Aldehyde dehydrogenase 1 |
AJCC | American Joint Committee on Cancer |
Bd | Tumor budding |
CAP | Capecitabine |
CAPEOX | Capecitabine and oxaliplatin |
CD44 | Cluster of Differentiation 44 |
CRC | Colorectal cancer |
CRM | Circumferential resection margin |
CSCs | Cancer stem cells |
CXCR4 | C-X-C chemokine receptor type 4 |
EMVI | Extramural vascular invasion |
EpCAM | Epithelial cell adhesion molecules |
FOLFOX | Leucovorin calcium, fluorouracil and oxaliplatin |
IMVI | Intramural vascular invasion |
ITBCC | Tumor Budding Consensus Conference |
LARC | Locally advanced rectal cancer |
ITF | Invasive tumor front |
LVI | Lymphovascular invasion |
nCRT | Neoadjuvant chemoradiotherapy |
OPCs | Oligomeric proanthocyanidins |
OS | Overall survival |
PTCH1 | Transmembrane receptor PATCHED1 |
PDCs | Poorly differentiated clusters |
PnI | Perineural invasion |
RC | Rectal cancer |
TME | Total mesorectal excision |
TRG | Tumor regression grade |
ypN | Lymph node status after neoadjuvant therapy |
References
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Mare, M.; Colarossi, L.; Veschi, V.; Turdo, A.; Giuffrida, D.; Memeo, L.; Stassi, G.; Colarossi, C. Cancer stem cell biomarkers predictive of radiotherapy response in rectal cancer: A systematic review. Genes 2021, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Grigoraș, A.; Amalinei, C. Multi-faceted role of cancer-associated adipocytes in colorectal cancer. Biomedicines 2023, 11, 2401. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Puglisi, C.; Giuffrida, R.; Borzì, G.; Di Mattia, P.; Costa, A.; Colarossi, C.; Deiana, E.; Picardo, M.C.; Colarossi, L.; Mare, M.; et al. Radiosensitivity of cancer stem cells has potential predictive value for individual responses to radiotherapy in locally advanced rectal cancer. Cancers 2020, 12, 3672. [Google Scholar] [CrossRef]
- Iacopetta, B. Are there two sides to colorectal cancer? Int. J. Cancer 2002, 101, 403–408. [Google Scholar] [CrossRef]
- Oi, H.; Okuyama, T.; Miyazaki, S.; Ono, Y.; Oya, M. CD133 expression predicts relapse in patients with locally advanced rectal cancer treated with neoadjuvant chemotherapy. In Vivo 2021, 35, 437–445. [Google Scholar] [CrossRef]
- Ashman, J.B.; Ma, B.; Minsky, B.D. New paradigms in rectal cancer multidisciplinary care: Special issue introduction. Clin. Color. Cancer 2022, 21, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Chi, H.; Zhao, G.; Wang, Y. Tumor regression and safe distance of distal margin after neoadjuvant therapy for rectal cancer. Front. Oncol. 2024, 14, 1375334. [Google Scholar] [CrossRef]
- Mills, M.N.; Naz, A.; Sanchez, J.; Dessureault, S.; Imanirad, I.; Lauwers, G.; Moore, M.; Hoffe, S.; Frakes, J.; Felder, S. Rectal tumor fragmentation as a response pattern following chemoradiation. J. Gastrointest. Oncol. 2022, 13, 2951–2962. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Glynne-Jones, R. How to measure tumour response in rectal cancer? An explanation of discrepancies and suggestions for improvement. Cancer Treat. Rev. 2020, 84, 101964. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.G.; Kus Öztürk, S.; Al-Kaabi, A.; Valkema, M.J.; Bokhorst, J.; Rosman, C.; Rütten, H.; Wauters, C.A.P.; Doukas, M.; Van Lanschot, J.J.; et al. Shrinkage versus fragmentation response in neoadjuvantly treated oesophageal adenocarcinoma: Significant prognostic relevance. Histopathology 2022, 80, 982–994. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aceñero, M.J.; Muñoz, L.E.; Varela, J.S.; Sánchez, J.A.C.; Del Arco, C.D.; Paredes, B.G.; Largo, S.C.; Del Puerto Nevado, L. Prognostic influence of histopathological regression patterns in rectal adenocarcinoma receiving neoadjuvant therapy. J. Gastrointest. Oncol. 2017, 8, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.K.; Martinez, C.G.; Sheahan, K.; Winter, D.C.; Aherne, S.; Ryan, É.J.; Van De Velde, C.J.; Marijnen, C.A.; Hospers, G.A.; Roodvoets, A.G. Relevance of shrinkage versus fragmented response patterns in rectal cancer. Histopathology 2023, 83, 870–879. [Google Scholar] [CrossRef]
