HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis
Abstract
:1. Introduction
2. Mechanisms and Clinical Implications of HER2 Overexpression
3. Monoclonal Antibodies in HER2-Positive Tumors
4. Recommendations for the Treatment of HER2-Positive BC
5. Metastases to the Brain—Current Therapeutic Methods
5.1. Onset of Brain Metastases in HER2+ BC Patients
5.2. Whole Brain Radiotherapy (WBRT)
5.3. Stereotactic Radiosurgery
5.4. Trastuzumab
5.5. Pertuzumab
5.6. Trastuzumab Emtansine
5.7. Lapatinib and Neratinib
6. Metastases to the Brain—New Therapeutic Methods
6.1. Trastuzumab Deruxtecan (T-DXd)
6.2. Tucatinib
6.3. Pyrotinib
7. New Trials in the Treatment of HER2+ BC with Brain Metastases
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murphrey, M.B.; Quaim, L.; Rahimi, N.; Varacallo, M. Biochemistry, Epidermal Growth Factor Receptor. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yu, J.; Fang, T.; Yun, C.; Liu, X.; Cai, X. Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Front. Mol. Biosci. 2022, 9, 847835. [Google Scholar] [CrossRef] [PubMed]
- Rinne, S.S.; Orlova, A.; Tolmachev, V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int. J. Mol. Sci. 2021, 22, 3663. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; George, B.; Campbell, M.R.; Verma, N.; Paul, A.M.; Melo-Alvim, C.; Ribeiro, L.; Pillai, M.R.; da Costa, L.M.; Moasser, M.M. HER family in cancer progression: From discovery to 2020 and beyond. Adv. Cancer Res. 2020, 147, 109–160. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu, S., II; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef]
- Zimmer, A.S.; Van Swearingen, A.E.D.; Anders, C.K. HER2-positive breast cancer brain metastasis: A new and exciting landscape. Cancer Rep. 2022, 5, e1274. [Google Scholar] [CrossRef]
- Zahid, K.F.; Kumar, S.; Al-Bimani, K.; Ahmed, T.; Al-Ajmi, A.; Burney, I.A.; Al-Moundhri, M. Outcome of Omani Women with Breast Cancer-associated Brain Metastases Experience from a University Hospital. Oman Med. J. 2019, 34, 412–419. [Google Scholar] [CrossRef]
- Nader-Marta, G.; Martins-Branco, D.; de Azambuja, E. How we treat patients with metastatic HER2-positive breast cancer. ESMO Open 2022, 7, 100343. [Google Scholar] [CrossRef]
- Momeny, M.; Saunus, J.M.; Marturana, F.; McCart Reed, A.E.; Black, D.; Sala, G.; Iacobelli, S.; Holland, J.D.; Yu, D.; Da Silva, L.; et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 2015, 6, 3932–3946. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.V.; Perez-Gracia, J.; Eiriz, I.; Gion, M.; Llombart, A.; Braga, S.; Cortés, J. Systemic treatment for brain metastasis in HER2- positive advanced breast cancer: What have we learned so far? Oncotarget 2023, 14, 701–702. [Google Scholar] [CrossRef]
- Hackshaw, M.D.; Danysh, H.E.; Henderson, M.; Wang, E.; Tu, N.; Islam, Z.; Ladner, A.; Ritchey, M.E.; Salas, M. Prognostic factors of brain metastasis and survival among HER2-positive metastatic breast cancer patients: A systematic literature review. BMC Cancer 2021, 21, 967. [Google Scholar] [CrossRef]
- Garcia-Alvarez, A.; Papakonstantinou, A.; Oliveira, M. Brain Metastases in HER2-Positive Breast Cancer: Current and Novel Treatment Strategies. Cancers 2021, 13, 2927. [Google Scholar] [CrossRef] [PubMed]
- Niwińska, A.; Murawska, M.; Pogoda, K. Breast cancer brain metastases: Differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann. Oncol. 2010, 21, 942–948. [Google Scholar] [CrossRef]
- Riecke, K.; Müller, V.; Neunhöffer, T.; Park-Simon, T.W.; Weide, R.; Polasik, A.; Schmidt, M.; Puppe, J.; Mundhenke, C.; Lübbe, K.; et al. Long-term survival of breast cancer patients with brain metastases: Subanalysis of the BMBC registry. ESMO Open 2023, 8, 101213. [Google Scholar] [CrossRef]
- Schettini, F.; Prat, A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 2021, 59, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Yudushkin, I. Getting the Akt Together: Guiding Intracellular Akt Activity by PI3K. Biomolecules 2019, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F. Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol. 2003, 4, 373–385. [Google Scholar] [CrossRef]
- Bourne, H.R.; Sanders, D.A.; McCormick, F. The GTPase superfamily: A conserved switch for diverse cell functions. Nature 1990, 348, 125–132. [Google Scholar] [CrossRef]
- Paduch, M.; Jeleń, F.; Otlewski, J. Structure of small G proteins and their regulators. Acta Biochim. Pol. 2001, 48, 829–850. [Google Scholar] [CrossRef]
- Szymonowicz, K.; Oeck, S.; Malewicz, N.M.; Jendrossek, V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers 2018, 10, 78. [Google Scholar] [CrossRef]
- Sirkisoon, S.R.; Carpenter, R.L.; Rimkus, T.; Miller, L.; Metheny-Barlow, L.; Lo, H.W. EGFR and HER2 signaling in breast cancer brain metastasis. Front. Biosci. 2016, 8, 245–263. [Google Scholar] [CrossRef]
- Carpenter, R.L.; Han, W.; Paw, I.; Lo, H.W. HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells. PLoS ONE 2013, 8, e78836. [Google Scholar] [CrossRef] [PubMed]
- Petrocelli, T.; Slingerland, J.M. PTEN deficiency: A role in mammary carcinogenesis. Breast Cancer Res. 2001, 3, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, C.; Yin, H.; Huang, J.; Yu, S.; Zhao, J.; Tang, Y.; Yu, M.; Lin, J.; Ding, L.; et al. The Mechanism of DNA Methylation and miRNA in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 9360. [Google Scholar] [CrossRef]
- Palomeras, S.; Diaz-Lagares, Á.; Viñas, G.; Setien, F.; Ferreira, H.J.; Oliveras, G.; Crujeiras, A.B.; Hernández, A.; Lum, D.H.; Welm, A.L.; et al. Epigenetic silencing of TGFBI confers resistance to trastuzumab in human breast cancer. Breast Cancer Res. 2019, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Mungamuri, S.K.; Murk, W.; Grumolato, L.; Bernstein, E.; Aaronson, S.A. Chromatin modifications sequentially enhance ErbB2 expression in ErbB2-positive breast cancers. Cell Rep. 2013, 5, 302–313. [Google Scholar] [CrossRef]
- Dou, Y.; Milne, T.A.; Ruthenburg, A.J.; Lee, S.; Lee, J.W.; Verdine, G.L.; Allis, C.D.; Roeder, R.G. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 2006, 13, 713–719. [Google Scholar] [CrossRef]
- Fogazzi, V.; Kapahnke, M.; Cataldo, A.; Plantamura, I.; Tagliabue, E.; Di Cosimo, S.; Cosentino, G.; Iorio, M.V. The Role of MicroRNAs in HER2-Positive Breast Cancer: Where We Are and Future Prospective. Cancers 2022, 14, 5326. [Google Scholar] [CrossRef]
- Iorio, M.V.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef]
- Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci. 2021, 22, 10317. [Google Scholar] [CrossRef]
- Gutierrez, C.; Schiff, R. HER2: Biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011, 135, 55–62. [Google Scholar] [CrossRef]
- Wenczak, B.A.; Lynch, J.B.; Nanney, L.B. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair. J. Clin. Investig. 1992, 90, 2392–2401. [Google Scholar] [CrossRef] [PubMed]
- Alrhmoun, S.; Sennikov, S. The Role of Tumor-Associated Antigen HER2/neu in Tumor Development and the Different Approaches for Using It in Treatment: Many Choices and Future Directions. Cancers 2022, 14, 6173. [Google Scholar] [CrossRef] [PubMed]
- Muthuswamy, S.K.; Gilman, M.; Brugge, J.S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell. Biol. 1999, 19, 6845–6857. [Google Scholar] [CrossRef]
- Pan, P.C.; Magge, R.S. Mechanisms of EGFR Resistance in Glioblastoma. Int. J. Mol. Sci. 2020, 21, 8471. [Google Scholar] [CrossRef] [PubMed]
- Negro, A.; Brar, B.K.; Lee, K.F. Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog. Horm. Res. 2004, 59, 1–12. [Google Scholar] [CrossRef]
- Cheng, X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes 2024, 15, 903. [Google Scholar] [CrossRef]
- Mo, C.; Sterpi, M.; Jeon, H.; Bteich, F. Resistance to Anti-HER2 Therapies in Gastrointestinal Malignancies. Cancers 2024, 16, 2854. [Google Scholar] [CrossRef]
- Negro, S.; Pirazzini, M.; Rigoni, M. Models and methods to study Schwann cells. J. Anat. 2022, 241, 1235–1258. [Google Scholar] [CrossRef]
- Newbern, J.; Birchmeier, C. Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin. Cell Dev. Biol. 2010, 21, 922–928. [Google Scholar] [CrossRef]
- Gąsior, Z.; Ekiert, M.; Gisterek, I.; Ignatowicz-Pacyna, A.; Jeleń, M.; Łacko, A.; Matkowski, R.; Nienartowicz, E.; Soter, K.; Szewczyk, K.; et al. Rak Piersi; Centrum Medyczne Kształcenia Podyplomowego: Warszawa, Poland, 2011. [Google Scholar]
- Xing, F.; Gao, H.; Chen, G.; Sun, L.; Sun, J.; Qiao, X.; Xue, J.; Liu, C. CMTM6 overexpression confers trastuzumab resistance in HER2-positive breast cancer. Mol. Cancer 2023, 22, 6. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Zhou, Y.; Huang, W.; Zhu, H.; Mao, F.; Lin, Y.; Zhang, Y.; Guan, J.; Cao, X.; et al. T1a triple negative breast cancer has the worst prognosis among all the small tumor (<1 cm) of TNBC and HER2-rich subtypes. Gland. Surg. 2021, 10, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Mercogliano, M.F.; Bruni, S.; Mauro, F.L.; Schillaci, R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers 2023, 15, 1987. [Google Scholar] [CrossRef]
- Mohd Sharial, M.S.N.; Crown, J.; Hennessy, B.T. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann. Oncol. 2012, 23, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
- Ran, R.; Zhao, S.; Zhou, Y.; Hang, X.; Wang, H.; Fan, Y.; Zhang, Y.; Qiao, Y.; Yang, J.; Dong, D. Clinicopathological characteristics, treatment patterns and outcomes in patients with HER2-positive breast cancer based on hormone receptor status: A retrospective study. BMC Cancer 2024, 24, 1216. [Google Scholar] [CrossRef] [PubMed]
- Junttila, T.T.; Akita, R.W.; Parsons, K.; Fields, C.; Lewis Phillips, G.D.; Friedman, L.S.; Sampath, D.; Sliwkowski, M.X. Ligand-Independent HER2/HER3/PI3K Complex Is Disrupted by Trastuzumab and Is Effectively Inhibited by the PI3K Inhibitor GDC-0941. Cancer Cell 2009, 15, 429–440. [Google Scholar] [CrossRef]
- Schlam, I.; Tarantino, P.; Tolaney, S.M. Overcoming Resistance to HER2-Directed Therapies in Breast Cancer. Cancers 2022, 14, 3996. [Google Scholar] [CrossRef]
- Vogel, C.L.; Cobleigh, M.A.; Tripathy, D.; Gutheil, J.C.; Harris, L.N.; Fehrenbacher, L.; Slamon, D.J.; Murphy, M.; Novotny, W.F.; Burchmore, M.; et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 2002, 20, 719–726. [Google Scholar] [CrossRef]
- Kreutzfeldt, J.; Rozeboom, B.; Dey, N.; De, P. The trastuzumab era: Current and upcoming targeted HER2+ breast cancer therapies. Am. J. Cancer Res. 2020, 10, 1045–1067. [Google Scholar]
- McKeage, K.; Perry, C.M. Trastuzumab. Drugs 2002, 62, 209–243. [Google Scholar] [CrossRef]
- Harbeck, N.; Beckmann, M.W.; Rody, A.; Schneeweiss, A.; Müller, V.; Fehm, T.; Marschner, N.; Gluz, O.; Schrader, I.; Heinrich, G.; et al. HER2 Dimerization Inhibitor Pertuzumab—Mode of Action and Clinical Data in Breast Cancer. Breast Care 2013, 8, 49–55. [Google Scholar] [CrossRef]
- Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004, 5, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Cortés, J.; Kim, S.B.; Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 2012, 366, 109–119. [Google Scholar] [CrossRef]
- Swain, S.M.; Baselga, J.; Kim, S.B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 2015, 372, 724–734. [Google Scholar] [CrossRef] [PubMed]
- von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N. Engl. J. Med. 2017, 377, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Jassem, J.; Sonnenblick, A.; Parlier, D.; Winer, E.; Bergh, J.; Gelber, R.D.; Restuccia, E.; Im, Y.-H.; Huang, C.-S.; et al. Adjuvant Pertuzumab and Trastuzumab in Early Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer in the APHINITY Trial: Third Interim Overall Survival Analysis with Efficacy Update. J. Clin. Oncol. 2024, 42, 3643–3651. [Google Scholar] [CrossRef]
- Shao, Z.; Pang, D.; Yang, H.; Li, W.; Wang, S.; Cui, S.; Liao, N.; Wang, Y.; Wang, C.; Chang, Y.C.; et al. Efficacy, Safety, and Tolerability of Pertuzumab, Trastuzumab, and Docetaxel for Patients with Early or Locally Advanced ERBB2-Positive Breast Cancer in Asia: The PEONY Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e193692. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Pang, D.; Yang, H.; Li, W.; Wang, S.; Cui, S.; Liao, N.; Wang, Y.; Wang, C.; Chang, Y.-C.; et al. Neoadjuvant–adjuvant pertuzumab in HER2-positive early breast cancer: Final analysis of the randomized phase III PEONY trial. Nat. Commun. 2024, 15, 2153. [Google Scholar] [CrossRef]
- Nordstrom, J.L.; Gorlatov, S.; Zhang, W.; Yang, Y.; Huang, L.; Burke, S.; Li, H.; Ciccarone, V.; Zhang, T.; Stavenhagen, J.; et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res. 2011, 13, R123. [Google Scholar] [CrossRef]
- FDA Approves Margetuximab for Metastatic HER2-Positive Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-margetuximab-metastatic-her2-positive-breast-cancer (accessed on 26 December 2024).
