Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AL | Acute Leukemia |
ALL | Acute Lymphoblastic Leukemia |
Allo-HSCT | Allogeneic Hematopoietic Stem Cell Transplantation |
AML | Acute Myeloid Leukemia |
MSCs | Mesenchymal Stromal Cells |
OD | Optic Density |
References
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, V.; Gudmundsdottir, V.; Gudjonsson, A.; Jonmundsson, T.; Jonsson, B.G.; Karim, M.A.; Ilkov, M.; Staley, J.R.; Gudmundsson, E.F.; Launer, L.J.; et al. Coding and regulatory variants are associated with serum protein levels and disease. Nat. Commun. 2022, 13, 481. [Google Scholar] [CrossRef]
- Jajula, S.; Naik, V.; Kalita, B.; Yanamandra, U.; Sharma, S.; Chatterjee, T.; Bhanuse, S.; Bhavsar, P.P.; Taunk, K.; Rapole, S. Integrative proteome analysis of bone marrow interstitial fluid and serum reveals candidate signature for acute myeloid leukemia. J. Proteom. 2024, 303, 105224. [Google Scholar] [CrossRef]
- Sun, B.B.; Chiou, J.; Traylor, M.; Benner, C.; Hsu, Y.H.; Richardson, T.G.; Surendran, P.; Mahajan, A.; Robins, C.; Vasquez-Grinnell, S.G.; et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 2023, 622, 329–338. [Google Scholar] [CrossRef]
- Konopleva, M.Y.; Jordan, C.T. Leukemia stem cells and microenvironment: Biology and therapeutic targeting. J. Clin. Oncol. 2011, 29, 591–599. [Google Scholar] [CrossRef]
- Goulard, M.; Dosquet, C.; Bonnet, D. Role of the microenvironment in myeloid malignancies. Cell. Mol. Life Sci. 2018, 75, 1377–1391. [Google Scholar] [CrossRef]
- Morrison, S.J.; Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature 2014, 505, 327–334. [Google Scholar] [CrossRef]
- Comazzetto, S.; Shen, B.; Morrison, S.J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 2021, 56, 1848–1860. [Google Scholar] [CrossRef]
- Batsivari, A.; Grey, W.; Bonnet, D. Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Exp. Hematol. 2021, 95, 23–30. [Google Scholar] [CrossRef]
- Wang, J.D.; Zhang, W.; Zhang, J.W.; Zhang, L.; Wang, L.X.; Zhou, H.S.; Long, L.; Lu, G.; Liu, Q.; Long, Z.J. A Novel Aurora Kinase Inhibitor Attenuates Leukemic Cell Proliferation Induced by Mesenchymal Stem Cells. Mol. Ther. Oncolytics 2020, 18, 491–503. [Google Scholar] [CrossRef]
- Palani, H.K.; Ganesan, S.; Balasundaram, N.; Venkatraman, A.; Korula, A.; Abraham, A.; George, B.; Mathews, V. Ablation of Wnt signaling in bone marrow stromal cells overcomes microenvironment-mediated drug resistance in acute myeloid leukemia. Sci. Rep. 2024, 14, 8404. [Google Scholar] [CrossRef] [PubMed]
- Petinati, N.; Drize, N.; Sats, N.; Risinskaya, N.; Sudarikov, A.; Drokov, M.; Dubniak, D.; Kraizman, A.; Nareyko, M.; Popova, N.; et al. Recovery of donor hematopoiesis after graft failure and second hematopoietic stem cell transplantation with intraosseous administration of mesenchymal stromal cells. Stem Cells Int. 2018, 2018, 6495018. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.M.; Kupsa, T.; Vasatova, M.; Jebavy, L.; Zak, P. Serum cytokine and adhesion molecule profile differs in newly diagnosed acute myeloid and lymphoblastic leukemia. Biomed. Pap. 2015, 159, 299–301. [Google Scholar] [CrossRef]
