Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Aspects and Patients
2.2. Cytogenetic Characterization
2.3. Clinical Data and Biochemical and Hematological Exams
2.4. Symptom Classification
2.5. Statistical Analysis
3. Results
3.1. Cytogenetic
3.2. Cytogenetic Alterations and Hematological Data
3.3. Cytogenetic Alterations and Biochemical Data
4. Discussion
4.1. Cytogenetic Abnormalities
4.2. Hematological Modifications
4.3. Biochemical Alterations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duffield, A.S.; Mullighan, C.; Borowitz, M.J. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch. 2023, 482, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2017, National Cancer Institute. Bethesda, MD. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 12 November 2023).
- DeAngelo, D.J.; Jabbour, E.; Advani, A. Recent Advances in Managing Acute Lymphoblastic Leukemia. In American Society of Clinical Oncology Educational Book; ASCO: Chicago, IL, USA, 2020; Volume 40, pp. 330–342. [Google Scholar] [CrossRef]
- Gökbuget, N.; Boissel, N.; Chiaretti, S.; Dombret, H.; Doubek, M.; Fielding, A.K.; Foà, R.; Giebel, S.; Hoelzer, D.; Hunault, M.; et al. Diagnosis, Prognostic Factors and Assessment of ALL in Adults: 2023 ELN Recommendations from a European Expert Panel. Blood 2024, 143, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Czuchlewski, D.R.; Arber, D.A.; Czader, M. Genetic Testing in the Diagnosis and Biology of Acute Leukemia. Am. J. Clin. Pathol. 2019, 152, 322–346. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, D.C.; Wanderley, A.V.; Dos Santos, A.M.R.; Moreira, F.C.; de Sá, R.B.A.; Fernandes, M.R.; Modesto, A.A.C.; de Souza, T.P.; Cohen-Paes, A.; Leitão, L.P.C.; et al. Characterization of pharmacogenetic markers related to Acute Lymphoblastic Leukemia toxicity in Amazonian native Americans population. Sci. Rep. 2020, 10, 10292. [Google Scholar] [CrossRef] [PubMed]
- Moorhead, P.S.; Nowell, P.C.; Mellman, W.J.; Battips, D.M.; Hungerford, D.A. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp. Cell Res. 1960, 20, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Scheres, J.M. Identification of two Robertsonian translocations with a Giemsa banding technique. Humangenetik 1972, 15, 253–256. [Google Scholar] [CrossRef]
- McGowan-Jordan, J.; Hastings, R.; Moore, S. Re: International System for Human Cytogenetic or Cytogenomic Nomenclature (ISCN): Some Thoughts, by T. Liehr. Cytogenet. Genome Res. 2021, 161, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Safavi, S.; Paulsson, K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: Two distinct subtypes with consistently poor prognosis. Blood 2017, 129, 420–423. [Google Scholar] [CrossRef]
- Verdoni, A.M.; Zilla, M.L.; Bullock, G.; Guinipero, T.L.; Meade, J.; Yatsenko, S.A. B-cell acute lymphoblastic leukemia with iAMP21 in a patient with Down syndrome due to a constitutional isodicentric chromosome 21. Am. J. Med. Genet. A 2022, 188, 2325–2330. [Google Scholar] [CrossRef]
- Moorman, A.V.; Robinson, H.; Schwab, C.; Richards, S.M.; Hancock, J.; Mitchell, C.D.; Goulden, N.; Vora, A.; Harrison, C.J. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: A comparison of the MRC ALL 97/99 and UKALL2003 trials. J. Clin. Oncol. 2013, 31, 3389–3396. [Google Scholar] [CrossRef]