- Rugo, H.S.; Im, S.-A.; Cardoso, F.; Cortes, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Bachelot, T.; Wright, G.S.; Saura, C.; et al. Margetuximab Versus Trastuzumab in Patients with Previously Treated HER2-Positive Advanced Breast Cancer (SOPHIA): Final Overall Survival Results From a Randomized Phase 3 Trial. J. Clin. Oncol. 2023, 41, 198–205. [Google Scholar] [CrossRef]
- MARGetuximab or Trastuzumab (MARGOT) (MARGOT). Available online: https://www.clinicaltrials.gov/study/NCT04425018 (accessed on 26 December 2024).
- Aggarwal, D.; Yang, J.; Salam, M.A.; Sengupta, S.; Al-Amin, M.Y.; Mustafa, S.; Khan, M.A.; Huang, X.; Pawar, J.S. Antibody-drug conjugates: The paradigm shifts in the targeted cancer therapy. Front. Immunol. 2023, 14, 1203073. [Google Scholar] [CrossRef]
- Najjar, M.K.; Manore, S.G.; Regua, A.T.; Lo, H.W. Antibody-Drug Conjugates for the Treatment of HER2-Positive Breast Cancer. Genes 2022, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- BroadPharm. ADC Approval up to 2023. Available online: https://broadpharm.com/blog/ADC-Approval-up-to-2023 (accessed on 1 April 2025).
- Shastry, M.; Gupta, A.; Chandarlapaty, S.; Young, M.; Powles, T.; Hamilton, E. Rise of Antibody-Drug Conjugates: The Present and Future. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390094. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Li, G.; Guo, J.; Yu, S.-F.; Fields, C.T.; Lee, G.; Zhang, D.; Dragovich, P.S.; Pillow, T.; Wei, B.; et al. The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: Preclinical characterization and phase 1 trial results. Nat. Commun. 2024, 15, 466. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Fu, C.; Han, W.; Luo, H.; Quan, J.; Chen, L.; Liao, Y.; Hu, C.; Hu, H.; Niu, Y.; et al. A single-arm, multicenter, phase 2 clinical study of recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate (MRG002) in HER2-positive unresectable locally advanced or metastatic urothelial carcinoma. Eur. J. Cancer 2024, 205, 114096. [Google Scholar] [CrossRef]
- Qu, F.; Lu, R.; Liu, Q.; Wu, X.; Huang, X.; Yin, Y.; Li, W. Antibody–drug conjugates transform the outcome of individuals with low-HER2-expression advanced breast cancer. Cancer 2024, 130, 1392–1402. [Google Scholar] [CrossRef]
- Lim, D.; Kim, M.C.; Mhetre, A.; Nam, D.-H. System and Method for Advanced Data Processing. U.S. Patent 11938115B2, 19 March 2024. [Google Scholar]
- Barok, M.; Le Joncour, V.; Martins, A.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett. 2020, 473, 156–163. [Google Scholar] [CrossRef]
- Le Joncour, V.; Martins, A.; Puhka, M.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H.; Barok, M. A Novel Anti-HER2 Antibody-Drug Conjugate XMT-1522 for HER2-Positive Breast and Gastric Cancers Resistant to Trastuzumab Emtansine. Mol. Cancer Ther. 2019, 18, 1721–1730. [Google Scholar] [CrossRef]
- Schlam, I.; Swain, S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. npj Breast Cancer 2021, 7, 56. [Google Scholar] [CrossRef]
- Sukhun, S.A.; Temin, S.; Barrios, C.H.; Antone, N.Z.; Guerra, Y.C.; Chavez-MacGregor, M.; Chopra, R.; Danso, M.A.; Gomez, H.L.; Homian, N.D.M.; et al. Systemic Treatment of Patients with Metastatic Breast Cancer: ASCO Resource–Stratified Guideline. JCO Glob. Oncol. 2024, 10, e2300285. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 331–357. [Google Scholar] [CrossRef]
- Giordano, S.H.; Franzoi, M.A.B.; Temin, S.; Anders, C.K.; Chandarlapaty, S.; Crews, J.R.; Kirshner, J.J.; Krop, I.E.; Lin, N.U.; Morikawa, A.; et al. Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 2612–2635. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, B.; Mackey, J.R.; Clemens, M.R.; Bapsy, P.P.; Vaid, A.; Wardley, A.; Tjulandin, S.; Jahn, M.; Lehle, M.; Feyereislova, A.; et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. J. Clin. Oncol. 2009, 27, 5529–5537. [Google Scholar] [CrossRef]
- Huober, J.; Fasching, P.A.; Barsoum, M.; Petruzelka, L.; Wallwiener, D.; Thomssen, C.; Reimer, T.; Paepke, S.; Azim, H.A.; Ragosch, V.; et al. Higher efficacy of letrozole in combination with trastuzumab compared to letrozole monotherapy as first-line treatment in patients with HER2-positive, hormone-receptor-positive metastatic breast cancer—Results of the eLEcTRA trial. Breast 2012, 21, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Bi, X.W.; Zhao, J.L.; Shi, Y.X.; Lin, Y.; Wu, Z.Y.; Zhang, Y.Q.; Zhang, L.H.; Zhang, A.Q.; Huang, H.; et al. Trastuzumab Plus Endocrine Therapy or Chemotherapy as First-line Treatment for Patients with Hormone Receptor-Positive and HER2-Positive Metastatic Breast Cancer (SYSUCC-002). Clin. Cancer Res. 2022, 28, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Rimawi, M.; Ferrero, J.M.; de la Haba-Rodriguez, J.; Poole, C.; De Placido, S.; Osborne, C.K.; Hegg, R.; Easton, V.; Wohlfarth, C.; Arpino, G. First-Line Trastuzumab Plus an Aromatase Inhibitor, with or without Pertuzumab, in Human Epidermal Growth Factor Receptor 2-Positive and Hormone Receptor-Positive Metastatic or Locally Advanced Breast Cancer (PERTAIN): A Randomized, Open-Label Phase II Trial. J. Clin. Oncol. 2018, 36, 2826–2835. [Google Scholar] [CrossRef]
- Johnston, S.R.D.; Hegg, R.; Im, S.A.; Park, I.H.; Burdaeva, O.; Kurteva, G.; Press, M.F.; Tjulandin, S.; Iwata, H.; Simon, S.D.; et al. Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade with Lapatinib Plus Trastuzumab in Combination with an Aromatase Inhibitor in Postmenopausal Women with HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer: Updated Results of ALTERNATIVE. J. Clin. Oncol. 2021, 39, 79–89. [Google Scholar] [CrossRef]
- Medina, P.J.; Goodin, S. Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther. 2008, 30, 1426–1447. [Google Scholar] [CrossRef]