- Chase, L.G.; Lakshmipathy, U.; Solchaga, L.A.; Rao, M.S.; Vemuri, M.C. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res. Ther. 2010, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Banfi, A.; Mastrogiacomo, M.; Notaro, R.; Luzzatto, L.; Cancedda, R.; Quarto, R. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp. Cell Res. 2003, 287, 98–105. [Google Scholar] [CrossRef]
- Rodrigues, M.; Griffith, L.G.; Wells, A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res. Ther. 2010, 1, 32. [Google Scholar] [CrossRef]
- Watts, T.L.; Cui, R.; Szaniszlo, P.; Resto, V.A.; Powell, D.W.; Pinchuk, I.V. PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment. J. Transl. Med. 2016, 14, 337. [Google Scholar] [CrossRef]
- Salha, S.; Gehmert, S.; Brébant, V.; Anker, A.; Loibl, M.; Prantl, L.; Gehmert, S. PDGF regulated migration of mesenchymal stem cells towards malignancy acts via the PI3K signaling pathway. Clin. Hemorheol. Microcirc. 2019, 70, 543–551. [Google Scholar] [CrossRef]
- Fastova, E.A.; Magomedova, A.U.; Petinati, N.A.; Sats, N.V.; Kapranov, N.M.; Davydova, Y.O.; Drize, N.I.; Kravchenko, S.K.; Savchenko, V.G. Bone Marrow Multipotent Mesenchymal Stromal Cells in Patients with Diffuse Large B-Cell Lymphoma. Bull. Exp. Biol. Med. 2019, 167, 150–153. [Google Scholar] [CrossRef]
- Kuzmina, L.A.; Petinati, N.A.; Parovichnikova, E.N.; Lubimova, L.S.; Gribanova, E.O.; Gaponova, T.V.; Shipounova, I.N.; Zhironkina, O.A.; Bigildeev, A.E.; Svinareva, D.A.; et al. Multipotent Mesenchymal Stromal Cells for the Prophylaxis of Acute Graft-versus-Host Disease-A Phase II Study. Stem Cells Int. 2012, 2012, 968213. [Google Scholar] [CrossRef]
- Irimata, K.; Wakim, P.; Li, X. Estimation of correlation coefficient in data with repeated measures. SAS Glob. Forum 2018, 2018, 8–11. [Google Scholar]
- Sadovskaya, A.; Petinati, N.; Shipounova, I.; Drize, N.; Smirnov, I.; Pobeguts, O.; Arapidi, G.; Lagarkova, M.; Karaseva, L.; Pokrovskaya, O.; et al. Damage of the Bone Marrow Stromal Precursors in Patients with Acute Leukemia at the Onset of the Disease and During Treatment. Int. J. Mol. Sci. 2024, 25, 13285. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Lu, C.; Yu, L. Prognostic role of controlling nutritional status score in hematological malignancies. Hematology 2022, 27, 653–658. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Wendelbo, Ø.; Lindås, R.; Lassalle, P.; Bruserud, Ø. Endocan in Acute Leukemia: Current Knowledge and Future Perspectives. Biomolecules 2022, 12, 492. [Google Scholar] [CrossRef]
- Zheng, R.J.; Wu, R.J.; Ma, X.D. Serum proteomic spectral characteristics of acute myeloid leukemia and their clinical significance. Genet. Mol. Res. 2017, 16, gmr16029172. [Google Scholar] [CrossRef]