- Sinclair, P.B.; Ryan, S.; Bashton, M.; Hollern, S.; Hanna, R.; Case, M.; Schwalbe, E.C.; Schwab, C.J.; Cranston, R.E.; Young, B.D.; et al. SH2B3 inactivation through CN-LOH 12q is uniquely associated with B-cell precursor ALL with iAMP21 or other chromosome 21 gain. Leukemia 2019, 33, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, F.; Zhang, Y.; Ma, X.; Cao, P.; Yuan, L.; Wang, L.; Chen, J.; Zhou, X.; Wu, Q.; et al. Fusion gene map of acute leukemia revealed by transcriptome sequencing of a consecutive cohort of 1000 cases in a single center. Blood Cancer J. 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.; Mullighan, C.G. Genetic Basis of Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2017, 35, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Bergfelt, L.E.; Engvall, M.; Barbany, G.; Fogelstrand, L.; Rhodin, H.; Hallböök, H. Cytogenetic aberrations in adult acute lymphoblastic leukemia-A population-based study. EJHaem 2021, 2, 813–817. [Google Scholar] [CrossRef]
- De Braekeleer, E.; Basinko, A.; Douet-Guilbert, N.; Morel, F.; Le Bris, M.J.; Berthou, C.; Morice, P.; Férec, C.; De Braekeleer, M. Cytogenetics in pre-B and B-cell acute lymphoblastic leukemia: A study of 208 patients diagnosed between 1981 and 2008. Cancer Genet. Cytogenet. 2010, 200, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Moorman, A.V.; Barretta, E.; Butler, E.R.; Ward, E.J.; Twentyman, K.; Kirkwood, A.A.; Enshaei, A.; Schwab, C.; Creasey, T.; Leonga-mornlert, D.; et al. Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell pre-cursor acute lymphoblastic leukaemia: A UKALL14 study. Leukemia 2022, 36, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Gu, Z.; Payne-Turner, D.; McCastlain, K.; Harvey, R.C.; Chen, I.M.; Pei, D.; Iacobucci, I.; Valentine, M.; Pounds, S.B.; et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J. Clin. Oncol. 2017, 35, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Sabir, N.; Iqbal, Z.; Aleem, A.; Awan, T.; Naeem, T.; Asad, S.; Tahir, A.H.; Absar, M.; Hasanato, R.M.; Basit, S.; et al. Prognostically significant fusion oncogenes in Pakistani patients with adult acute lymphoblastic leukemia and their association with disease biology and outcome. Asian Pac. J. Cancer Prev. 2012, 13, 3349–3355. [Google Scholar] [CrossRef] [PubMed]
- Morishige, S.; Miyamoto, T.; Eto, T.; Uchida, N.; Kamimura, T.; Miyazaki, Y.; Ogawa, R.; Okumura, H.; Fujisak, T.; Iwasaki, H.; et al. Clinical features and chromosomal/genetic aberration in adult acute lymphoblastic leukemia in Japan: Results of Fukuoka Blood & Marrow Transplant Group Studies ALL MRD 2002 and 2008. Int. J. Hematol. 2021, 113, 815–822. [Google Scholar] [CrossRef]
- De Klein, A.; van Kessel, A.G.; Grosveld, G.; Bartram, C.R.; Hagemeijer, A.; Bootsma, D.; Spurr, N.K.; Heisterkamp, N.; Groffen, J.; Stephenson, J.R. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982, 300, 765–767. [Google Scholar] [CrossRef]
- Bernt, K.M.; Hunger, S.P. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front. Oncol. 2014, 4, 54. [Google Scholar] [CrossRef] [PubMed]
- Lilly, M.B.; Ottmann, O.G.; Shah, N.P.; Larson, R.A.; Reiffers, J.J.; Ehninger, G.; Müller, M.C.; Charbonnier, A.; Bullorsky, E.; Dombret, H.; et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: Results from a phase 3 study. Am. J. Hematol. 2010, 85, 164–170. [Google Scholar] [CrossRef]
- Haddad, F.G.; Short, N.J. Evidence-Based Minireview: What is the optimal tyrosine kinase inhibitor for adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia? Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 213–217. [Google Scholar] [CrossRef]