- Amiri-Kordestani, L.; Blumenthal, G.M.; Xu, Q.C.; Zhang, L.; Tang, S.W.; Ha, L.; Weinberg, W.C.; Chi, B.; Candau-Chacon, R.; Hughes, P.; et al. FDA approval: Ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin. Cancer Res. 2014, 20, 4436–4441. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef]
- Krop, I.E.; Kim, S.B.; González-Martín, A.; LoRusso, P.M.; Ferrero, J.M.; Smitt, M.; Yu, R.; Leung, A.C.; Wildiers, H. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Krop, I.E.; Kim, S.B.; Martin, A.G.; LoRusso, P.M.; Ferrero, J.M.; Badovinac-Crnjevic, T.; Hoersch, S.; Smitt, M.; Wildiers, H. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): Final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 2017, 18, 743–754. [Google Scholar] [CrossRef]
- Wedam, S.; Fashoyin-Aje, L.; Gao, X.; Bloomquist, E.; Tang, S.; Sridhara, R.; Goldberg, K.B.; King-Kallimanis, B.L.; Theoret, M.R.; Ibrahim, A.; et al. FDA Approval Summary: Ado-Trastuzumab Emtansine for the Adjuvant Treatment of HER2-positive Early Breast Cancer. Clin. Cancer Res. 2020, 26, 4180–4185. [Google Scholar] [CrossRef]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.-A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.-M.; Petry, V.; Chung, C.-F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef]
- Ciapponi, A.; Bardach, A.; Colaci, C.; Rodríguez Cairoli, F.; Argento, F.; Korbenfeld, E.; García Martí, S. Trastuzumab-emtansine versus other anti-HER2 regimens in early or unresectable or metastatic HER-2 positive breast cancer: Systematic review and network meta-analysis. Rev. Peru. Med. Exp. Salud Publica 2024, 41, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.J.; Ricks, T.K.; Chiu Yuen Chow, E.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; et al. FDA Approval Summary: Fam-Trastuzumab Deruxtecan-Nxki for the Treatment of Unresectable or Metastatic HER2-Positive Breast Cancer. Clin. Cancer Res. 2021, 27, 4478–4485. [Google Scholar] [CrossRef]
- Saura, C.; Modi, S.; Krop, I.; Park, Y.H.; Kim, S.B.; Tamura, K.; Iwata, H.; Tsurutani, J.; Sohn, J.; Mathias, E.; et al. Trastuzumab deruxtecan in previously treated patients with HER2-positive metastatic breast cancer: Updated survival results from a phase II trial (DESTINY-Breast01). Ann. Oncol. 2024, 35, 302–307. [Google Scholar] [CrossRef]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Pegram, M.; Pietras, R.; Dang, C.T.; Murthy, R.; Bachelot, T.; Janni, W.; Sharma, P.; Hamilton, E.; Saura, C. Evolving perspectives on the treatment of HR+/HER2+ metastatic breast cancer. Ther. Adv. Med. Oncol. 2023, 15, 17588359231187201. [Google Scholar] [CrossRef] [PubMed]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Neratinib for Extended Adjuvant Treatment of Early Stage HER2-Positive Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neratinib-extended-adjuvant-treatment-early-stage-her2-positive-breast-cancer (accessed on 26 December 2024).
- Xuhong, J.C.; Qi, X.W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res. 2019, 9, 2103–2119. [Google Scholar] [PubMed]
- Martin, M.; Holmes, F.A.; Ejlertsen, B.; Delaloge, S.; Moy, B.; Iwata, H.; von Minckwitz, G.; Chia, S.K.L.; Mansi, J.; Barrios, C.H.; et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1688–1700. [Google Scholar] [CrossRef]
- Chan, A.; Moy, B.; Mansi, J.; Ejlertsen, B.; Holmes, F.A.; Chia, S.; Iwata, H.; Gnant, M.; Loibl, S.; Barrios, C.H.; et al. Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial. Clin. Breast Cancer 2021, 21, 80–91.e87. [Google Scholar] [CrossRef]
- FDA Approves Neratinib for Metastatic HER2-Positive Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neratinib-metastatic-her2-positive-breast-cancer#:∼:text=On%20February%2025%2C%202020%2C%20the,regimens%20in%20the%20metastatic%20setting (accessed on 26 December 2024).
- Saura, C.; Oliveira, M.; Feng, Y.-H.; Dai, M.-S.; Chen, S.-W.; Hurvitz, S.A.; Kim, S.-B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated with ≥ 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef]
- Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 351–360. [Google Scholar] [CrossRef]
- Liu, C.G.; Niu, N.; Qiu, F.; Gu, X.; Zheng, X.; Guo, J.; Bian, X.; Xue, J.; Chen, G.; Han, S.; et al. 276P SHR-A1811 in combination with pyrotinib as neoadjuvant treatment for HER2-positive breast cancer (HER2+ BC): Preliminary results from MUKDEN 07. Ann. Oncol. 2024, 35, S331. [Google Scholar] [CrossRef]
- Guglielmi, G.; Zamagni, C.; Del Re, M.; Danesi, R.; Fogli, S. Targeting HER2 in breast cancer with brain metastases: A pharmacological point of view with special focus on the permeability of blood-brain barrier to targeted treatments. Eur. J. Pharmacol. 2024, 985, 177076. [Google Scholar] [CrossRef]
- Pikis, S.; Mantziaris, G.; Protopapa, M.; Tos, S.M.; Kowalchuk, R.O.; Ross, R.B.; Rusthoven, C.G.; Tripathi, M.; Langlois, A.M.; Mathieu, D.; et al. Stereotactic radiosurgery for brain metastases from human epidermal receptor 2 positive breast Cancer: An international, multi-center study. J. Neurooncol. 2024, 170, 199–208. [Google Scholar] [CrossRef]
- Stemmler, H.-J.; Schmitt, M.; Willems, A.; Bernhard, H.; Harbeck, N.; Heinemann, V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood–brain barrier. Anti-Cancer Drugs 2007, 18, 23–28. [Google Scholar] [CrossRef]
- Swain, S.M.; Baselga, J.; Miles, D.; Im, Y.H.; Quah, C.; Lee, L.F.; Cortés, J. Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: Results from the randomized phase III study CLEOPATRA. Ann. Oncol. 2014, 25, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Hu, Z.; Wang, K.; Hu, S.; Zhou, Y.; Zhang, S.; Chen, Y.; Pan, T. Why does HER2-positive breast cancer metastasize to the brain and what can we do about it? Crit. Rev. Oncol. Hematol. 2024, 195, 104269. [Google Scholar] [CrossRef] [PubMed]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Suhail, Y.; Cain, M.P.; Vanaja, K.; Kurywchak, P.A.; Levchenko, A.; Kalluri, R.; Kshitiz. Systems Biology of Cancer Metastasis. Cell Syst. 2019, 9, 109–127. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, F.; Liang, Y.; Yang, Q. Breast cancer brain metastasis: Insight into molecular mechanisms and therapeutic strategies. Br. J. Cancer 2021, 125, 1056–1067. [Google Scholar] [CrossRef]