- Ermens, A.A.M.; Vlasveld, L.T.; Lindemans, J. Significance of elevated cobalamin (vitamin B12) levels in blood. Clin. Biochem. 2003, 36, 585–590. [Google Scholar] [CrossRef]
- Yu, D.; Cai, Y.; Zhou, W.; Sheng, J.; Xu, Z. The potential of angiogenin as a serum biomarker for diseases: Systematic review and meta-analysis. Dis. Markers 2018, 2018, 1984718. [Google Scholar] [CrossRef]
- Nakase, K.; Kita, K.; Kyo, T.; Tsuji, K.; Katayama, N. High serum levels of soluble interleukin-2 receptor in acute myeloid leukemia: Correlation with poor prognosis and CD4 expression on blast cells. Cancer Epidemiol. 2012, 36, e306–e309. [Google Scholar] [CrossRef]
- Chrysochou, E.; Koukoulakis, K.; Kanellopoulos, P.G.; Sakellari, A.; Karavoltsos, S.; Dassenakis, M.; Minaidis, M.; Maropoulos, G.; Bakeas, E. Human serum elements’ levels and leukemia: A first pilot study from an adult Greek cohort. J. Trace Elem. Med. Biol. 2021, 68, 126833. [Google Scholar] [CrossRef]
- Yu, R.H.; Zhang, J.Y.; Liu, Y.F.; Zhu, Z.M. Screening Serum Differential Proteins in Children with Acute Promyelocytic Leukemia Based on iTRAQ Technique. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2021, 29, 1462–1470. [Google Scholar]
- Sadovskaya, A.; Petinati, N.; Drize, N.; Smirnov, I.; Pobeguts, O.; Arapidi, G.; Lagarkova, M.; Belyavsky, A.; Vasilieva, A.; Aleshina, O.; et al. Acute Myeloid Leukemia Causes Serious and Partially Irreversible Changes in Secretomes of Bone Marrow Multipotent Mesenchymal Stromal Cells. Int. J. Mol. Sci. 2023, 24, 8953. [Google Scholar] [CrossRef] [PubMed]
- Padma, S.; Subramanyam, C. Clinical significance of serum calcineurin in acute leukemia. Clin. Chim. Acta 2002, 321, 17–21. [Google Scholar] [CrossRef]
- Yamane, I.; Murakami, O.; Kato, M. Role of Bovine Albumin in a Serum-free Suspension Cell Culture Medium. Proc. Soc. Exp. Biol. Med. 1975, 149, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Lehrich, B.M.; Liang, Y.; Fiandaca, M.S. Foetal bovine serum influence on in vitro extracellular vesicle analyses. J. Extracell. Vesicles 2021, 10, e12061. [Google Scholar] [CrossRef]
- Rosado, J.A. Acidic Ca2+ stores in platelets. Cell Calcium 2011, 50, 168–174. [Google Scholar] [CrossRef]
- Arauna, D.; Araya-Maturana, R.; Urra, F.A.; García, Á.; Palomo, I.; Fuentes, E. Altered dynamics of calcium fluxes and mitochondrial metabolism in platelet activation-related disease and aging. Life Sci. 2024, 351, 122846. [Google Scholar] [CrossRef]
- Blair, P.; Flaumenhaft, R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef]
- Heijnen, H.; van der Sluijs, P. Platelet secretory behaviour: As diverse as the granules or not? J. Thromb. Haemost. 2015, 13, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, L.; Li, H.; Eriksson, U. The PDGF family: Four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 2004, 15, 197–204. [Google Scholar] [CrossRef]