- Paietta, E.; Roberts, K.G.; Wang, V.; Gu, Z.; Buck, G.; Pei, D.; Cheng, C.; Levine, R.L.; Abdel-Wahab, O.; Cheng, Z.; et al. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 2021, 138, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.G.; Varma, N.; Naseem, S.; Sachdeva, M.U.S.; Bose, P.; Binota, J.; Kumar, A.; Gupta, M.; Rana, P.; Sonam, P.; et al. Characterization of Immunophenotypic Aberrancies with Respect to Common Fusion Transcripts in B-Cell Precursor Acute Lymphoblastic Leukemia: A Report of 986 Indian Patients. Turk. J. Haematol. 2022, 39, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Zhang, Y.; Wang, M.; Tian, W.; Teng, W.; Liu, H. Retrospective analysis of 36 fusion genes in 2479 Chinese patients of de novo acute lymphoblastic leukemia. Leuk. Res. 2018, 72, 99–104. [Google Scholar] [CrossRef]
- Ribera, J.; Granada, I.; Morgades, M.; González, T.; Ciudad, J.; Such, E.; Calasanz, M.J.; Mercadal, S.; Coll, R.; González-Campos, J.; et al. Prognostic heterogeneity of adult B-cell precursor acute lymphoblastic leukaemia patients with t(1;19)(q23;p13)/TCF3-PBX1 treated with measurable residual disease-oriented protocols. Br. J. Haematol. 2022, 196, 670–675. [Google Scholar] [CrossRef]
- Ferrando, A.A.; Look, A.T. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin. Hematol. 2000, 37, 381–395. [Google Scholar] [CrossRef]
- Rowsey, R.A.; Smoley, S.A.; Williamson, C.M.; Vasmatzis, G.; Smadbeck, J.B.; Ning, Y.; Greipp, P.T.; Hoppman, N.L.; Baughn, L.B.; Ketterling, R.P.; et al. Characterization of TCF3 rearrangements in pediatric B-lymphoblastic leukemia/lymphoma by mate-pair sequencing (MPseq) identifies complex genomic rearrangements and a novel TCF3/TEF gene fusion. Blood Cancer J. 2019, 9, 81. [Google Scholar] [CrossRef]
- Raimondi, S.C.; Behm, F.G.; Roberson, P.K.; Williams, D.L.; Pui, C.H.; Crist, W.M.; Look, A.T.; Rivera, G.K. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J. Clin. Oncol. 1990, 8, 1380–1388. [Google Scholar] [CrossRef]
- Eldfors, S.; Kuusanmäki, H.; Kontro, M.; Majumder, M.M.; Parsons, A.; Edgren, H.; Pemovska, T.; Kallioniemi, O.; Wennerberg, K.; Gökbuget, N.; et al. Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia 2017, 31, 51–57. [Google Scholar] [CrossRef]
- Yilmaz, M.; Kantarjian, H.M.; Toruner, G.; Yin, C.C.; Kanagal-Shamanna, R.; Cortes, J.E.; Issa, G.; Short, N.J.; Khoury, J.D.; Garcia-Manero, G.; et al. Translocation t(1;19)(q23;p13) in adult acute lymphoblastic leukemia—A distinct subtype with favorable prognosis. Leuk. Lymphoma 2021, 62, 224–228. [Google Scholar] [CrossRef]
- Jia, M.; Hu, B.F.; Xu, X.J.; Zhang, J.Y.; Li, S.S.; Tang, Y.M. Clinical features and prognostic impact of TCF3-PBX1 in childhood acute lymphoblastic leukemia: A single-center retrospective study of 837 patients from China. Curr. Probl. Cancer 2021, 45, 100758. [Google Scholar] [CrossRef]
- Tirado, C.A.; Shabsovich, D.; Yeh, L.; Pullarkat, S.T.; Yang, L.; Kallen, M.; Rao, N. A (1;19) translocation involving TCF3-PBX1 fusion within the context of a hyperdiploid karyotype in adult B-ALL: A case report and review of the literature. Biomark. Res. 2015, 3, 4. [Google Scholar] [CrossRef]
- Yan, C.H.; Jiang, Q.; Wang, J.; Xu, L.P.; Liu, D.H.; Jiang, H.; Chen, H.; Zhang, X.H.; Liu, K.Y.; Huang, X.J. Superior survival of unmanipulated haploidentical hematopoietic stem cell transplantation compared with chemotherapy alone used as post-remission therapy in adults with standard-risk acute lymphoblastic leukemia in first complete remission. Biol. Blood Marrow Transplant. 2014, 20, 1314–1321. [Google Scholar] [CrossRef]