- Shen, L.; Wang, L.; Li, G.; Zhang, H.; Liang, L.; Fan, M.; Wu, Y.; Deng, W.; Sheng, W.; Zhu, J.; et al. Can tumor regression grade influence survival outcome in ypT3 rectal cancer? Clin. Transl. Oncol. 2016, 18, 693–699. [Google Scholar] [CrossRef]
- Sprenger, T.; Rothe, H.; Jung, K.; Christiansen, H.; Conradi, L.C.; Ghadimi, B.M.; Becker, H.; Liersch, T. Stage II/III rectal cancer with intermediate response to preoperative radiochemotherapy: Do we have indications for individual risk stratification? World J. Surg. Oncol. 2010, 8, 27. [Google Scholar] [CrossRef]
- Chang, H.; Wei, J.; Tao, Y.; Ding, P.; Xia, Y.; Gao, Y.; Xiao, W. CCR6 Is a predicting biomarker of radiosensitivity and potential target of radiosensitization in rectal cancer. Cancer Res. Treat. 2018, 50, 1203–1213. [Google Scholar] [CrossRef]
- Kostovski, O.; Antovic, S.; Trajkovski, G.; Kostovska, I.; Jovanovic, R.; Jankulovski, N. High expression of CD133—Stem cell marker for prediction of clinically aggressive type of colorectal cancer. Pol. Prz. Chir. 2020, 92, 9–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Wu, Y.; Xu, M.; Liu, X.; Guan, G. Worse treatment response to neoadjuvant chemoradiotherapy in young patients with locally advanced rectal cancer. BMC Cancer 2020, 20, 854. [Google Scholar] [CrossRef]
- De Angelis, M.L.; Francescangeli, F.; Zeuner, A.; Baiocchi, M. Colorectal cancer stem cells: An overview of evolving methods and concepts. Cancers 2021, 13, 5910. [Google Scholar] [CrossRef]
- Radu, P.; Zurzu, M.; Tigora, A.; Paic, V.; Bratucu, M.; Garofil, D.; Surlin, V.; Munteanu, A.C.; Coman, I.S.; Popa, F.; et al. The impact of cancer stem cells in colorectal cancer. Int. J. Mol. Sci. 2024, 25, 4140. [Google Scholar] [CrossRef] [PubMed]
- Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol. 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Nimmakayala, R.K.; Batra, S.K.; Ponnusamy, M.P. Unraveling the journey of cancer stem cells from origin to metastasis. Biochim. Biophys. Acta. Rev. Cancer 2019, 1871, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Glumac, P.M.; LeBeau, A.M. The role of CD133 in cancer: A concise review. Clin. Transl. Med. 2018, 7, e18. [Google Scholar] [CrossRef]
- Ehteram, H.; Aslanbeigi, F.; Ghoochani Khorasani, E.; Tolouee, M.; Kashani, H.H. Expression and prognostic significance of stem cell marker CD133 in survival rate of patients with colon cancer. Oncol. Ther. 2022, 10, 451–461. [Google Scholar] [CrossRef]
- Sprenger, T.; Conradi, L.; Beissbarth, T.; Ermert, H.; Homayounfar, K.; Middel, P.; Rüschoff, J.; Wolff, H.A.; Schüler, P.; Ghadimi, B.M.; et al. Enrichment of CD133-expressing cells in rectal cancers treated with preoperative radiochemotherapy is an independent marker for metastasis and survival. Cancer 2013, 119, 26–35. [Google Scholar] [CrossRef]
- Kalantari, E.; Taheri, T.; Fata, S.; Abolhasani, M.; Mehrazma, M.; Madjd, Z.; Asgari, M. Significant co-expression of putative cancer stem cell markers, EpCAM and CD166, correlates with tumor stage and invasive behavior in colorectal cancer. World J. Surg. Oncol. 2022, 20, 15. [Google Scholar] [CrossRef]
- Tachezy, M.; Zander, H.; Gebauer, F.; Marx, A.; Kaifi, J.T.; Izbicki, J.R.; Bockhorn, M. Activated leukocyte cell adhesion molecule (CD166)—Its prognostic power for colorectal cancer patients. J. Surg. Res. 2012, 177, e15–e20. [Google Scholar] [CrossRef]