- Lyle, L.T.; Lockman, P.R.; Adkins, C.E.; Mohammad, A.S.; Sechrest, E.; Hua, E.; Palmieri, D.; Liewehr, D.J.; Steinberg, S.M.; Kloc, W.; et al. Alterations in Pericyte Subpopulations Are Associated with Elevated Blood-Tumor Barrier Permeability in Experimental Brain Metastasis of Breast Cancer. Clin. Cancer Res. 2016, 22, 5287–5299. [Google Scholar] [CrossRef]
- Lockman, P.R.; Mittapalli, R.K.; Taskar, K.S.; Rudraraju, V.; Gril, B.; Bohn, K.A.; Adkins, C.E.; Roberts, A.; Thorsheim, H.R.; Gaasch, J.A.; et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 2010, 16, 5664–5678. [Google Scholar] [CrossRef]
- Pedrosa, R.; Mustafa, D.A.; Soffietti, R.; Kros, J.M. Breast cancer brain metastasis: Molecular mechanisms and directions for treatment. Neuro-Oncology 2018, 20, 1439–1449. [Google Scholar] [CrossRef]
- Lee, B.C.; Lee, T.H.; Avraham, S.; Avraham, H.K. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res. 2004, 2, 327–338. [Google Scholar] [CrossRef]
- Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Kabraji, S.; Ni, J.; Lin, N.U.; Xie, S.; Winer, E.P.; Zhao, J.J. Drug Resistance in HER2-Positive Breast Cancer Brain Metastases: Blame the Barrier or the Brain? Clin. Cancer Res. 2018, 24, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Scandurra, G.; Lombardo, V.; Scibilia, G.; Sambataro, D.; Gebbia, V.; Scollo, P.; Pecorino, B.; Valerio, M.R. New Frontiers in the Treatment of Patients with HER2+ Cancer and Brain Metastases: Is Radiotherapy Always Useful? Cancers 2024, 16, 2466. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, E.; Silipigni, S.; Matteucci, P.; Greco, C.; Carrafiello, S.; Palumbo, V.; Tacconi, C.; Talocco, C.; Fiore, M.; D’Angelillo, R.M.; et al. Radiotherapy for HER 2 Positive Brain Metastases: Urgent Need for a Paradigm Shift. Cancers 2022, 14, 1514. [Google Scholar] [CrossRef]
- Szadurska, A.; Pluta, E.; Walasek, T.; Blecharz, P.; Jakubowicz, J.; Mituś, J.W. Methods and results of local treatment of brain metastases in patients with breast cancer. Contemp. Oncol. 2016, 20, 430–435. [Google Scholar] [CrossRef]
- Yuan, P.; Gao, S.L. Management of breast cancer brain metastases: Focus on human epidermal growth factor receptor 2-positive breast cancer. Chronic Dis. Transl. Med. 2017, 3, 21–32. [Google Scholar] [CrossRef]
- Brown, P.D.; Ahluwalia, M.S.; Khan, O.H.; Asher, A.L.; Wefel, J.S.; Gondi, V. Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution? J. Clin. Oncol. 2018, 36, 483–491. [Google Scholar] [CrossRef]
- Richards, G.M.; Khuntia, D.; Mehta, M.P. Therapeutic management of metastatic brain tumors. Crit. Rev. Oncol. Hematol. 2007, 61, 70–78. [Google Scholar] [CrossRef]
- Lin, N.U.; Bellon, J.R.; Winer, E.P. CNS Metastases in Breast Cancer. J. Clin. Oncol. 2004, 22, 3608–3617. [Google Scholar] [CrossRef]
- Schiff, D.; Messersmith, H.; Brastianos, P.K.; Brown, P.D.; Burri, S.; Dunn, I.F.; Gaspar, L.E.; Gondi, V.; Jordan, J.T.; Maues, J.; et al. Radiation Therapy for Brain Metastases: ASCO Guideline Endorsement of ASTRO Guideline. J. Clin. Oncol. 2022, 40, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Almeida, N.D.; Kuo, C.; Schrand, T.V.; Rupp, J.; Madhugiri, V.S.; Goulenko, V.; Shekher, R.; Shah, C.; Prasad, D. Stereotactic Radiosurgery for Intracranial Breast Metastases: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3551. [Google Scholar] [CrossRef]
- Gruber, I.; Weidner, K.; Treutwein, M.; Koelbl, O. Stereotactic radiosurgery of brain metastases: A retrospective study. Radiat. Oncol. 2023, 18, 202. [Google Scholar] [CrossRef] [PubMed]
- Fabian, A.; Buergy, D.; Weykamp, F.; Hörner-Rieber, J.; Bernhardt, D.; Boda-Heggemann, J.; Pazos, M.; Mehrhof, N.; Kaul, D.; Bicu, A.S.; et al. Metastasis-directed stereotactic radiotherapy in patients with breast cancer: Results of an international multicenter cohort study. Clin. Exp. Metastasis 2024, 42, 6. [Google Scholar] [CrossRef]
- Stafinski, T.; Jhangri, G.S.; Yan, E.; Menon, D. Effectiveness of stereotactic radiosurgery alone or in combination with whole brain radiotherapy compared to conventional surgery and/or whole brain radiotherapy for the treatment of one or more brain metastases: A systematic review and meta-analysis. Cancer Treat. Rev. 2006, 32, 203–213. [Google Scholar] [CrossRef]
- Rozati, H.; Chen, J.; Williams, M. Overall survival following stereotactic radiosurgery for ten or more brain metastases: A systematic review and meta-analysis. BMC Cancer 2023, 23, 1004. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Ibrahim, N.K. Breast Cancer Brain Metastasis: A Comprehensive Review. JCO Oncol. Pract. 2024, 20, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Park, I.H.; Ro, J.; Lee, K.S.; Nam, B.H.; Kwon, Y.; Shin, K.H. Trastuzumab treatment beyond brain progression in HER2-positive metastatic breast cancer. Ann. Oncol. 2009, 20, 56–62. [Google Scholar] [CrossRef]
- Jackson, C.; Finikarides, L.; Freeman, A.L.J. The adverse effects of trastuzumab-containing regimes as a therapy in breast cancer: A piggy-back systematic review and meta-analysis. PLoS ONE 2022, 17, e0275321. [Google Scholar] [CrossRef]
- Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef]