- Pullarkat, V.; Slovak, M.L.; Kopecky, K.J.; Forman, S.J.; Appelbaum, F.R. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: Results of Southwest Oncology Group 9400 study. Blood 2008, 111, 2563–2572. [Google Scholar] [CrossRef] [PubMed]
- Lafage-Pochitaloff, M.; Baranger, L.; Hunault, M.; Cuccuini, W.; Lefebvre, C.; Bidet, A.; Tigaud, I.; Eclache, V.; Delabesse, E.; Bilhou-Nabéra, C.; et al. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood 2017, 130, 1832–1844. [Google Scholar] [CrossRef]
- Marks, D.I.; Moorman, A.V.; Chilton, L.; Paietta, E.; Enshaie, A.; DeWald, G.; Harrison, C.J.; Fielding, A.K.; Foroni, L.; Goldstone, A.H.; et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica 2013, 98, 945–952. [Google Scholar] [CrossRef]
- Moorman, A.V.; Harrison, C.J.; Buck, G.A.; Richards, S.M.; Secker-Walker, L.M.; Martineau, M.; Vance, G.H.; Cherry, A.M.; Higgins, R.R.; Fielding, A.K.; et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2007, 109, 3189–3197. [Google Scholar] [CrossRef]
- Chiaretti, S.; Vitale, A.; Cazzaniga, G.; Orlando, S.M.; Silvestri, D.; Fazi, P.; Valsecchi, M.G.; Elia, L.; Testi, A.M.; Mancini, F.; et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica 2013, 98, 1702–1710. [Google Scholar] [CrossRef]
- Moreno, D.A.; Junior, H.L.R.; Laranjeira, A.B.A.; Cruzeiro, G.A.V.; Borges, K.S.; Salomão, K.B.; Ramalho, F.S.; Yunes, J.A.; Silva, C.L.A.; Rego, E.M.; et al. Panobinostat (LBH589) increase survival in adult xenografic model of acute lymphoblastic leukemia with t(4;11) but promotes antagonistic effects in combination with MTX and 6MP. Med. Oncol. 2022, 39, 216. [Google Scholar] [CrossRef]
- Esteve, J.; Giebel, S.; Labopin, M.; Czerw, T.; Wu, D.; Volin, L.; Socié, G.; Yakoub-Agha, I.; Maertens, J.; Cornelissen, J.J.; et al. Allogeneic hematopoietic stem cell transplantation for adult patients with t(4;11)(q21;q23) KMT2A/AFF1 B-cell precursor acute lymphoblastic leukemia in first complete remission: Impact of pretransplant measurable residual disease (MRD) status. An analysis from the Acute Leukemia Working Party of the EBMT. Leukemia 2021, 35, 2232–2242. [Google Scholar] [CrossRef]
- Nahi, H.; Hägglund, H.; Ahlgren, T.; Bernell, P.; Hardling, M.; Karlsson, K.; Lazarevic, V.L.; Linderholm, M.; Smedmyr, B.; Aström, M.; et al. An investigation into whether deletions in 9p reflect prognosis in adult precursor B-cell acute lymphoblastic leukemia: A multi-center study of 381 patients. Haematologica 2008, 93, 1734–1738. [Google Scholar] [CrossRef]
- Woollard, W.J.; Kalaivani, N.P.; Jones, C.L.; Roper, C.; Tung, L.; Lee, J.J.; Thomas, B.R.; Tosi, I.; Ferreira, S.; Beyers, C.Z.; et al. Independent Loss of Methylthioadenosine Phosphorylase (MTAP) in Primary Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2016, 136, 1238–1246. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Goorha, S.; Radtke, I.; Miller, C.B.; Coustan-Smith, E.; Dalton, J.D.; Girtman, K.; Mathew, S.; Ma, J.; Pounds, S.B.; et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007, 446, 758–764. [Google Scholar] [CrossRef]
- Xu, N.; Li, Y.L.; Zhou, X.; Cao, R.; Li, H.; Lu, Q.S.; Li, L.; Lu, Z.Y.; Huang, J.X.; Sun, J.; et al. CDKN2 Gene Deletion as Poor Prognosis Predictor Involved in the Progression of Adult B-Lineage Acute Lymphoblastic Leukemia Patients. J. Cancer 2015, 6, 1114–1120. [Google Scholar] [CrossRef]
- Xu, N.; Li, Y.L.; Li, X.; Zhou, X.; Cao, R.; Li, H.; Li, L.; Lu, Z.Y.; Huang, J.X.; Fan, Z.P.; et al. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J. Hematol. Oncol. 2016, 9, 40. [Google Scholar] [CrossRef]
