Association of Genetic Variants, Such as the μ-Opioid Receptor 1 (OPRM1) rs1799971 and Catechol-O-Methyltransferase (COMT) rs4680, with Phenotypic Expression of Fibromyalgia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Patient-Reported Outcome Measures (PROMs)
2.2.1. Pain Outcomes
2.2.2. Symptom Severity
2.2.3. Borg Scale
2.3. DNA Collection and Genetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographic, Clinical, and Phenotype Analyses
3.2. Genetic Polymorphisms: Distribution and Frequencies
3.3. COMT rs4680 and OPRM1 rs1799971 Polymorphisms: Impact in Relation to Phenotype
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FM | Fibromyalgia |
OPRM1 | μ-opioid receptor 1 |
COMT | Catechol-O-methyltransferase |
PROMs | Patient-reported outcome measures |
WPI | Widespread pain index |
VAS | Visual analogue scale |
SSS | Symptom Severity Scale |
FSS | Fatigue levels |
WunSS | Waking unrefreshed |
CoSS | Cognitive symptoms |
RPE | Ratings of perceived exertion |
ADL | Activities of daily living |
ACR | American College of Rheumatology |
LR | Logistic regression |
References
- Clauw, D.J. Fibromyalgia: A Clinical Review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.M.; Jones, J.; Turk, D.C.; Russell, I.J.; Matallana, L. An Internet Survey of 2596 People with Fibromyalgia. BMC Musculoskelet. Disord. 2007, 8, 27. [Google Scholar] [CrossRef]
- Walitt, B.; Nahin, R.L.; Katz, R.S.; Bergman, M.J.; Wolfe, F. The Prevalence and Characteristics of Fibromyalgia in the 2012 National Health Interview Survey. PLoS ONE 2015, 10, e0138024. [Google Scholar] [CrossRef]
- D’Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and Epigenetics Insights May Provide the Basis for the Development of Diagnostic Biomarkers. Mol. Pain 2019, 15, 1744806918819944. [Google Scholar] [CrossRef]
- Sluka, K.A.; Clauw, D.J. Neurobiology of Fibromyalgia and Chronic Widespread Pain. Neuroscience 2016, 338, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.A.; Perrot, S.; Häuser, W. Comorbid Fibromyalgia: A Qualitative Review of Prevalence and Importance. Eur. J. Pain 2018, 22, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Winslow, B.T.; Vandal, C.; Dang, L. Fibromyalgia: Diagnosis and Management. Am. Fam. Physician 2023, 107, 137–144. [Google Scholar]
- Mendoza, J.M.; Sanchez, J.L.A.; Sanz, J.S. Physiopathology of Fibromyalgia. Reumatol. Clin. 2020, 16, 191–194. [Google Scholar] [CrossRef]
- Bradley, L.A. Pathophysiology of Fibromyalgia. Am. J. Med. 2009, 122, S22–S30. [Google Scholar] [CrossRef]
- Berwick, R.; Barker, C.; Goebel, A. The Diagnosis of Fibromyalgia Syndrome. Clin. Med. J. R. Coll. Physicians Lond. 2022, 22, 570–574. [Google Scholar] [CrossRef]
- Siracusa, R.; Di Paola, R.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef] [PubMed]