- Sim, S.H.; Kang, M.H.; Kim, Y.J.; Lee, K.W.; Kim, D.W.; Kang, S.B.; Eom, K.Y.; Kim, J.S.; Lee, H.S.; Kim, J.H. P21 and CD166 as predictive markers of poor response and outcome after fluorouracil-based chemoradiotherapy for the patients with rectal cancer. BMC Cancer 2014, 14, 241. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, C.; Jing, L.; Ren, J.; Guan, Y. Meta-analysis indicating that high ALCAM expression predicts poor prognosis in colorectal cancer. Oncotarget 2017, 8, 48272–48281. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; The WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Color. Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Chung, J.H.; Kang, S.B.; Kim, D.W.; Oh, H.K.; Lee, H.S.; Kim, J.W.; Lee, K.W.; Kim, J.H.; Kim, J.S. Impact of tumor regression grade as a major prognostic factor in locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A proposal for a modified staging system. Cancers 2018, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Y.; Liu, S.; Zhang, W.; Hong, Z.; Lu, Z.; Pan, Z.; Wu, X.; Peng, J. Lymphovascular invasion represents a superior prognostic and predictive pathological factor of the duration of adjuvant chemotherapy for stage III colon cancer patients. BMC Cancer 2023, 23, 3. [Google Scholar] [CrossRef]
- Szalai, L.; Jakab, Á.; Kocsmár, I.; Szirtes, I.; Kenessey, I.; Szijártó, A.; Schaff, Z.; Kiss, A.; Lotz, G.; Kocsmár, É. Prognostic ability of tumor budding outperforms poorly differentiated clusters in gastric cancer. Cancers 2022, 14, 4731. [Google Scholar] [CrossRef]
- Lee, N.; Lee, S.; Kim, W. Kv 11.1 Expression is associated with malignancy of canine mammary gland tumors. In Vivo 2024, 38, 719–724. [Google Scholar] [CrossRef]
- Park, Y.Y.; An, C.H.; Oh, S.T.; Chang, E.D.; Lee, J. Expression of CD133 is associated with poor prognosis in stage II colorectal carcinoma. Medicine 2019, 98, e16709. [Google Scholar] [CrossRef]
- Wei, I.H.; Garcia-Aguilar, J. Non-operative management of rectal cancer: Understanding tumor biology. Minerva Chir. 2018, 73, 601–618. [Google Scholar] [CrossRef]
- Elazzamy, H.; Bhatt, M.; Mazzara, P.; Barawi, M.; Zeni, A.; Aref, A. Pattern of residual submucosal involvement after neoadjuvant therapy for rectal cancer: A rationale for the utility of endoscopic submucosal resection. Medicina 2023, 59, 1807. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Wu, X.; Lin, H.; Lu, X.; Huang, Y.; Xu, Z.; Huang, S.; Wang, X.; Chi, P. Prognostic significance of neoadjuvant rectal score in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and construction of a prediction model. J. Surg. Oncol. 2018, 117, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Van Der Stel, S.D.; Van Den Berg, J.G.; Snaebjornsson, P.; Seignette, I.M.; Witteveen, M.; Grotenhuis, B.A.; Beets, G.L.; Post, A.L.; Ruers, T.J.M. Size and depth of residual tumor after neoadjuvant chemoradiotherapy in rectal cancer—Implications for the development of new imaging modalities for response assessment. Front. Oncol. 2023, 13, 1209732. [Google Scholar] [CrossRef]
- Smith, F.M.; Wiland, H.; Mace, A.; Pai, R.K.; Kalady, M.F. Depth and lateral spread of microscopic residual rectal cancer after neoadjuvant chemoradiation: Implications for treatment decisions. Color. Dis. 2014, 16, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.J.; Sonnentag, S.J.; Orian-Rousseau, V.; Munoz-Sagredo, L. Plasticity in colorectal cancer: Why cancer cells differentiate. Cancers 2021, 13, 918. [Google Scholar] [CrossRef] [PubMed]
- Pashirzad, M.; Sathyapalan, T.; Sheikh, A.; Kesharwani, P.; Sahebkar, A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem. 2022, 115, 19–29. [Google Scholar] [CrossRef]
- Kim, B.; Kim, S.; Park, S.; Ko, J. CD133-containing microvesicles promote colorectal cancer progression by inducing tumor angiogenesis. Heliyon 2024, 10, e29292. [Google Scholar] [CrossRef]
- Harbiyeli, I.F.C.; Burtea, D.E.; Ivan, E.T.; Streață, I.; Nicoli, E.R.; Uscatu, D.; Șerbănescu, M.S.; Ioana, M.; Vilmann, P.; Săftoiu, A. Assessing putative markers of colorectal cancer stem cells: From colonoscopy to gene expression profiling. Diagnostics 2022, 12, 2280. [Google Scholar] [CrossRef]
- Chadi, S.A.; Malcomson, L.; Ensor, J.; Riley, R.D.; Vaccaro, C.A.; Rossi, G.L.; Daniels, I.R.; Smart, N.J.; Osborne, M.E.; Beets, G.L.; et al. Factors affecting local regrowth after watch and wait for patients with a clinical complete response following chemoradiotherapy in rectal cancer (InterCoRe consortium): An individual participant data meta-analysis. Lancet Gastroenterol. Hepatol. 2018, 3, 825–836. [Google Scholar] [CrossRef]