- Lin, N.U.; Kumthekar, P.; Sahebjam, S.; Ibrahim, N.; Fung, A.; Cheng, A.; Nicholas, A.; Sussell, J.; Pegram, M. Pertuzumab plus high-dose trastuzumab for HER2-positive breast cancer with brain metastases: PATRICIA final efficacy data. npj Breast Cancer 2023, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.N.; Lu, T.; Jin, J.Y.; Li, C.; Girish, S.; Melnikov, F.; Badovinac Crnjevic, T.; Machackova, Z.; Restuccia, E.; Kirschbrown, W.P. Impact of Dose Delays and Alternative Dosing Regimens on Pertuzumab Pharmacokinetics. J. Clin. Pharmacol. 2021, 61, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Debien, V.; Agostinetto, E.; Bruzzone, M.; Ceppi, M.; Martins-Branco, D.; Molinelli, C.; Jacobs, F.; Nader-Marta, G.; Lambertini, M.; de Azambuja, E. The Impact of Initial Tumor Response on Survival Outcomes of Patients with HER2-Positive Advanced Breast Cancer Treated with Docetaxel, Trastuzumab, and Pertuzumab: An Exploratory Analysis of the CLEOPATRA Trial. Clin. Breast Cancer 2024, 24, 421–430.e423. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Xie, Y.; Sang, D.; Luo, T.; Yuan, P.; Xu, F.; Wang, B. Comparing pyrotinib with trastuzumab and pertuzumab with trastuzumab for HER2-positive metastatic breast cancer: A retrospective, multicenter analysis. Front. Endocrinol. 2023, 14, 1325540. [Google Scholar] [CrossRef]
- Trastuzumab Emtansine. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Hunter, F.W.; Barker, H.R.; Lipert, B.; Rothé, F.; Gebhart, G.; Piccart-Gebhart, M.J.; Sotiriou, C.; Jamieson, S.M.F. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer 2020, 122, 603–612. [Google Scholar] [CrossRef]
- Bilancia, D.; Rosati, G.; Dinota, A.; Germano, D.; Romano, R.; Manzione, L. Lapatinib in breast cancer. Ann. Oncol. 2007, 18 (Suppl. 6), vi26–vi30. [Google Scholar] [CrossRef]
- Guo, L.; Shao, W.; Zhou, C.; Yang, H.; Yang, L.; Cai, Q.; Wang, J.; Shi, Y.; Huang, L.; Zhang, J. Neratinib for HER2-positive breast cancer with an overlooked option. Mol. Med. 2023, 29, 134. [Google Scholar] [CrossRef]
- Awada, A.; Colomer, R.; Inoue, K.; Bondarenko, I.; Badwe, R.A.; Demetriou, G.; Lee, S.C.; Mehta, A.O.; Kim, S.B.; Bachelot, T.; et al. Neratinib Plus Paclitaxel vs Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Trial. JAMA Oncol. 2016, 2, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Saura, C.; Yamashita, T.; Park, Y.H.; Kim, S.B.; Tamura, K.; Andre, F.; Iwata, H.; Ito, Y.; Tsurutani, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N. Engl. J. Med. 2020, 382, 610–621. [Google Scholar] [CrossRef]
- Pérez-García, J.M.; Vaz Batista, M.; Cortez, P.; Ruiz-Borrego, M.; Cejalvo, J.M.; de la Haba-Rodriguez, J.; Garrigós, L.; Racca, F.; Servitja, S.; Blanch, S.; et al. Trastuzumab deruxtecan in patients with central nervous system involvement from HER2-positive breast cancer: The DEBBRAH trial. Neuro-Oncology 2023, 25, 157–166. [Google Scholar] [CrossRef]
- Bartsch, R.; Berghoff, A.S.; Furtner, J.; Marhold, M.; Bergen, E.S.; Roider-Schur, S.; Starzer, A.M.; Forstner, H.; Rottenmanner, B.; Dieckmann, K.; et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: A single-arm, phase 2 trial. Nat. Med. 2022, 28, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Kabraji, S.; Ni, J.; Sammons, S.; Li, T.; Van Swearingen, A.E.D.; Wang, Y.; Pereslete, A.; Hsu, L.; DiPiro, P.J.; Lascola, C.; et al. Preclinical and Clinical Efficacy of Trastuzumab Deruxtecan in Breast Cancer Brain Metastases. Clin. Cancer Res. 2023, 29, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N.; Ciruelos, E.; Jerusalem, G.; Müller, V.; Niikura, N.; Viale, G.; Bartsch, R.; Kurzeder, C.; Higgins, M.J.; Connolly, R.M.; et al. Trastuzumab deruxtecan in HER2-positive advanced breast cancer with or without brain metastases: A phase 3b/4 trial. Nat. Med. 2024, 30, 3717–3727. [Google Scholar] [CrossRef]
- Jerusalem, G.; Park, Y.H.; Yamashita, T.; Hurvitz, S.A.; Modi, S.; Andre, F.; Krop, I.E.; Gonzàlez Farré, X.; You, B.; Saura, C.; et al. Trastuzumab Deruxtecan in HER2-Positive Metastatic Breast Cancer Patients with Brain Metastases: A DESTINY-Breast01 Subgroup Analysis. Cancer Discov. 2022, 12, 2754–2762. [Google Scholar] [CrossRef]
- Kunte, S.; Abraham, J.; Montero, A.J. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer 2020, 126, 4278–4288. [Google Scholar] [CrossRef] [PubMed]
- Casak, S.J.; Horiba, M.N.; Yuan, M.; Cheng, J.; Lemery, S.J.; Shen, Y.L.; Fu, W.; Moore, J.N.; Li, Y.; Bi, Y.; et al. FDA Approval Summary: Tucatinib with Trastuzumab for Advanced Unresectable or Metastatic, Chemotherapy Refractory, HER2-Positive RAS Wild-Type Colorectal Cancer. Clin. Cancer Res. 2023, 29, 4326–4330. [Google Scholar] [CrossRef]
- Metzger Filho, O.; Leone, J.P.; Li, T.; Tan-Wasielewski, Z.; Trippa, L.; Barry, W.T.; Younger, J.; Lawler, E.; Walker, L.; Freedman, R.A.; et al. Phase I dose-escalation trial of tucatinib in combination with trastuzumab in patients with HER2-positive breast cancer brain metastases. Ann. Oncol. 2020, 31, 1231–1239. [Google Scholar] [CrossRef]
- Lin, N.U.; Murthy, R.K.; Abramson, V.; Anders, C.; Bachelot, T.; Bedard, P.L.; Borges, V.; Cameron, D.; Carey, L.A.; Chien, A.J.; et al. Tucatinib vs Placebo, Both in Combination with Trastuzumab and Capecitabine, for Previously Treated ERBB2 (HER2)-Positive Metastatic Breast Cancer in patients with Brain Metastases: Updated Exploratory Analysis of the HER2CLIMB Randomized Clinical Trial. JAMA Oncol. 2023, 9, 197–205. [Google Scholar] [CrossRef]
- Amrell, L.; Bär, E.; Glasow, A.; Kortmann, R.D.; Seidel, C.; Patties, I. Enhanced anti-tumor effects by combination of tucatinib and radiation in HER2-overexpressing human cancer cell lines. Cancer Cell Int. 2024, 24, 277. [Google Scholar] [CrossRef]
- Niikura, N.; Yamanaka, T.; Nomura, H.; Shiraishi, K.; Kusama, H.; Yamamoto, M.; Matsuura, K.; Inoue, K.; Takahara, S.; Kita, S.; et al. Treatment with trastuzumab deruxtecan in patients with HER2-positive breast cancer and brain metastases and/or leptomeningeal disease (ROSET-BM). npj Breast Cancer 2023, 9, 82. [Google Scholar] [CrossRef]
- Zhang, Q.; He, P.; Tian, T.; Yan, X.; Huang, J.; Zhang, Z.; Zheng, H.; Zhong, X.; Luo, T. Real-world efficacy and safety of pyrotinib in patients with HER2-positive metastatic breast cancer: A prospective real-world study. Front. Pharmacol. 2023, 14, 1100556. [Google Scholar] [CrossRef]