- Guo, X.H.; Zhai, X.W.; Qian, X.W.; Wang, H.S.; Fan, C.Q. Cytogenetic characteristics of 163 children with acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015, 23, 312–317. (In Chinese) [Google Scholar]
- Strefford, J.; Worley, H.; Barber, K.; Wright, S.; Stewart, A.R.M.; Robinson, H.M.; Bettney, G.; van Delft, F.W.; Atherton, M.G.; Davies, T.; et al. Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization. Oncogene 2007, 26, 4306–4318. [Google Scholar] [CrossRef]
- Jackson, A.; Carrara, P.; Duke, V.; Sinclair, P.; Papaioannou, M.; Harrison, C.J.; Foroni, L. Deletion of 6q16-q21 in human lymphoid malignancies: A mapping and deletion analysis. Cancer Res. 2000, 60, 2775–2779. [Google Scholar] [PubMed]
- Abe, A.; Yamamoto, Y.; Katsumi, A.; Yamamoto, H.; Okamoto, A.; Inaguma, Y.; Iriyama, C.; Tokuda, M.; Okamoto, M.; Emi, N.; et al. Truncated RUNX1 Generated by the Fusion of RUNX1 to Antisense GRIK2 via a Cryptic Chromosome Translocation Enhances Sensitivity to Granulocyte Colony-Stimulating Factor. Cytogenet. Genome Res. 2020, 160, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, P.B.; Sorour, A.; Martineau, M.; Harrison, C.J.; Mitchell, W.A.; O’Neill, E.; Foroni, L. A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: Identification and analysis of a candidate tumor suppressor gene. Cancer Res. 2004, 64, 4089–4098. [Google Scholar] [CrossRef]
- Gachet, S.; El-Chaar, T.; Avran, D.; Genesca, E.; Catez, F.; Quentin, S.; Delord, M.; Thérizols, G.; Briot, D.; Meunier, G.; et al. Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discov. 2018, 8, 1614–1631. [Google Scholar] [CrossRef]
- Wetzler, M.; Dodge, R.K.; Mrózek, K.; Carroll, A.J.; Tantravahi, R.; Block, A.W.; Pettenati, M.J.; Le Beau, M.M.; Frankel, S.R.; Stewart, C.C.; et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: The cancer and leukemia Group B experience. Blood 1999, 93, 3983–3993. [Google Scholar] [PubMed]
- Shi, T.; Wang, H.; Xie, M.; Li, X.; Zhu, L.; Ye, X. Prognostic significance of a normal karyotype in adult patients with BCR-ABL1-positive acute lymphoblastic leukemia in the tyrosine kinase inhibitor era. Clinics 2020, 75, e2011. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, J.; Liu, F.; Zhang, H.; Ma, Y. Higher expression levels of the HOXA9 gene, closely associated with MLL-PTD and EZH2 mutations, predict inferior outcome in acute myeloid leukemia. Onco Targets Ther. 2016, 9, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.M.; Fuller, J.; Petersen, D.; Izadi, P.; Malik, P.; Pattengale, P.K.; Kohn, D.B.; Gasson, J.C. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999, 94, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.C.M.G.N.; Bacal, N.S.; Gomes, C.S.; Silva, T.M.R.; Gonçalves, R.P.F.; Malta, D.C. Blood Count Reference Intervals for the Brazilian Adult Population: National Health Survey; SciELO: Santiago, Chile, 2023. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhao, Y.; Zhang, J.H. t(4;11) translocation in hyperdiploid de novo adult acute myeloid leukemia: A case report. World J. Clin. Cases 2022, 10, 11980–11986. [Google Scholar] [CrossRef]
- Huret, J.L.; Huret, J.L. Atlas of Genetics and Cytogenetics in Oncology and Haematology. Chromosomes, Leukemias, Solid Tumors, Hereditary Cancers. 2000-06-01. Available online: http://atlasgeneticsoncology.org/teaching/30077/chromosomes-leukemias-solid-tumors-hereditary-cancers (accessed on 4 May 2024).