- Zahran, A.M.; Rayan, A.; Fakhry, H.; Attia, A.M.; Ashmawy, A.M.; Soliman, A.; Elkady, A.; Hetta, H.F. Pretreatment detection of circulating and tissue CD133+ CD44+ cancer stem cells as a prognostic factor affecting the outcomes in Egyptian patients with colorectal cancer. Cancer Manag. Res. 2019, 11, 1237–1248. [Google Scholar] [CrossRef]
- Wahab, S.M.R.; Islam, F.; Gopalan, V.; Lam, A.K. The identifications and clinical implications of cancer stem cells in colorectal cancer. Clin. Color. Cancer 2017, 16, 93–102. [Google Scholar] [CrossRef]
- Yang, Y.; Sanders, A.J.; Dou, Q.P.; Jiang, D.G.; Li, A.X.; Jiang, W.G. The clinical and theranostic values of activated leukocyte cell adhesion molecule (ALCAM)/CD166 in human solid cancers. Cancers 2021, 13, 5187. [Google Scholar] [CrossRef]
- Bartolomé, R.A.; Pintado-Berninches, L.; Jaén, M.; De Los Ríos, V.; Imbaud, J.I.; Casal, J.I. SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166. Oncogene 2020, 39, 6085–6098. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zeng, J.J.; Yang, Y.; Ruge, F.; Lane, J.; Hargest, R.; Jiang, W.G. Expression of ALCAM in clinical colon cancer and relationship with patients’ treatment responses. In Vivo 2023, 37, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Cienfuegos, J.A.; Rotellar, F.; Baixauli, J.; Beorlegui, C.; Sola, J.J.; Arbea, L.; Pastor, C.; Arredondo, J.; Hernández-Lizoáin, J.L. Impact of perineural and lymphovascular invasion on oncological outcomes in rectal cancer treated with neoadjuvant chemoradiotherapy and surgery. Ann. Surg. Oncol. 2015, 22, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, T.; Liu, P.; Luo, J.; Zhang, N.; Lu, K.; Ju, H.; Zhu, Y.; Wu, W.; Zhang, L.; et al. Perineural and lymphovascular invasion predicts for poor prognosis in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and surgery. J. Cancer 2019, 10, 2243–2249. [Google Scholar] [CrossRef]
- Tang, Y.L.; Li, D.D.; Duan, J.Y.; Wang, X. Prognostic analysis of rectal cancer patients after neoadjuvant chemoradiotherapy: Different prognostic factors in patients with diferent TRGs. Int. J. Color. Dis. 2024, 39, 93. [Google Scholar] [CrossRef]
- Lee, Y.C.; Hsieh, C.C.; Chuang, J.P. Prognostic significance of partial tumor regression after preoperative chemoradiotherapy for rectal cancer: A meta-analysis. Dis. Colon Rectum 2013, 56, 1093–1101. [Google Scholar] [CrossRef]
- Haddad, T.S.; Lugli, A.; Aherne, S.; Barresi, V.; Terris, B.; Bokhorst, J.M.; Brockmoeller, S.F.; Cuatrecasas, M.; Simmer, F.; El-Zimaity, H.; et al. Improving tumor budding reporting in colorectal cancer: A Delphi consensus study. Virchows Arch. 2021, 479, 459–469. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Wen, L.; Zhang, G.; Huang, C.; Wang, J.; Yao, X. Prognostic impact of tumor budding in rectal cancer after neoadjuvant therapy: A systematic review and meta-analysis. Syst. Rev. 2024, 13, 22. [Google Scholar] [CrossRef]
- Reis, M.T.; Matsushita, M.; Santos, W.; de Lima, M.A.; Guimarães, D.P.; Reis, R.M. Assessing the applicability and interobserver variability of tumor budding and poorly differentiated clusters in colorectal cancer. Surg. Exp. Pathol. 2024, 7, 1. [Google Scholar] [CrossRef]
- Yang, M.; Rehman, A.U.; Zuo, C.; Sheehan, C.; Lee, E.; Lin, J.; Zhao, Z.; Choi, E.; Lee, H. A novel histologic grading scheme based on poorly differentiated clusters is applicable to treated rectal cancer and is associated with established histopathological prognosticators. Cancer Med. 2016, 5, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Alan, O.; Oruc, E. Tumor budding for predicting prognosis of resected rectum cancer after neoadjuvant treatment. World J. Surg. Oncol. 2019, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Trotsyuk, I.; Sparschuh, H.; Müller, A.J.; Neumann, K.; Kruschewski, M.; Horst, D.; Elezkurtaj, S. Tumor budding outperforms ypT and ypN classification in predicting outcome of rectal cancer after neoadjuvant chemoradiotherapy. BMC Cancer 2019, 19, 1033. [Google Scholar] [CrossRef] [PubMed]