- Polli, A.; Hendrix, J.; Ickmans, K.; Bakusic, J.; Ghosh, M.; Monteyne, D.; Velkeniers, B.; Bekaert, B.; Nijs, J.; Godderis, L. Genetic and Epigenetic Regulation of Catechol-O-Methyltransferase in Relation to Inflammation in Chronic Fatigue Syndrome and Fibromyalgia. J. Transl. Med. 2022, 20, 478. [Google Scholar] [CrossRef] [PubMed]
- Estévez-López, F.; Camiletti-Moirón, D.; Aparicio, V.A.; Segura-Jiménez, V.; Álvarez-Gallardo, I.C.; Soriano-Maldonado, A.; Borges-Cosic, M.; Acosta-Manzano, P.; Geenen, R.; Delgado-Fernández, M.; et al. Identification of Candidate Genes Associated with Fibromyalgia Susceptibility in Southern Spanish Women: The al-Ándalus Project. J. Transl. Med. 2018, 16, 43. [Google Scholar] [CrossRef]
- Estevez-López, F.; Guerrero-González, J.M.; Salazar-Tortosa, D.; Camiletti-Moirón, D.; Gavilán-Carrera, B.; Aparicio, V.A.; Acosta-Manzano, P.; Álvarez-Gallardo, I.C.; Segura-Jimenez, V.; Soriano-Maldonado, A.; et al. Interplay between Genetics and Lifestyle on Pain Susceptibility in Women with Fibromyalgia: The al-Ándalus Project. Rheumatology 2022, 61, 3180–3191. [Google Scholar] [CrossRef]
- Ellerbrock, I.; Sandström, A.; Tour, J.; Kadetoff, D.; Schalling, M.; Jensen, K.B.; Kosek, E. Polymorphisms of the μ-Opioid Receptor Gene Influence Cerebral Pain Processing in Fibromyalgia. Eur. J. Pain 2021, 25, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Ovrom, E.A.; Mostert, K.A.; Khakhkhar, S.; McKee, D.P.; Yang, P.; Her, Y.F. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines 2023, 11, 1119. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Ambite-Quesada, S.; Fernández-Méndez, L.M.; Jiménez-Antona, C.; Gómez-Calero, C.; Pocinho, R.; Valera-Calero, J.A.; Cigarán-Méndez, M.; Arendt-Nielsen, L. Association of OPRM1 Rs1799971, HTR1B Rs6296 and COMT Rs4680 Polymorphisms with Clinical Phenotype among Women with Fibromyalgia. Sci. Rep. 2024, 14, 11273. [Google Scholar] [CrossRef]
- Ferrera, D.; Gómez-Esquer, F.; Peláez, I.; Barjola, P.; Fernandes-Magalhaes, R.; Carpio, A.; De Lahoz, M.E.; Díaz-Gil, G.; Mercado, F. Effects of COMT Genotypes on Working Memory Performance in Fibromyalgia Patients. J. Clin. Med. 2020, 9, 2479. [Google Scholar] [CrossRef]
- Inanir, A.; Karakus, N.; Ates, O.; Sezer, S.; Bozkurt, N.; Inanir, S.; Yigit, S. Clinical Symptoms in Fibromyalgia Are Associated to Catechol-O-Methyltransferase (COMT) Gene Val158Met Polymorphism. Xenobiotica 2014, 44, 952–956. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, J.H.; Song, G.G. Association between the COMT Val158Met Polymorphism and Fibromyalgia Susceptibility and Fibromyalgia Impact Questionnaire Score: A Meta-Analysis. Rheumatol. Int. 2015, 35, 159–166. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, J.; Chen, Y.; Zhao, J. Meta-Analysis Reveals a Lack of Association between a Common Catechol-O-Methyltransferase (COMT) Polymorphism Val158met and Fibromyalgia. Int. J. Clin. Exp. Pathol. 2014, 7, 8489. [Google Scholar]