- Amare, P.; Jain, H.; Kabre, S.; Deshpande, Y.; Pawar, P.; Banavali, S.; Menon, H.; Sengar, M.; Arora, B.; Khattry, N.; et al. Cytogenetic Profile in 7209 Indian Patients with de novo Acute Leukemia: A Single Centre Study from India. J. Cancer Ther. 2016, 7, 530–544. [Google Scholar] [CrossRef]
- Notta, F.; Mullighan, C.G.; Wang, J.C.; Poeppl, A.; Doulatov, S.; Phillips, L.A.; Ma, J.; Minden, M.D.; Downing, J.R.; Dick, J.E. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011, 469, 362–367. [Google Scholar] [CrossRef]
- Haidary, A.M.; Saadaat, R.; Abdul-Ghafar, J.; Rahmani, S.; Noor, S.; Noor, S.; Nasir, N.; Ahmad, M.; Zahier, A.S.; Zahier, R.; et al. Acute lymphoblastic leukemia with clonal evolution due to delay in chemotherapy: A report of a case. EJHaem 2022, 3, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, C.; Suzukawa, K.; Katsura, Y.; Shimizu, S.; Mukai, H.Y.; Hasegawa, Y.; Imagawa, S.; Kojima, H.; Nagasawa, T. T-cell acute lymphoblastic leukemia with add(1)(p36) and del(12)(p11) following acute myelocytic leukemia with partial deletion of 9p. Cancer Genet. Cytogenet. 2004, 150, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Mick, S.L.; McCrae, K.R.; Houghtaling, P.L.; Sabik, J.F., 3rd; Blackstone, E.H.; Koch, C.G. Preoperative Anemia in Cardiac Operation: Does Hemoglobin Tell the Whole Story? Ann. Thorac. Surg. 2018, 105, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Hanson, C.A.; Inwards, D.J. How to interpret and pursue an abnormal complete blood cell count in adults. Mayo Clin. Proc. 2005, 80, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2014, 52, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Niaz, H.; Malik, H.S.; Mahmood, R.; Mehmood, A.; Zaidi, S.A.; Nisar, U. Clinico-Haematologic Parameters and Assessment of Post-Induction Status in Acute Lymphoblastic Leukaemia. J. Ayub Med. Coll. Abbottabad 2022, 34, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Advani, A. Acute lymphoblastic leukemia (ALL). Best Pract. Res. Clin. Haematol. 2017, 30, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Woldeteklehaymanot, K.; Girum, T.; Lealem, G.B.; Diriba, F.; Wondimagen, A.; Tilahun, Y. Prevalence of leukemia and associated factors among patients with abnormal hematological parameters at Jimma Medical Center, Southwest Ethiopia: A cross-sectional study. Adv. Hematol. 2020, 2020, 7. [Google Scholar] [CrossRef]
- Izu, A.; Yanagida, H.; Sugimoto, K.; Fujita, S.; Okada, M.; Takemura, T. Focal segmental glomerulosclerosis and partial deletion of chromosome 6p: A case report. Clin. Nephrol. 2011, 76, 64–67. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Nieuwesteeg, M.; Raizman, J.E.; Chen, Y.; Wong, S.L.; Blais, D. Biochemical marker reference values across pediatric, adult, and geriatric ages: Establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin. Chem. 2015, 61, 1049–1062. [Google Scholar] [CrossRef]