- Bilić, Z.; Zovak, M.; Glavčić, G.; Mužina, D.; Ibukić, A.; Košec, A.; Tomas, D.; Demirović, A. The relationship between tumor budding and tumor deposits in patients with stage III colorectal carcinoma. J. Clin. Med. 2024, 13, 2583. [Google Scholar] [CrossRef]
- Suman, S.; Hota, S.K.; Misra, P.; Sahu, N.; Sahu, S. Immunohistochemical expression of the stem cell marker CD133 in colorectal carcinoma. Cureus 2023, 15, 41242. [Google Scholar] [CrossRef]
- Rey, I.; Putra, A.; Lindarto, D.; Yusuf, F. Association between CD133 expression and clinicopathological profile in colorectal cancer. Med. Glas. 2020, 17, 402–407. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, J.; Zhang, E.; Jiang, N.; Li, J.; Zhang, Q.; Zhang, X.; Niu, Y. CD133 expression may be useful as a prognostic indicator in colorectal cancer, a tool for optimizing therapy and supportive evidence for the cancer stem cell hypothesis: A meta-analysis. Oncotarget 2016, 7, 10023–10036. [Google Scholar] [CrossRef]
- Lugli, A.; Iezzi, G.; Hostettler, I.; Muraro, M.G.; Mele, V.; Tornillo, L.; Carafa, V.; Spagnoli, G.; Terracciano, L.; Zlobec, I. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br. J. Cancer 2010, 103, 382–390. [Google Scholar] [CrossRef]
- Ibraheem, M.M.; Abdullah, N.M.; Alharoon, S.S. Perineural invasion in nearby tissue adjacent to colorectal carcinoma with CD166 stem cell marker expression. Curr. Issues Pharm. Med. Sci. 2023, 36, 136–139. [Google Scholar] [CrossRef]
- Han, S.; Yang, W.; Zong, S.; Li, H.; Liu, S.; Li, W.; Shi, Q.; Hou, F. Clinicopathological, prognostic and predictive value of CD166 expression in colorectal cancer: A meta-analysis. Oncotarget 2017, 8, 64373–64384. [Google Scholar] [CrossRef]
- Horst, D.; Kriegl, L.; Engel, J.; Kirchner, T.; Jung, A. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investig. 2009, 27, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Belov, L.; Chapuis, P.; Chan, C.; Armstrong, N.; Kaufman, K.L.; Solomon, M.J.; Clarke, S.J.; Christopherson, R.I. Surface profiles of live colorectal cancer cells and tumor infiltrating lymphocytes from surgical samples correspond to prognostic categories. J. Immunol. Methods 2015, 416, 59–68. [Google Scholar] [CrossRef]
- Walker, B.S.; Zarour, L.R.; Wieghard, N.; Gallagher, A.C.; Swain, J.R.; Weinmann, S.; Lanciault, C.; Billingsley, K.; Tsikitis, V.L.; Wong, M.H. Stem cell marker expression in early stage colorectal cancer is associated with recurrent intestinal neoplasia. World J. Surg. 2020, 44, 3501–3509. [Google Scholar] [CrossRef]
- Ribeiro, K.B.; Da Silva Zanetti, J.; Ribeiro-Silva, A.; Rapatoni, L.; De Oliveira, H.F.; Da Cunha Tirapelli, D.P.; Garcia, S.B.; Feres, O.; Da Rocha, J.J.R.; Peria, F.M. KRAS mutation associated with CD44/CD166 immunoexpression as predictors of worse outcome in metastatic colon cancer. Cancer Biomark. 2016, 16, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Ferragut, F.; Vachetta, V.S.; Troncoso, M.F.; Rabinovich, G.A.; Elola, M.T. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev. 2021, 61, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Dawson, H.; Lugli, A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front. Med. 2015, 2, 11. [Google Scholar] [CrossRef]
- Roy, P.; Datta, J.; Roy, M.; Mallick, I.; Mohandas, M. Reporting of tumor budding in colorectal adenocarcinomas using ×40 objective: A practical approach for resource constrained set-ups. Indian J. Cancer 2017, 54, 640. [Google Scholar] [CrossRef]
- Liu, G.; Xu, J.; Chen, W.; Zhuang, L.; Chen, J.; Zhang, C.; He, Y. Narrative review: Research progress of tumor budding in gastrointestinal tumor. Dig. Med. Res. 2020, 3, 49. [Google Scholar] [CrossRef]
- Hostettler, L. ABCG5-positivity in tumor buds is an indicator of poor prognosis in node-negative colorectal cancer patients. World J. Gastroenterol. 2010, 16, 732. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, H.; Lv, S.; Yang, H. High CD133 expression is associated with worse prognosis in patients with glioblastoma. Mol. Neurobiol. 2016, 53, 2354–2360. [Google Scholar] [CrossRef]