- Dudeney, J.; Law, E.F.; Meyyappan, A.; Palermo, T.M.; Rabbitts, J.A. Evaluating the Psychometric Properties of the Widespread Pain Index and the Symptom Severity Scale in Youth with Painful Conditions. Can. J. Pain 2019, 3, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.M. Assessment of Chronic Pain. I. Aspects of the Reliability and Validity of the Visual Analogue Scale. Pain 1983, 16, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Faiz, K.W. VAS—Visual Analog Scale. Tidsskr. Nor. Laegeforen. 2014, 134, 323. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology Preliminary Diagnostic Criteria for Fibromyalgia and Measurement of Symptom Severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, G.; Colombini, B.; Dinu, M.; Whittaker, A.; Masoni, A.; Danza, G.; Amedei, A.; Ballerini, G.; Benedettelli, S.; Sofi, F. Effectiveness of a Khorasan Wheat-Based Replacement on Pain Symptoms and Quality of Life in Patients with Fibromyalgia. Pain Med. 2020, 21, 2366–2372. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B. Fibromyalgia Criteria and Severity Scales for Clinical and Epidemiological Studies: A Modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J. Rheumatol. 2011, 38, 1113–1122. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Estévez-López, F.; Segura-Jiménez, V.; Aparicio, V.A.; Álvarez-Gallardo, I.C.; Herrador-Colmenero, M.; Ruiz, J.R.; Henriksen, M.; Amris, K.; Delgado-Fernández, M. Association of Physical Fitness with Depression in Women with Fibromyalgia. Pain Med. 2016, 17, 1542–1552. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical Scaling with Applications in Physical Work and the Perception of Exertion. Scand. J. Work. Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef]
- Elkana, O.; Falcofsky, A.K.; Shorer, R.; Tamar Bar-On Kalfon, M.; Jacob Ablin, M.N. Does the Cognitive Index of the Symptom Severity Scale Evaluate Cognition? Data from Subjective and Objective Cognitive Mesaures in Fibromyalgia. Clin. Exp. Rheumatol. 2019, 37, S51–S57. [Google Scholar]
- Nadal-Nicolás, Y.; Rubio-Arias, J.Á.; Martínez-Olcina, M.; Reche-García, C.; Hernández-García, M.; Martínez-Rodríguez, A. Effects of Manual Therapy on Fatigue, Pain, and Psychological Aspects in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2020, 17, 4611. [Google Scholar] [CrossRef]
- Morishita, S.; Tsubaki, A.; Hotta, K.; Inoue, T.; Qin, W.; Kojima, S.; Fu, J.B.; Onishi, H. Face Pain Scale and Borg Scale Compared to Physiological Parameters during Cardiopulmonary Exercise Testing. J. Sports Med. Phys. Fitness 2021, 61, 1464–1468. [Google Scholar] [CrossRef] [PubMed]