- Wang, H.; Ran, J.; Jiang, T. Urea. Subcell. Biochem. 2014, 73, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Heincelman, M.; Karakala, N.; Rockey, D.C. Acute Lymphoblastic Leukemia in a Young Adult Presenting as Hepatitis and Acute Kidney Injury. J. Investig. Med. High Impact Case Rep. 2016, 4, 2324709616665866. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.; Slone, S.; Padron, E. Relapsed Acute Lymphoblastic Leukemia Presenting as Acute Renal Failure. Case Rep. Nephrol. 2019, 2019, 7913027. [Google Scholar] [CrossRef] [PubMed]
- Munker, R.; Hill, U.; Jehn, U.; Kolb, H.J.; Schalhorn, A. Renal complications in acute leukemias. Haematologica 1998, 83, 416–421. [Google Scholar] [PubMed]
- Luciano, R.L.; Brewster, U.C. Envolvimento renal em leucemia e linfoma. Avanços Doença Ren. Crônica 2014, 21, 27–35. [Google Scholar] [CrossRef]
- Sherief, L.M.; Azab, S.F.; Zakaria, M.M.; Kamal, M.; Elbasset Aly, M.A.; Ali, A.; Alhady, M.A. Renal Presentation in Pediatric Acute Leukemia: Report of 2 Cases. Medicine 2015, 94, e1461. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.; Dolde, C.; Lewis, B.C.; Wu, C.S.; Dang, G.; Jungmann, R.A.; Dalla-Favera, R.; Dang, C.V. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 1997, 94, 6658–6663. [Google Scholar] [CrossRef] [PubMed]
- Osthus, R.C.; Shim, H.; Kim, S.; Li, Q.; Reddy, R.; Mukherjee, M.; Xu, Y.; Wonsey, D.; Lee, L.A.; Dang, C.V. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 2000, 275, 21797–21800. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458, 762–765. [Google Scholar] [CrossRef]
- Morrish, F.; Noonan, J.; Perez-Olsen, C.; Gafken, P.R.; Fitzgibbon, M.; Kelleher, J.; VanGilst, M.; Hockenbery, D. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 2010, 285, 36267–36274. [Google Scholar] [CrossRef]
- Roberts, K.G.; Mullighan, C.G. Genomics in acute lymphoblastic leukaemia: Insights and treatment implications. Nat. Rev. Clin. Oncol. 2015, 12, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, Z.; Liu, Z.H.; Li, L.S. Acute lymphoblastic leukemia complicated by acute renal failure: A case report and review of the literature. Clin. Nephrol. 2010, 73, 321–325. [Google Scholar] [CrossRef] [PubMed]
Hematological Parameters | Biochemical Parameters |
---|---|
Red cells (million/mm3) | Urea (mg/dL) |
Hemoglobin (g/dL) | Transaminase (AST)/(U/L) |
Hematocrit (%) | Creatine (mg/dL) |
Mean corpuscular volume MCV (fL) | Glucose (mg/dL) |
Mean corpuscular hemoglobin (pg) | Magnesium (mg/dL) |
Mean corpuscular hemoglobin concentration (g/dL) | Potassium (mEq/L) |
RDW (%) | Sodium (mEq/L) |
Leukocytes (mm3) | |
Lymphocytes (relative value)/% | |
Lymphocytes (absolute value)/(mm3) | |
Monocyte (relative value)/% | |
Monocyte (absolute value)/(uL) | |
Neutrophil (relative value)/(%) | |
Neutrophil (absolute value)/(mm3) | |
Eosinophil (relative value)/% | |
Eosinophil (absolute value)/(µL) | |
Basophils (relative value)/% | |
Basophils (absolute value)/(µL) | |
Rods (relative value)/(%) | |
Rods (absolute value)/(mL/µL) | |
Platelets (mm3) |
Hematological Parameters | Categories | Mean | Min. Value | Max. Value | SD | p-Value | |
---|---|---|---|---|---|---|---|
t(4;11) | Red cells (millions/mm3) | t(4;11) | 2.163 | 1.86 | 2.48 | 0.310 | 0.047 |
Other | 3.081 | 1.02 | 4.93 | 0.765 | |||
del(9p) | Hemoglobin (g/dL) | del9p | 11.766 | 7.7 | 15.4 | 3.955 | 0.035 |