- Li, Z.; Yin, S.; Zhang, L.; Liu, W.; Chen, B.; Xing, H. Clinicopathological characteristics and prognostic value of cancer stem cell marker CD133 in breast cancer: A meta-analysis. OncoTargets Ther. 2017, 10, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Mo, D.; Wu, J.; Ai, H.; Lu, Y. CD133 expression correlates with clinicopathologic features and poor prognosis of colorectal cancer patients: An updated meta-analysis of 37 studies. Medicine 2018, 23, e10446. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Kang, Y.; Wang, W.; Zhou, J. The prognostic role of CD133 expression in patients with osteosarcoma. Clin. Exp. Med. 2020, 20, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Al-Mosawi, A.K.M.; Cheshomi, H.; Hosseinzadeh, A.; Matin, M. Prognostic and clinical value of CD44 and CD133 in esophageal cancer: A systematic review and meta-analysis. Iran J. Allergy Asthma Immunol. 2020, 19, 105–116. [Google Scholar]
- Gisina, A.; Kim, Y.; Yarygin, K.; Lupatov, A. Can CD133 be regarded as a prognostic biomarker in oncology: Pros and cons. Int. J. Mol. Sci. 2023, 24, 17398. [Google Scholar] [CrossRef]
- Choi, D.; Lee, H.W.; Hur, K.Y.; Kim, J.J.; Park, G.S.; Jang, S.H.; Song, Y.S.; Jang, K.S.; Paik, S.S. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J. Gastroenterol. 2009, 15, 2258. [Google Scholar] [CrossRef]
- Zhou, F.; Mu, Y.D.; Liang, J.; Liu, Z.X.; Chen, H.S.; Zhang, J.-F. Expression and prognostic value of tumor stem cell markers ALDH1 and CD133 in colorectal carcinoma. Oncol. Lett. 2014, 7, 507–512. [Google Scholar] [CrossRef]
- Wong, H.L.; Ng, L.P.W.; Koh, S.P.; Chan, L.W.C.; Wong, E.Y.K.; Xue, V.W.; Tsang, H.F.A.; Chan, A.K.C.; Chiu, K.Y.; Cheuk, W.; et al. Hotspot KRAS exon 2 mutations in CD166 positive colorectal cancer and colorectal adenoma cells. Oncotarget 2018, 9, 20426–20438. [Google Scholar] [CrossRef]
- Weichert, W.; Knösel, T.; Bellach, J.; Dietel, M.; Kristiansen, G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J. Clin. Pathol. 2004, 57, 1160–1164. [Google Scholar] [CrossRef]
- Ni, C.; Zhang, Z.; Zhu, X.; Liu, Y.; Qu, D.; Wu, P.; Huang, J.; Xu, A. Prognostic value of cd166 expression in cancers of the digestive system: A systematic review and meta-analysis. PLoS ONE 2013, 8, e70958. [Google Scholar] [CrossRef]
- Elsaba, T.M.; Martinez-Pomares, L.; Robins, A.R.; Crook, S.; Seth, R.; Jackson, D.; McCart, A.; Silver, A.R.; Tomlinson, I.P.; Ilyas, M. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS ONE 2010, 5, e10714. [Google Scholar] [CrossRef] [PubMed]
- You, C.Z.; Xu, H.; Zhao, F.S.; Dou, J.A. Validation study of CD133 as a reliable marker for identification of colorectal cancer stem-like cells. Bull. Exp. Biol. Med. 2024, 176, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xia, L.; Wang, H.; Oyang, L.; Su, M.; Liu, Q.; Lin, J.; Tan, S.; Tian, Y.; Liao, Q.; et al. Cancer stem cells in progression of colorectal cancer. Oncotarget 2018, 9, 33403–33415. [Google Scholar] [CrossRef]
- Yadollahpour, A.; Rezaee, Z.; Bayati, V.; Tahmasebi Birgani, M.J.; NegadDehbashi, F. Radiotherapy enhancement with electroporation in human intestinal colon cancer HT-29 Cells. Asian Pac. J. Cancer Prev. 2018, 19, 1259–1262. [Google Scholar] [PubMed]
- Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease. Cancers 2021, 13, 3410. [Google Scholar] [CrossRef]
- Geyer, N.; Gerling, M. Hedgehog signaling in colorectal cancer: All in the stroma? Int. J. Mol. Sci. 2021, 22, 1025. [Google Scholar] [CrossRef]
- Sipos, F.; Muzes, G. Interconnection of CD133 stem cell marker with autophagy and apoptosis in colorectal cancer. Int. J. Mol. Sci. 2024, 25, 11201. [Google Scholar] [CrossRef]
- Chao, C.; Carmical, R.; Ives, K.; Wood, T.; Aronson, J.; Gomez, G.; Djukom, C.; Hellmich, M. CD133+ colon cancer cells are more interactive with the tumor microenvironment than CD133- cells. Lab. Investig. 2012, 92, 420–436. [Google Scholar] [CrossRef]