- Gerra, M.C.; Dallabona, C.; Manfredini, M.; Giordano, R.; Capriotti, C.; González-Villar, A.; Triñanes, Y.; Arendt-Nielsen, L.; Carrillo-de-la-Peña, M.T. The Polymorphism Val158Met in the COMT Gene: Disrupted Dopamine System in Fibromyalgia Patients? Pain 2024, 165, e184–e189. [Google Scholar] [CrossRef]
- Desmeules, J.; Chabert, J.; Rebsamen, M.; Rapiti, E.; Piguet, V.; Besson, M.; Dayer, P.; Cedraschi, C. Central Pain Sensitization, COMT Val158Met Polymorphism, and Emotional Factors in Fibromyalgia. J. Pain 2014, 15, 129–135. [Google Scholar] [CrossRef]
- Ferrera, D.; Mercado, F.; Peláez, I.; Martínez-Iñigo, D.; Fernandes-Magalhaes, R.; Barjola, P.; Écija, C.; Díaz-Gil, G.; Gómez-Esquer, F. Fear of Pain Moderates the Relationship between Self-Reported Fatigue and Methionine Allele of Catechol-O-Methyltransferase Gene in Patients with Fibromyalgia. PLoS ONE 2021, 16, e0250547. [Google Scholar] [CrossRef] [PubMed]
- Fernández-De-Las-Peñas, C.; Ambite-Quesada, S.; Gil-Crujera, A.; Cigarán-Méndez, M.; Peñacoba-Puente, C. Catechol-O-Methyltransferase Val158Met Polymorphism Influences Anxiety, Depression, and Disability, but Not Pressure Pain Sensitivity, in Women with Fibromyalgia Syndrome. J. Pain 2012, 13, 1068–1074. [Google Scholar] [CrossRef]
- Malyuchenko, N.V.; Schegolkova, J.V.; Kulikova, M.A.; Timofeeva, M.A.; Shlepzova, V.A.; Sysoeva, O.V.; Ivanitsky, A.M.; Tonevitsky, A.G. Effects of Genetic Variations in the Dopaminergic System on Fatigue in Humans: Gender Aspects. Bull. Exp. Biol. Med. 2010, 149, 226–232. [Google Scholar] [CrossRef]
- Vincent, A.; Benzo, R.P.; Whipple, M.O.; McAllister, S.J.; Erwin, P.J.; Saligan, L.N. Beyond Pain in Fibromyalgia: Insights into the Symptom of Fatigue. Arthritis Res. Ther. 2013, 15, 221. [Google Scholar] [CrossRef]
- Zubieta, J.K.; Heitzeg, M.M.; Smith, Y.R.; Bueller, J.A.; Xu, K.; Xu, Y.; Koeppe, R.A.; Stohler, C.S.; Goldmans, D. COMT Val158met Genotype Affects Mu-Opioid Neurotransmitter Responses to a Pain Stressor. Science (1979) 2003, 299, 1240–1243. [Google Scholar] [CrossRef]
- Nackley, A.G.; Tan, K.S.; Fecho, K.; Flood, P.; Diatchenko, L.; Maixner, W. Catechol-O-Methyltransferase Inhibition Increases Pain Sensitivity through Activation of Both Beta2- and Beta3-Adrenergic Receptors. Pain 2007, 128, 199–208. [Google Scholar] [CrossRef]
- Rodriguez-Pintó, I.; Agmon-Levin, N.; Howard, A.; Shoenfeld, Y. Fibromyalgia and Cytokines. Immunol. Lett. 2014, 161, 200–203. [Google Scholar] [CrossRef]
- Bower, J.E. Cancer-Related Fatigue: Links with Inflammation in Cancer Patients and Survivors. Brain Behav. Immun. 2007, 21, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Dauvilliers, Y.; Tafti, M.; Landolt, H.P. Catechol-O-Methyltransferase, Dopamine, and Sleep-Wake Regulation. Sleep Med. Rev. 2015, 22, 47–53. [Google Scholar] [CrossRef]