Other | 8.597 | 5.3 | 15.6 | 2.333 | |||
Hematocrit (%) | del9p | 35.666 | 23.7 | 44.9 | 10.861 | 0.035 | |
Other | 26.133 | 8.7 | 45.8 | 7.115 | |||
Mean corpuscular volume MCV (fL) | del9p | 100.73 | 95.18 | 107.26 | 6.097 | 0.005 | |
Other | 87.494 | 74.01 | 104.65 | 7.481 | |||
Mean corpuscular hemoglobin (pg) | del9p | 33.030 | 30.92 | 34.66 | 1.915 | 0.001 | |
Other | 28.783 | 23.5 | 34.66 | 2.061 | |||
Normal karyotype | Lymphocytes (mm3) | Normal karyotype | 1.950 | 113.4 | 1185.8 | 1.560 | 0.001 |
Other | 8.003 | 324.8 | 5901.3 | 8.263 | |||
Platelets (mm3) | Normal karyotype | 48.571 | 12 | 130 | 43.181 | 0.001 | |
Other | 142.78 | 4 | 396 | 125.44 | |||
Sex | Red cells (millions/mm3) | Male | 3.214 | 1.89 | 4.93 | 0.7432 | 0.022 |
Female | 2.666 | 1.02 | 3.58 | 0.7322 | |||
Hemoglobin (g/dL) | Male | 9.358 | 5.3 | 15.6 | 2.517 | 0.049 | |
Female | 7.812 | 2.9 | 11.6 | 2.317 | |||
Hematocrit (%) | Male | 28.737 | 15.7 | 45.8 | 7.367 | 0.018 | |
Female | 23.200 | 8.7 | 33.7 | 6.975 |
Parameters | Categories | Mean | Min. Value | Max. Value | SD | p-Value | |
---|---|---|---|---|---|---|---|
t(4;11) | Urea (mg/dL) | t(4;11) | 145.66 | 80 | 232 | 78.08 | 0.005 |
Others | 48.57 | 15 | 294 | 53.79 | |||
del(6q) | Urea (mg/dL) | del(6q) | 109 | 19 | 294 | 116.4 | 0.031 |
Others | 48.3 | 13 | 157 | 47.09 | |||
Initial symptoms | Glucose (mg/dL) | Non-hematological | 101.87 | 69 | 164 | 25.72 | 0.027 |
Hematological | 140.4 | 101 | 207 | 47.17 | |||
Sex | Creatine (mg/dL) | Male | 90.55 | 0.54 | 6.23 | 124.3 | 0.041 |
Female | 23.69 | 0.3 | 2.4 | 32.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, D.d.S.; Teixeira, E.B.; de Oliveira, M.B.; Carneiro, T.X.; Leão, L.B.C.; Mello Júnior, F.A.R.; Carneiro, D.M.; Nunes, P.F.; Cohen-Paes, A.; Alcantara, D.D.F.Á.; et al. Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil. Biomedicines 2024, 12, 2739. https://doi.org/10.3390/biomedicines12122739
Duarte DdS, Teixeira EB, de Oliveira MB, Carneiro TX, Leão LBC, Mello Júnior FAR, Carneiro DM, Nunes PF, Cohen-Paes A, Alcantara DDFÁ, et al. Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil. Biomedicines. 2024; 12(12):2739. https://doi.org/10.3390/biomedicines12122739
Chicago/Turabian StyleDuarte, Dejair da Silva, Eliel Barbosa Teixeira, Marcelo Braga de Oliveira, Thiago Xavier Carneiro, Lucyana Barbosa Cardoso Leão, Fernando Augusto Rodrigues Mello Júnior, Debora Monteiro Carneiro, Patricia Ferreira Nunes, Amanda Cohen-Paes, Diego Di Felipe Ávila Alcantara, and et al. 2024. "Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil" Biomedicines 12, no. 12: 2739. https://doi.org/10.3390/biomedicines12122739
APA StyleDuarte, D. d. S., Teixeira, E. B., de Oliveira, M. B., Carneiro, T. X., Leão, L. B. C., Mello Júnior, F. A. R., Carneiro, D. M., Nunes, P. F., Cohen-Paes, A., Alcantara, D. D. F. Á., Khayat, A. S., & Burbano, R. M. R. (2024). Hematological and Biochemical Characteristics Associated with Cytogenetic Findern Alterations in Adult Patients with Acute Lymphoblastic Leukemia (ALL) from the Northern Region of Brazil. Biomedicines, 12(12), 2739. https://doi.org/10.3390/biomedicines12122739