- Asadzadeh, Z.; Mansoori, B.; Mohammadi, A.; Kazemi, T.; Mokhtarzadeh, A.; Shanehbandi, D.; Hemmat, N.; Derakhshani, A.; Brunetti, O.; Safaei, S.; et al. The combination effect of Prominin1 (CD133) suppression and Oxaliplatin treatment in colorectal cancer therapy. Biomed. Pharmacother. 2021, 37, 111364. [Google Scholar] [CrossRef]
- Palma, P.; Cano, C.; Conde-Muiño, R.; Comino, A.; Bueno, P.; Ferrón, J.A.; Cuadros, M. Expression profiling of rectal tumors defines response to neoadjuvant treatment related genes. PLoS ONE 2014, 9, e112189. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, Z.; Qian, M.; Xu, Q.; Xue, G.; Yang, J.; Luo, T.; Hu, L.; Wang, B. A retrospective cohort study of neoadjuvant chemoradiotherapy combined with immune checkpoint inhibitors in locally advanced rectal cancer. Transl. Oncol. 2024, 44, 101955. [Google Scholar] [CrossRef] [PubMed]
TRG Grade | Response | Regression Characteristics |
---|---|---|
0 | no response | no regression of tumor mass |
1 | minimal response | evident tumor mass with prominent fibrosis and/or vasculopathy |
2 | moderate response | predominantly fibrotic changes, with a few easily identifiable tumor cells or groups |
3 | near-complete response | rare identifiable tumor cells within the fibrotic tissue, with or without mucin |
4 | complete response | total regression of tumor mass, without any identifiable tumor cells |
Staining Pattern | Score | Category |
---|---|---|
no staining | 0 | low expression |
<50% luminal staining | 1 | |
<50% luminal and cytoplasmic staining | 2 | |
≥50% luminal staining | 3 | high expression |
≥50% luminal and cytoplasmic staining | 4 |
Membrane Staining Intensity | Score | Percentage of Positive Cells | Score | Category |
---|---|---|---|---|
negative | 0 | 0–100% | staining intensity score x percentage of positive cells (cut-off value = 120) | low expression (≤120) |
weak | 1 | |||
moderate | 2 | high expression (>120) | ||
strong | 3 |
Clinicopathological Characteristics | n (%) | |
---|---|---|
Age | 45–55 years | 12 (20%) |
56–65 years | 21 (35%) | |
66–75 years | 23 (38.3%) | |
76–85 years | 4 (6.7%) | |
Gender | women | 13 (21.7%) |
men | 47 (78.3%) | |
cT stage | T2 | 3 (5.0%) |
T3 | 44 (73.3%) | |
T4 | 13 (21.7%) | |
cN stage | N0 | 2 (3.3%) |
N1 | 7 (11.7%) | |
N2 | 43 (71.7%) | |
Nx | 8 (13.3%) | |
ypN category | ypN0 | 32 (53.3%) |
ypN1 | 21 (35%) | |
ypN2 | 7 (11.7%) | |
Histological type | AC NOS | 54 (90%) |
mucinous AC | 6 (10%) | |
Grading | low | 47 (78.3%) |
high | 13 (21.7%) | |
TRG | TRG 0 | 2 (3.3%) |
TRG 1 | 25 (41.7%) | |
TRG 2 | 28 (46.7%) | |
TRG 3 | 5 (8.3%) | |
LVI | negative | 29 (48.3%) |
positive | 31 (51.7%) | |
IMVI | negative | 29 (48.3%) |
positive | 31 (51.7%) | |
EMVI | negative | 39 (65%) |
positive | 21 (35%) | |
PnI | negative | 40 (66.6%) |
positive | 20 (33.4%) | |
Bd | Bd 1 | 49 (81.6%) |
Bd 2 | 7 (11.7%) | |
Bd 3 | 4 (6.7%) | |
PDC | PDC1 | 55 (91.7%) |
PDC2 | 4 (6.7%) | |
PDC3 | 1 (1.6%) | |
nCRT | CAP-RT | 50 (83.4%) |
CAPEOX-RT | 8 (13.3%) | |
FOLFOX-RT | 2 (3.3%) | |
Type of surgical procedure | anterior resection and TME | 30 (50%) |
abdominoperineal resection | 25 (41.7%) | |
Hartmann procedure and TME | 5 (8.3%) | |
Status | survivor | 37 (61.7%) |
non-survivor | 23 (38.3%) | |
Mean OS ± SD (months) Female Male | 37.48 ± 18.06 | |
36.15 ± 22.63 | - | |
37.85 ± 16.86 |
Clinicopathological Parameter | CD133 Expression | p-Value | CD166 Expression | p-Value | ||
---|---|---|---|---|---|---|
Low (n; %) | High (n; %) | Low (n; %) | High (n; %) | |||
Age | ||||||
45–55 years | 6 (10%) | 6 (10%) | p = 0.260 | 5 (8.3%) | 7 (11.7%) | p = 0.121 |
56–65 years | 10 (16.6%) | 11 (18.3%) | 14 (23.3%) | 7 (11.7%) | ||
66–75 years | 16 (26.7%) | 7 (11.7%) | 8 (13.3%) | 15 (25%) | ||
76–85 years | 1 (1.6%) | 3 (5%) | 3 (5%) | 1 (1.6%) | ||
Gender | ||||||
Female | 8 (13.3%) | 5 (8.3%) | p = 0.592 | 7 (11.7%) | 6 (10%) | p = 0.754 |