- Takahashi, H.; Toyoda, M.; Birumachi, J.I.; Horie, A.; Uyama, T.; Miyado, K.; Matsumoto, K.; Saito, H.; Umezawa, A. Shortening of human cell life span by induction of p16ink4a through the platelet-derived growth factor receptor β. J. Cell. Physiol. 2009, 221, 335–342. [Google Scholar] [CrossRef]
- Gawaz, M.; Vogel, S. Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells. Blood 2013, 122, 2550–2554. [Google Scholar] [CrossRef] [PubMed]
- Bocelli-Tyndall, C.; Zajac, P.; Di Maggio, N.; Trella, E.; Benvenuto, F.; Iezzi, G.; Scherberich, A.; Barbero, A.; Schaeren, S.; Pistoia, V.; et al. Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Care Res. 2010, 62, 3815–3825. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.N.F.; Yazid, M.D.; Yunus, M.H.B.M.; Lokanathan, Y.; Ng, M.H.; Idrus, R.B.H.; Tang, Y.L.; Ng, S.N.; Law, J.X. Comparing the growth kinetics and characteristics of Wharton’s jelly derived mesenchymal stem cells expanded using different culture mediums. Cytotechnology 2025, 77, 24. [Google Scholar] [CrossRef]
- Lange, C.; Cakiroglu, F.; Spiess, A.; Cappallo-obermann, H.; Dierlamm, J.; Zander, A.R. Accelerated and Safe Expansion of Human Mesenchymal Stromal Cells in Animal Serum-Free Medium for Transplantation and Regenerative Medicine. J. Cell. Physiol. 2007, 8904, 18–26. [Google Scholar] [CrossRef]
Healthy Donors (n = 11) | Patients Whose MSCs Grew (n = 11) | Patients Whose MSCs Did Not Grow (n = 10) | |
---|---|---|---|
MIP-1b | 20.89 ± 8.40 | 27.85 ± 4.48 | 25.63 ± 3.23 |
TNF | 32.80 ± 0.01 | 28.76 ± 4.92 | 38.93 ± 12.75 |
IL-13 | 1.55 ± 0.01 | 3.95 ± 0.30 | 3.71 ± 0.38 |
MCP-1 | 25.07 ± 5.16 | 18.60 ± 7.29 | 27.62 ± 9.74 |
IL-8 | 25.05 ± 17.37 | 53.31 ± 17.02 | 50.17 ± 14.60 |
IL-10 | 1.37 ± 1.11 | 5.73 ± 2.09 | 11.83 ± 3.88 |
G-CSF | 32.83 ± 0.01 | 13.29 ± 7.98 | 31.51 ± 10.32 |
IL-7 | 18.02 ± 4.06 | 20.59 ± 5.76 | 21.31 ± 5.99 |
Sera | Cells Per Well | p-Value ▲ | ||
---|---|---|---|---|
Healthy donors | (n = 9) | 5079 ± 529 | ||
Patients | ALL (n = 26) | Onset | 2283 ± 230 | <0.001 |
AML (n = 47) | 1977 ± 189 * | <0.001 | ||
ALL (n = 21) | Remission | 2565 ± 308 | <0.001 | |
AML (n = 40) | 2955 ± 221 * | 0.001 | ||
ALL (n = 16) | Before allo-HSCT | 3262 ± 535 ** | 0.023 | |
AML (n = 24) | 3058 ± 370 | 0.006 | ||
ALL (n = 15) | After allo-HSCT | 1770 ± 229 ** | <0.001 | |
AML(n = 20) | 1899 ± 254 | <0.001 | ||
ALL (n = 5) | Relapse | 2136 ± 618 | 0.012 | |
AML(n = 7) | 1666 ± 371 | <0.001 | ||
AML, ALL, APL (n = 17) | Long-term remission | 3685 ± 313 | <0.001 |
PDGFA | PDFGB | FGF2 | |||||
---|---|---|---|---|---|---|---|
Concentration, pg/mL (M ± SE) | Difference with Healthy Donors, p-Value | Concentration, pg/mL (M ± SE) | Difference with Healthy Donors, p-Value | Correlation with Platelet Count | Concentration, pg/mL (M ± SE) | Difference with Healthy Donors, p-Value | |
Healthy donors (n = 10) | 1239 ± 100 | 6.0 ± 1.43 | Spearman r = 0.346, p = 0.33 | 244.6 ± 23.4 | |||