- Goel, N.; Banks, S.; Lin, L.; Mignot, E.; Dinges, D.F. Catechol-O-Methyltransferase Val158Met Polymorphism Associates with Individual Differences in Sleep Physiologic Responses to Chronic Sleep Loss. PLoS ONE 2011, 6, e29283. [Google Scholar] [CrossRef] [PubMed]
- Valomon, A.; Holst, S.C.; Bachmann, V.; Viola, A.U.; Schmidt, C.; Zürcher, J.; Berger, W.; Cajochen, C.; Landolt, H.P. Genetic Polymorphisms of DAT1 and COMT Differentially Associate with Actigraphy-Derived Sleep-Wake Cycles in Young Adults. Chronobiol. Int. 2014, 31, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Enoch, M.A.; Xu, K.; Ferro, E.; Harris, C.R.; Goldman, D. Genetic Origins of Anxiety in Women: A Role for a Functional Catechol-O-Methyltransferase Polymorphism. Psychiatr. Genet. 2003, 13, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Desmeules, J.; Piguet, V.; Besson, M.; Chabert, J.; Rapiti, E.; Rebsamen, M.; Rossier, M.F.; Curtin, F.; Dayer, P.; Cedraschi, C. Psychological Distress in Fibromyalgia Patients: A Role for Catechol-O-Methyl-Transferase Val158met Polymorphism. Health Psychol. 2012, 31, 242–249. [Google Scholar] [CrossRef]
- Tunbridge, E.M.; Bannerman, D.M.; Sharp, T.; Harrison, P.J. Catechol-o-Methyltransferase Inhibition Improves Set-Shifting Performance and Elevates Stimulated Dopamine Release in the Rat Prefrontal Cortex. J. Neurosci. 2004, 24, 5331–5335. [Google Scholar] [CrossRef]
- Nielens, H.; Boisset, V.; Masquelier, E. Fitness and Perceived Exertion in Patients with Fibromyalgia Syndrome. Clin. J. Pain 2000, 16, 209–213. [Google Scholar] [CrossRef]
- Shansky, R.M.; Glavis-Bloom, C.; Lerman, D.; McRae, P.; Benson, C.; Miller, K.; Cosand, L.; Horvath, T.L.; Arnsten, A.F.T. Estrogen Mediates Sex Differences in Stress-Induced Prefrontal Cortex Dysfunction. Mol. Psychiatry 2004, 9, 531–538. [Google Scholar] [CrossRef]
- Solak, Ö.; Erdoǧan, M.Ö.; Yildiz, H.; Ulaşli, A.M.; Yaman, F.; Terzi, E.S.A.; Ulu, S.; Dündar, Ü.; Solak, M. Assessment of Opioid Receptor Μ1 Gene A118G Polymorphism and Its Association with Pain Intensity in Patients with Fibromyalgia. Rheumatol. Int. 2014, 34, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Peciña, M.; Love, T.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects and Associated Personality Trait Measures. Neuropsychopharmacology 2015, 40, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Tour, J.; Löfgren, M.; Mannerkorpi, K.; Gerdle, B.; Larsson, A.; Palstam, A.; Bileviciute-Ljungar, I.; Bjersing, J.; Martin, I.; Ernberg, M.; et al. Gene-to-Gene Interactions Regulate Endogenous Pain Modulation in Fibromyalgia Patients and Healthy Controls-Antagonistic Effects between Opioid and Serotonin-Related Genes. Pain 2017, 158, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Liptan, G.; Kantorovich, S.; Sharma, M.; Brenton, A. Association of Catechol-O-Methyltransferase Single Nucleotide Polymorphisms, Ethnicity, and Sex in a Large Cohort of Fibromyalgia Patients. BMC Rheumatol. 2018, 2, 38. [Google Scholar] [CrossRef]