Male | 25 (41.7%) | 22 (36.7%) | 23 (38.3%) | 24 (40%) | ||
cT stage | ||||||
T2 | 3 (5%) | - | p = 0.054 | 1 (1.6%) | 2 (3.3%) | p = 0.499 |
T3 | 26 (43.3%) | 18 (30%) | 24 (40%) | 20 (33.4%) | ||
T4 | 4 (6.7%) | 9 (15%) | 5 (8.3%) | 8 (13.3%) | ||
cN stage | ||||||
N0 | 2 (3.3%) | - | p = 0.330 | 1 (1.6%) | 1 (1.6%) | p = 0.219 |
N1 | 5 (8.3%) | 2 (3.3%) | 5 (8.3%) | 2 (3.3%) | ||
N2 | 23 (38.3%) | 20 (33.4%) | 18 (30%) | 25 (41.7%) | ||
Nx | 3 (5%) | 5 (8.3%) | 6 (10%) | 2 (3.3%) | ||
ypN category | ||||||
yN0 | 23 (38.3%) | 9 (15%) | p = 0.018 | 19 (31.7%) | 13 (21.7%) | p = 0.242 |
yN1 | 7 (11.7%) | 14 (23.3%) | 9 (15%) | 12 (20%) | ||
yN2 | 3 (5%) | 4 (6.7%) | 2 (3.3%) | 5 (8.3%) | ||
Histological type | ||||||
AC NOS | 31 (51.7%) | 23 (38.3%) | p = 0.261 | 28 (46.7%) | 26 (43.3%) | p = 0.389 |
mucinous AC | 2 (3.3%) | 4 (6.7%) | 2 (3.3%) | 4 (6.7%) | ||
Grading | ||||||
low grade | 29 (48.3%) | 18 (30%) | p = 0.047 | 26 (43.3%) | 21 (35%) | p = 0.117 |
high grade | 4 (6.7%) | 9 (15%) | 4 (6.7%) | 9 (15%) | ||
TRG | ||||||
TRG 0 | 1 (1.6%) | 1 (1.6%) | p = 0.079 | 1 (1.6%) | 1 (1.6%) | p = 0.873 |
TRG 1 | 9 (15%) | 16 (26.7%) | 14 (23.3%) | 11 (18.3%) | ||
TRG 2 | 19 (31.7%) | 9 (15%) | 13 (21.7%) | 15 (25%) | ||
TRG 3 | 4 (6.7%) | 1 (1.6%) | 2 (3.3%) | 3 (5%) | ||
LVI | ||||||
Negative | 21 (35%) | 8 (13.3%) | p = 0.009 | 19 (31.7%) | 10 (16.6%) | p = 0.020 |
Positive | 12 (20%) | 19 (31.7%) | 11 (18.3%) | 20 (33.4%) | ||
IMVI | ||||||
Negative | 17 (28.3%) | 12 (20%) | p = 0.586 | 18 (30%) | 11 (18.3%) | p = 0.071 |
Positive | 16 (26.7%) | 15 (25%) | 12 (20%) | 19 (31.7%) | ||
EMVI | ||||||
Negative | 25 (41.7%) | 14 (23.3%) | p = 0.053 | 16 (26.7%) | 23 (38.3%) | p = 0.058 |
Positive | 8 (13.3%) | 13 (21.7%) | 14 (23.3%) | 7 (11.7%) | ||
PnI | ||||||
Negative | 27 (45%) | 13 (21.7%) | p = 0.006 | 24 (40%) | 16 (26.7%) | p = 0.028 |
Positive | 6 (10%) | 14 (23.3%) | 6 (10%) | 14 (23.3%) | ||
Bd | ||||||
Bd 1 | 29 (48.3%) | 20 (33.4%) | p = 0.330 | 26 (43.3%) | 23 (38.3%) | p = 0.515 |
Bd 2 | 3 (5%) | 4 (6.7%) | 3 (5%) | 4 (6.7%) | ||
Bd 3 | 1 (1.6%) | 3 (5%) | 1 (1.6%) | 3 (5%) | ||
PDC | ||||||
PDC 1 | 31 (51.7%) | 24 (40%) | p = 0.521 | 28 (46.7%) | 27 (45%) | p = 0.601 |
PDC 2 | 2 (3.3%) | 2 (3.3%) | 2 (3.3%) | 2 (3.3%) | ||
PDC 3 | - | 1 (1.6%) | - | 1 (1.6%) |
OS | ||||
---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | |||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
CD133 expression | 3.562 (1.397–9.082) | 0.008 | 3.237 (1.268–8.263) | 0.014 |
CD166 expression | 3.276 (1.325–8.102) | 0.010 | 2.866 (1.184–6.940) | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pricope, D.L.; Grigoraș, A.; Dimofte, G.M.; Terinte, C.; Amalinei, C. CD133 and CD166 Stem Cells Markers Expression, Clinicopathological Parameters, and Fragmentation Response Patterns of ypT3 Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Biomedicines 2025, 13, 1300. https://doi.org/10.3390/biomedicines13061300
Pricope DL, Grigoraș A, Dimofte GM, Terinte C, Amalinei C. CD133 and CD166 Stem Cells Markers Expression, Clinicopathological Parameters, and Fragmentation Response Patterns of ypT3 Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Biomedicines. 2025; 13(6):1300. https://doi.org/10.3390/biomedicines13061300
Chicago/Turabian StylePricope, Diana Lavinia, Adriana Grigoraș, Gabriel Mihail Dimofte, Cristina Terinte, and Cornelia Amalinei. 2025. "CD133 and CD166 Stem Cells Markers Expression, Clinicopathological Parameters, and Fragmentation Response Patterns of ypT3 Rectal Cancer Following Neoadjuvant Chemoradiotherapy" Biomedicines 13, no. 6: 1300. https://doi.org/10.3390/biomedicines13061300
APA StylePricope, D. L., Grigoraș, A., Dimofte, G. M., Terinte, C., & Amalinei, C. (2025). CD133 and CD166 Stem Cells Markers Expression, Clinicopathological Parameters, and Fragmentation Response Patterns of ypT3 Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Biomedicines, 13(6), 1300. https://doi.org/10.3390/biomedicines13061300