- Chen, D.; Xu, F.; Lu, Y.; Xia, W.; Du, C.; Xiong, D.; Song, D.; Shi, Y.; Yuan, Z.; Zheng, Q.; et al. Pyrotinib and trastuzumab plus palbociclib and fulvestrant in HR+/HER2+ breast cancer patients with brain metastasis. npj Breast Cancer 2024, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Meng, J.; Mei, X.; Mo, M.; Xiao, Q.; Han, X.; Zhang, L.; Shi, W.; Chen, X.; Ma, J.; et al. Brain Radiotherapy with Pyrotinib and Capecitabine in Patients with ERBB2-Positive Advanced Breast Cancer and Brain Metastases: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2024, 10, 335–341. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, L.; Gao, C.; Liu, D.; Li, H.; Zhao, Z.; Zhao, B. Pyrotinib-based treatments in HER2-positive breast cancer patients with brain metastases. Ann. Med. 2022, 54, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Shi, Q.; Xuhong, J.; Zhang, Y.; Jiang, J. Pyrotinib-based therapeutic approaches for HER2-positive breast cancer: The time is now. Breast Cancer Res. 2023, 25, 113. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Cheng, H.; Hou, J.; Jia, Z.; Wu, G.; Lü, X.; Li, H.; Zheng, X.; Chen, C. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure. Chin. Opt. Lett. 2020, 18, 051701. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, H.; Chen, C.; Lv, X.; Zuo, E.; Xie, X.; Li, Z.; Liu, P.; Li, H.; Chen, C. Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer. Photodiagn. Photodyn. Ther. 2023, 41, 103284. [Google Scholar] [CrossRef]
- Oberkampf, F.; Gutierrez, M.; Trabelsi Grati, O.; Le Rhun, É.; Trédan, O.; Turbiez, I.; Kadi, A.; Dubot, C.; Taillibert, S.; Vacher, S.; et al. Phase II study of intrathecal administration of trastuzumab in patients with HER2-positive breast cancer with leptomeningeal metastasis. Neuro-Oncology 2023, 25, 365–374. [Google Scholar] [CrossRef]
- Rothwell, W.T.; Bell, P.; Richman, L.K.; Limberis, M.P.; Tretiakova, A.P.; Li, M.; Wilson, J.M. Intrathecal Viral Vector Delivery of Trastuzumab Prevents or Inhibits Tumor Growth of Human HER2-Positive Xenografts in Mice. Cancer Res. 2018, 78, 6171–6182. [Google Scholar] [CrossRef]
- Wyatt, E.A.; Davis, M.E. Nanoparticles Containing a Combination of a Drug and an Antibody for the Treatment of Breast Cancer Brain Metastases. Mol. Pharm. 2020, 17, 717–721. [Google Scholar] [CrossRef]
- Sevieri, M.; Mazzucchelli, S.; Barbieri, L.; Garbujo, S.; Carelli, S.; Bonizzi, A.; Rey, F.; Recordati, C.; Recchia, M.; Allevi, R.; et al. Ferritin nanoconjugates guide trastuzumab brain delivery to promote an antitumor response in murine HER2 + breast cancer brain metastasis. Pharmacol. Res. 2023, 196, 106934. [Google Scholar] [CrossRef] [PubMed]
Subtype | Luminal A | Luminal B | HER2-Enriched | Basal-Like/TNBC |
---|---|---|---|---|
IHC Phenotype | ER+ | ER+ | ER− | ER− |
HER2− | HER2+ and/or | HER2+ | PR− | |
HER2− | ||||
PR ≥ 20% | And/or PR < 20% | PR− | ||
Low Ki-67 < 20% | High Ki-67 ≥ 20% |
Trial | Phase | n | Type of Patients | Regimen | OS | PFS | DoR | ORR | iDFS |
---|---|---|---|---|---|---|---|---|---|
CLEOPATRA (NCT00567190) | III | 808 | HER2+ MBC, ≤1 prior HT therapy | Pertuzumab + trastuzumab + docetaxel vs. placebo + trastuzumab + docetaxel | 57.1 months vs. 40.8 months (end-of-study) | 18.5 months vs. 12.4 months | 87.6 weeks vs. 54.1 weeks | 80.2% vs. 69.3% CR 5.5% vs. 4.2% PR 74.6% vs. 65.2% | - |
APHINITY (NCT01358877) | III | 4804 | Operable HER2+ primary breast cancer | Adjuvant therapy pertuzumab + trastuzumab + chemotherapy vs. placebo + trastuzumab + chemotherapy | 92.7% vs. 92.0% (p = 0.078) | - | - | - | 86.1% vs. 81.2% |
PEONY (NCT02586025) | III | 329 | Early-stage or locally advanced HER2+ | Adjuvant therapy pertuzumab + trastuzumab + chemotherapy vs. placebo + trastuzumab + chemotherapy | 39.3 months vs. 21.8 months | EFS 84.8% vs. 73.7% DFS 86% vs. 75% | - | Breast pathologic CR 39.3% vs. 21.8% objective response during cycles 1–4 88.6% vs. 78.2% CR during cycles 1–4 11.0% vs. 10.0% PR during cycles 1–4 77.6% vs. 68.2% | - |
SOPHIA (NCT02492711) | III | 624 | HER2+ MBC who have received prior anti-HER2 therapies and require systemic treatment | Margetuximab + chemotherapy vs. trastuzumab + chemotherapy | 21.6 months vs. 21.9 months (p = 6204) | 5.8 months vs. 4.9 months | - | CR 2.7% vs. 1.5% PR 19.5% vs. 14.5% | - |
TAnDEM | III | 207 | HER2/hormone receptor–copositive MBC Previous treatment with tamoxifen or anastrozole (up to 4 weeks before assignment)—permitted. Prior chemotherapy for MBC within 6 months—not permitted. | Trastuzumab + anastrozole vs. anastrozole alone | 28.5 months vs. 23.9 months (p = 0.325) | 4.8 vs. 2.4 months | 9.5 months vs. 10.0 months | PR 20.3% vs. 6.8% | - |
eLEcTRA | III | 370 | HER2 and HR-positive MBC or LABC, no prior treatment | Letrozole alone vs. letrozole + trastuzumab | - | 25% vs. 40% TTP 3.3 months vs. 14.1 months | 12.2 months vs. 11.4 months | 13% vs. 27% (p = 0.3124) | - |
SYSUCC-002 (NCT01950182 | III | 392 | ER + and/or PR + HER2+ MBC | Trastuzumab + endocrine therapy vs. trastuzumab + chemotherapy | - | 19.2 months vs. 14.8 months | - | - | - |
PERTAIN (NCT01491737) | II | 258 | HR+/HER2+ locally ABC or MBC | Pertuzumab + trastuzumab + AI +/− chemotherapy vs. trastuzumab + AI +/− chemotherapy | 60.16 months vs. 57.17 months (final analysis) | 18.89 months vs. 15.8 months (primary analysis) 20.63 months vs. 15.80 months (final analysis) | 27.4 months vs. 16.36 months | Overall response rate 63.3% vs. 55.7% CR 7.3% vs. 0.9% PR 56% vs. 54.7% | - |
ALTERNATIVE (NCT01160211) | III | 369 | HR+/HER2+ MBC, prior trastuzumab and ET | Lapatinib + trastuzumab + AI vs. lapatinib + AI vs. trastuzumab + AI | Overall survival events 75% vs. 63.3% vs. 67.5% | Lapatinib + trastuzumab + AI vs. trastuzumab + AI 11 months vs. 5.6 months | 14 months vs. 11.1 months vs. 8.4 months | Overall response rate 31.7% vs. 18.6% vs. 13.7% | - |