- Álvarez-Nemegyei, J.; Pacheco-Pantoja, E.L.; Olán-Centeno, L.J.; Angulo-Ramírez, A.; Rodríguez-Magaña, F.E.; Aranda-Muiña, J.F. Association between Fibromyalgia Syndrome Clinical Severity and Body Composition. A Principal Component Analysis. Reumatol. Clin. 2022, 18, 538–545. [Google Scholar] [CrossRef]
Women | Men | |||||||
---|---|---|---|---|---|---|---|---|
Total (n = 421) | Non-FM (n = 120) | FM (n = 301) | p | Total (n = 25) | Non-FM (n = 15) | FM (n = 10) | p | |
Age (mean ± SD) * | 55.29 ± 10.66 | 51.57 ± 14.43 | 56.77 ± 8.28 | <0.001 | 52.52 ± 10.85 | 49.87 ± 12.21 | 56.50 ± 7.24 | 0.137 |
Place of residence (%) | ||||||||
Rural | 24.52 | 33.30 | 21.00 | 0.008 | 28.00 | 20.00 | 40.00 | 0.275 |
Urban | 75.48 | 66.70 | 79.00 | 72.00 | 80.00 | 60.00 | ||
Drug number (mean ± SD) * | 5.42 ± 2.78 | 1.04 ± 0.20 | 5.42 ± 2.78 | <0.001 | 5.71 ± 1.98 | 1.00 ± 0.00 | 5.71 ± 1.98 | <0.001 |
Antidepressant (%) | 36.50 | 7.50 | 54.74 | <0.001 | 24.00 | 0.00 | 60.00 | 0.001 |
Benzodiazepines (%) | 30.60 | 6.67 | 45.79 | <0.001 | 12.00 | 0.00 | 30.00 | 0.030 |
Analgesics (%) | 48.40 | 6.67 | 74.74 | <0.001 | 28.00 | 0.00 | 70.00 | <0.001 |
Others (%) | 21.30 | 43.33 | 7.37 | <0.001 | 12.00 | 13.33 | 10.00 | 0.952 |
Polymedication (%) | ||||||||
Yes | 36.10 | 0.00 | 58.90 | <0.001 | 28.00 | 0.00 | 70.00 | <0.001 |
No | 63.90 | 100.00 | 41.10 | 72.00 | 100.00 | 30.00 | ||
FSS (%) | ||||||||
No problem | 23.10 | 72.50 | 1.50 | <0.001 | 32.00 | 53.30 | 0.00 | <0.001 |
Mild | 17.01 | 20.80 | 15.30 | 32.00 | 46.70 | 10.00 | ||
Moderate | 56.09 | 5.80 | 78.10 | 32.00 | 0.00 | 80.00 | ||
Severe | 3.81 | 0.80 | 5.10 | 4.00 | 0.00 | 10.00 | ||
WunSS (%) | ||||||||
No problem | 18.02 | 56.70 | 1.10 | <0.001 | 44.00 | 73.30 | 0.00 | <0.001 |
Mild | 18.27 | 28.30 | 13.90 | 12.00 | 20.00 | 0.00 | ||
Moderate | 49.49 | 12.50 | 65.70 | 32.00 | 6.70 | 70.00 | ||
Severe | 14.21 | 2.50 | 19.30 | 12.00 | 0.00 | 30.00 | ||
CoSS (%) | ||||||||
No problem | 25.13 | 80.80 | 0.70 | <0.001 | 56.00 | 93.30 | 0.00 | <0.001 |
Mild | 18.78 | 16.70 | 19.70 | 8.00 | 6.70 | 10.00 | ||
Moderate | 54.31 | 2.50 | 77.00 | 36.00 | 0.00 | 90.00 | ||
Severe | 1.78 | 0.00 | 2.60 | 0.00 | 0.00 | 0.00 | ||
Total SSS (0–12) (mean ± SD) * | 4.33 ± 2.46 | 1.18 ± 1.59 | 5.72 ± 1.14 | <0.001 | 3.00 ± 2.81 | 0.87 ± 0.91 | 6.20 ± 0.91 | <0.001 |
Average VAS (0–10) (mean ± SD) * | 2.71 ± 2.51 | 1.24 ± 1.94 | 3.30 ± 2.47 | <0.001 | 2.08 ± 2.25 | 1.27 ± 1.53 | 3.30 ± 2.67 | 0.024 |
Weak (0–3) (%) | 76.26 | 84.90 | 72.80 | 0.006 | 84.00 | 86.70 | 80.00 | 0.452 |