Onset (n = 13) | 831 ± 122 | p = 0.0173 | 0.41 ± 0.27 | p = 0.0035 | Spearman r = 0.578, p = 0.038 | 375.3 ± 32.62 | p = 0.0058 |
Remission (n = 13) | 824 ± 117 | p = 0.0134 | 3.21 ± 0.97 | p = 0.1264 | Pearson r = 0.684, p = 0.01 | 322 ± 25.47 | p = 0.0415 |
Relapse (n = 4) | 846 ± 228 | p = 0.18556 | 0.14 ± 0.09 | p = 0.0027 | Pearson r = 0.959, p = 0.04 | 280.2 ± 28.05 | p = 0.4069 |
Diagnosis | Stage | Leukocytes | Platelets | Lymphocytes | Albumin | Calcium Total |
---|---|---|---|---|---|---|
ALL | onset | 0.038 | 0.560 | 0.052 | 0.075 | 0.161 |
remission | 0.137 | 0.311 | 0.281 | 0.081 | −0.181 | |
before allo-HSCT | 0.095 | 0.712 | −0.246 | 0.336 | 0.300 | |
after allo-HSCT | 0.349 | 0.435 | 0.280 | −0.049 | 0.166 | |
AML | onset | 0.009 | 0.580 | 0.000 | 0.320 | 0.325 |
remission | 0.325 | 0.381 | 0.293 | 0.251 | 0.040 | |
before allo-HSCT | 0.102 | 0.266 | 0.133 | 0.497 | 0.423 | |
after allo-HSCT | 0.197 | 0.383 | 0.386 | −0.309 | 0.281 |
Protein Name | Blood Serum [3] | MSC Secretome [31] | ||
---|---|---|---|---|
Log2-Fold Change | p-Value | Log2-Fold Change | p-Value | |
ANXA1 | 6.83 | 0.008 | ||
Peroxiredoxin-5, mitochondrial PRDX5 | 5.6 | 0.04 | 0.005 | 0.16 |
ARPC5 | 5.53 | 0.02 | −0.013/inf | 0.27/0.008 |
ARPC4 | 4.38 | 0.02 | −0.669 | 0.88 |
PTGDS | 4.22 | 0.02 | −0.41 | 0.57 |
RAC1 | −4.36 | 0.02 | −3.36 | 0.2 |
COL1A1 | −4.9 | 0.03 | −0.109 | 0.04 |
IDH2 mitochondrial | −5.21 | 0.001 | ||
PGM1 | −5.29 | 0.02 | −1.13 | 0.5 |
HSPD1 mitochondrial | −5.83 | 0.02 | −1.75 | 0.06 |
HNRNPK | −6.37 | 0.000085 | −0.41 | 0.15 |
CTSC | −6.43 | 0.03 | −1.22 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petinati, N.; Sadovskaya, A.; Shipounova, I.; Dorofeeva, A.; Drize, N.; Vasilyeva, A.; Aleshina, O.; Pokrovskaya, O.; Kuzmina, L.; Starchenko, S.; et al. Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells. Biomedicines 2025, 13, 1265. https://doi.org/10.3390/biomedicines13051265
Petinati N, Sadovskaya A, Shipounova I, Dorofeeva A, Drize N, Vasilyeva A, Aleshina O, Pokrovskaya O, Kuzmina L, Starchenko S, et al. Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells. Biomedicines. 2025; 13(5):1265. https://doi.org/10.3390/biomedicines13051265
Chicago/Turabian StylePetinati, Nataliya, Aleksandra Sadovskaya, Irina Shipounova, Alena Dorofeeva, Nina Drize, Anastasia Vasilyeva, Olga Aleshina, Olga Pokrovskaya, Larisa Kuzmina, Sofia Starchenko, and et al. 2025. "Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells" Biomedicines 13, no. 5: 1265. https://doi.org/10.3390/biomedicines13051265
APA StylePetinati, N., Sadovskaya, A., Shipounova, I., Dorofeeva, A., Drize, N., Vasilyeva, A., Aleshina, O., Pokrovskaya, O., Kuzmina, L., Starchenko, S., Surimova, V., Chabaeva, Y., Kulikov, S., & Parovichnikova, E. (2025). Blood Serum from Patients with Acute Leukemia Inhibits the Growth of Bone Marrow Multipotent Mesenchymal Stromal Cells. Biomedicines, 13(5), 1265. https://doi.org/10.3390/biomedicines13051265