EMILIA (NCT00829166) | III | 991 | HER+ locally ABC or MBC, prior trastuzumab therapy | Trastuzumab emtansine vs. capecitabine + lapatinib | 29.9 months vs. 25.9 months (final analysis) | 9.6 months vs. 6.4 months | 12.6 months vs. 6.5 months | - | - |
TH3RESA (NCT01419197) | III | 602 | HER+ locally ABC or MBC, ≥2 prior regimens of HER2 directed therapy | Trastuzumab emtansine vs. treatment of physician’s choice | 22.7 months vs. 15.8 months (final analysis) | 6.2 vs. 3.3 | Duration of the objective response 9.7 months (6.60 to 10.51) vs. NA (2.4 to NA) months | 31.3% vs. 8.6% | - |
KATHERINE (NCT01772472) | III | 1486 | HER2+ primary breast cancer, residual tumor presents pathologically in the breast or axillary lymph nodes following preoperative therapy | Adjuvant therapy trastuzumab emtansine vs. trastuzumab | - | - | - | - | 88.3% vs. 77.0% |
DESTINY-Breast03 trial (NCT03529110) | III | 524 | HER2+ unresectable and/or MBC, prior trastuzumab and taxane treatment | T-DXd vs. T-DM1 | 18.5 months to NA vs. 6.8 months | 25.1 months vs. 7.2 months | 20.3 months to NA vs. 12.6 months to NA | 79.7% vs. 34.2% | - |
DESTINY-Breast04 (NCT03734029) | III | 557 | HER2-low unresectable and/or MBC | T-DXd vs. physician’s choice standard treatment | Cohort of participants with HER2-low BC 23.9 months vs. 17.5 months | HR+ cohort 10.1 months vs. 5.4 months regardless of HR status 9.9 months vs. 5.1 months | Cohort of participants with HER2-low BC 10.7 months vs. 6.8 months | Cohort of participants with HER2-low BC CR 3.6% vs. 0.6% PR 49.5% vs. 16.0% | - |
HER2CLIMB (NCT02614794) | II | 612 | HER2+ unresectable locally ABC or MBC | Tucatinib + capecitabine + trastuzumab vs. placebo + capecitabine + trastuzumab | 21.9 months vs. 17.4 months | 7.8 months vs. 5.6 months | 8.3 months vs. 6.3 months | 40.7% vs. 23.4% | |
NALA (NCT01808573) | III | 621 | HER2+ MBC, ≥2 prior regimens of HER2 directed therapy in metastatic setting | Neratinib + capecitabine vs. lapatinib + capecitabine | 24 months vs. 22.2 months | 8.8 months vs. 6.6 months | 8.54 months vs. 5.55 months | 32.8% vs. 26.7% | |
PHOEBE (NCT03080805) | III | 240 | HER2+ MBC patients, prior taxane and trastuzumab therapy | Pyrotinib + capecitabine vs. lapatinib + capecitabine | - | 12.5 months vs. 6.8 months | - | - | - |
Treatment Type | Number of Lesions | Dose Management | Adverse Effects |
---|---|---|---|
WBRT | 5–10 | 30 Gy in 10 fractions/20 Gy in 5 fractions | Memory disturbance, difficulty with complex problem-solving, ataxia, urinary incontinence, radiation necrosis |
SRS | Max. 4 | 24 Gy for max. 2 cm diameter, 18 Gy for 2.1–3 cm diameter, 15 Gy for 3.1–4 cm diameter | Radiation necrosis |
Trastuzumab | High-dose 6 mg/kg weekly | Mainly unspecified pain, asthenia, nasopharyngitis, rash, dyspepsia, paresthesia, infections | |
Pertuzumab | Initial dose of 840 mg, maintenance dose of 420 mg every 3 weeks | Diarrhea, fatigue, nausea, vomiting, constipation, dizziness, headache, insomnia | |
Trastuzumab emtansine | 3.6 mg/kg every 3 weeks | Thrombocytopenia, increased aspartate aminotransferase levels, anemia | |
Lapatinib and neratinib | Lapatinib: 1.250 mg daily Neratinib: 240 mg daily | Diarrhea, nausea, palmar-plantar erythrodysesthesia syndrome, vomiting |
Treatment Type | Dose Management | Adverse Effects | Approval |
---|---|---|---|
Trastuzumab deruxtecan | 5.4 mg/kg intravenously once every 21 days | Neutropenia, fatigue, nausea, anemia, vomiting | 20 December 2019, by FDA |
Tucatinib | 300 mg orally twice daily | Diarrhea, palmar-plantar erythrodysesthesia syndrome, nausea, fatigue, vomiting | 17 April 2020, in the US |
Pyrotinib | 400 mg once daily | Diarrhea, leukopenia, vomiting, and anemia | August 2018, in China |
Trail ID | Date of Start | Drugs/Procedure | Phase | Aim |
---|---|---|---|---|
NCT04639271 | 1 January 2021 | Pyrotinib, Trastuzumab, and Abraxane combined | Phase 2 | To evaluate the efficacy and safety of pyrotinib combined with trastuzumab and abraxane in HER2+ MBC with BrM |
NCT04334330 | 4 December 2020 | Palbociclib, Trastuzumab, Pyrotinib, Fulvestrant combined | Phase 2 | To evaluate the efficacy of the combination of palbociclib, trastuzumab, and pyrotinib with fulvestrant in ER/PR positive and HER2+ BC patients with BrM |
NCT06253871 | 25 March 2024 | IAM1363 | Phase 1 | To evaluate the safety and preliminary efficacy of IAM1363 in patients with advanced cancers that harbor HER2 alterations. |
NCT03696030 | 31 August 2018 | Chimeric Antigen Receptor T-Cell therapy | Phase 1 | To evaluate the side effects and best dose of HER2-CAR T cells in the treatment of patients with recurrent BrM |
NCT04348747 | 19 December 2022 | Anti-HER2/HER3 Dendritic Cell Vaccine, Pembrolizumab combined | Phase 2 | To evaluate the efficiency of dendritic cell vaccines against HER2/HER3 and pembrolizumab in treating triple-negative BC or HER2+ BC with BrM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miski, H.; Krupa, K.; Budzik, M.P.; Deptała, A.; Badowska-Kozakiewicz, A. HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis. Biomedicines 2025, 13, 1153. https://doi.org/10.3390/biomedicines13051153
Miski H, Krupa K, Budzik MP, Deptała A, Badowska-Kozakiewicz A. HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis. Biomedicines. 2025; 13(5):1153. https://doi.org/10.3390/biomedicines13051153
Chicago/Turabian StyleMiski, Hanna, Kamila Krupa, Michał Piotr Budzik, Andrzej Deptała, and Anna Badowska-Kozakiewicz. 2025. "HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis" Biomedicines 13, no. 5: 1153. https://doi.org/10.3390/biomedicines13051153
APA StyleMiski, H., Krupa, K., Budzik, M. P., Deptała, A., & Badowska-Kozakiewicz, A. (2025). HER2-Positive Breast Cancer—Current Treatment Management and New Therapeutic Methods for Brain Metastasis. Biomedicines, 13(5), 1153. https://doi.org/10.3390/biomedicines13051153