Medium (4–7) (%) | 16.07 | 13.40 | 17.10 | 12.00 | 13.30 | 10.00 | ||
Severe (8–10) (%) | 7.67 | 1.70 | 10.10 | 4.00 | 0.00 | 10.00 | ||
Rest quality (%) | ||||||||
High | 22.86 | 62.20 | 7.30 | <0.001 | 40.00 | 66.70 | 0.00 | 0.003 |
Medium | 71.90 | 31.10 | 88.00 | 56.00 | 33.30 | 90.00 | ||
Low | 5.24 | 6.70 | 4.70 | 4.00 | 0.00 | 10.00 | ||
Stress episode (%) | ||||||||
Yes | 72.62 | 21.40 | 93.20 | <0.001 | 56.00 | 26.70 | 100.00 | <0.001 |
No | 27.38 | 78.60 | 6.80 | 44.00 | 73.30 | 0.00 | ||
Borg scale (0–10) (%) | ||||||||
Easy or light (0–2) | 25.65 | 44.20 | 18.30 | <0.001 | 16.00 | 20.00 | 10.00 | 0.006 |
Light intensity (3–4) | 63.66 | 26.70 | 78.40 | 48.00 | 20.00 | 90.00 | ||
Mild intensity (5–6) | 7.36 | 17.50 | 3.30 | 20.00 | 33.30 | 0.00 | ||
Vigorous intensity (7–10) | 3.33 | 11.70 | 0.00 | 16.00 | 26.70 | 0.00 | ||
WPI (mean ± SD) * | 11.12 ± 3.94 | - | 11.12 ± 3.94 | - | 11.20 ± 3.93 | - | 11.20 ± 3.93 | - |
WPI + SSS (mean ± SD) * | 16.72 ± 4.21 | - | 16.72 ± 4.21 | - | 17.40 ± 4.17 | - | 17.40 ± 4.17 | - |
Women | Men | |||||
---|---|---|---|---|---|---|
Non-FM (n = 120) | FM (n = 301) | p | Non-FM (n = 15) | FM (n = 10) | p | |
% (n) | % (n) | % (n) | % (n) | |||
COMT rs4680 | ||||||
G472G (Val158Val) | 34.5 (41) | 25.9 (78) | 0.203 | 13.3 (2) | 30 (3) | 0.584 |
G472A (Val158Met) | 46.2 (55) | 53.8 (162) | 53.4 (8) | 40 (4) | ||
A472A (Met158Met) | 19.3 (23) | 20.3 (61) | 33.3 (5) | 30 (3) | ||
Allele G472 (Val158) | 0.57 | 0.53 | 0.361 | 0.40 | 0.50 | 0.045 |
Allele A472 (Met158) | 0.43 | 0.47 | 0.60 | 0.50 | ||
OPRM1 rs1799971 | ||||||
A118A (Ans40Asn) | 70.6 (84) | 68.1 (205) | 0.879 | 80 (12) | 30 (3) | 0.036 |
A118G (Asn40Asp) | 27.7 (33) | 29.9 (90) | 20 (3) | 60 (6) | ||
G118G (Asp40Asp) | 1.7 (2) | 2 (6) | 0 (0) | 10 (1) | ||
Allele A118 (Asn40) | 0.84 | 0.83 | 0.618 | 0.90 | 0.60 | <0.001 |
Allele G118 (Asp40) | 0.16 | 0.17 | 0.10 | 0.40 |
OPRM1 rs1799971 Dominant Model | COMT rs4680 Dominant Model | |||||||
---|---|---|---|---|---|---|---|---|
Crude | Adjusted by Age | Crude | Adjusted by Age | |||||
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | |
FSS | 0.433 | - | 0.358 | - | 0.042 | 1.592 (1.02–2.49) | 0.014 | 1.010 (1.00–1.02) |
WunSS | 0.787 | - | 0.837 | - | 0.061 | 1.541 (0.98–2.42) | 0.032 | 1.008 (1.00–1.02) |
CoSS | 0.475 | - | 0.425 | - | 0.126 | - | 0.068 | 1.007 (1.00–1.02) |
Total SSS | 0.662 | - | 0.655 | - | 0.010 | 1.810 (1.16–2.84) | 0.007 | 1.011 (1.00–1.02) |
VAS | 0.224 | - | 0.201 | - | 0.639 | - | 0.590 | - |
Rest quality | 0.997 | - | 0.862 | - | 0.047 | 1.633 (1.01–2.65) | 0.008 | 1.011 (1.00–1.02) |
Stress episode | 0.508 | - | 0.376 | - | 0.013 | 1.802 (1.13–2.87) | 0.005 | 1.011 (1.00–1.02) |
Borg scale | 0.504 | - | 0.707 | - | 0.013 | 2.232 (1.19–4.18) | 0.001 | 1.019 (1.01–1.03) |
WPI | 0.105 | - | 0.083 | 1.014 (1.00–1.03) | 0.869 | - | 0.993 | - |
WPI + SSS | 0.359 | - | 0.338 | - | 0.655 | - | 0.601 | - |
OPRM1 rs1799971 Dominant Model | COMT rs4680 Dominant Model | |||||||
---|---|---|---|---|---|---|---|---|
Crude | Adjusted by Age | Crude | Adjusted by Age | |||||
p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | |
FSS | 0.050 | 6.000 (1.00–35.91) | 0.032 | 1.035 (1.00–1.07) | 0.835 | - | 0.866 | - |
WunSS | 0.007 | 16.000 (2.17–118.27) | 0.006 | 1.053 (1.02–1.09) | 0.427 | - | 0.764 | - |
CoSS | 0.050 | 6.000 (1.00–35.91) | 0.033 | 1.035 (1.00–1.07) | 0.226 | - | 0.451 | - |
Total SSS | 0.018 | 9.333 (1.47–59.48) | 0.015 | 1.042 (1.01–1.08) | 0.318 | - | 0.553 | - |
VAS | 0.999 | - | 0.999 | - | 0.999 | - | 0.749 | - |
Rest quality | 0.027 | 13.500 (1.34–135.99) | 0.029 | 1.047 (1.01–1.09) | 1.000 | - | 0.716 | - |
Stress episode | 0.015 | 17.857 (1.75–200.00) | 0.016 | 1.053 (1.01–1.10) | 0.840 | - | 0.777 | - |
Borg scale | 0.185 | - | 0.148 | - | 0.417 | - | 0.596 | - |
WPI | 0.501 | - | 0.378 | - | 0.501 | - | 0.492 | - |
WPI + SSS | 0.999 | 0.737 | 0.999 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erenas Ondategui, I.; Gómez Castro, J.; Estepa Hernández, S.; Chicharro Miguel, C.; Peiró Cárdenas, R.; Fernández-Araque, A.; Verde, Z. Association of Genetic Variants, Such as the μ-Opioid Receptor 1 (OPRM1) rs1799971 and Catechol-O-Methyltransferase (COMT) rs4680, with Phenotypic Expression of Fibromyalgia. Biomedicines 2025, 13, 1183. https://doi.org/10.3390/biomedicines13051183
Erenas Ondategui I, Gómez Castro J, Estepa Hernández S, Chicharro Miguel C, Peiró Cárdenas R, Fernández-Araque A, Verde Z. Association of Genetic Variants, Such as the μ-Opioid Receptor 1 (OPRM1) rs1799971 and Catechol-O-Methyltransferase (COMT) rs4680, with Phenotypic Expression of Fibromyalgia. Biomedicines. 2025; 13(5):1183. https://doi.org/10.3390/biomedicines13051183
Chicago/Turabian StyleErenas Ondategui, Isabel, Julia Gómez Castro, Sandra Estepa Hernández, Celia Chicharro Miguel, Regina Peiró Cárdenas, Ana Fernández-Araque, and Zoraida Verde. 2025. "Association of Genetic Variants, Such as the μ-Opioid Receptor 1 (OPRM1) rs1799971 and Catechol-O-Methyltransferase (COMT) rs4680, with Phenotypic Expression of Fibromyalgia" Biomedicines 13, no. 5: 1183. https://doi.org/10.3390/biomedicines13051183
APA StyleErenas Ondategui, I., Gómez Castro, J., Estepa Hernández, S., Chicharro Miguel, C., Peiró Cárdenas, R., Fernández-Araque, A., & Verde, Z. (2025). Association of Genetic Variants, Such as the μ-Opioid Receptor 1 (OPRM1) rs1799971 and Catechol-O-Methyltransferase (COMT) rs4680, with Phenotypic Expression of Fibromyalgia. Biomedicines, 13(5), 1183. https://doi.org/10.3390/biomedicines13051183