Editorial to the Special Issue “Glycine-(and D-Serine)-Related Neurotransmission: Promising Therapeutic Targets with Still Unsolved Problems”
1. Introduction
2. Special Issue Topics
2.1. Possible Novel Properties of Glycine Transporter 1 (GlyT1) Inhibitors: Roles in Opioid Analgesic Tolerance
2.2. Modulation of Brain D-Serine to Improve Psychotic Symptoms and Cognition in CNS Disorders with NMDAR Hypofunction
2.3. A Contribution to Understand Interactions Between Gly and Glu
3. Conclusions
Funding
Conflicts of Interest
References
- Lynch, J.W. Native Glycine Receptor Subtypes and Their Physiological Roles. Neuropharmacology 2009, 56, 303–309. [Google Scholar] [CrossRef]
- Baer, K.; Waldvogel, H.J.; Faull, R.L.M.; Rees, M.I. Localization of Glycine Receptors in the Human Forebrain, Brainstem, and Cervical Spinal Cord: An Immunohistochemical Review. Front. Mol. Neurosci. 2009, 2, 25. [Google Scholar] [CrossRef]
- Johnson, J.W.; Ascher, P. Glycine Potentiates the NMDA Response in Cultured Mouse Brain Neurons. Nature 1987, 325, 529–531. [Google Scholar] [CrossRef]
- Chatterton, J.E.; Awobuluyi, M.; Premkumar, L.S.; Takahashi, H.; Talantova, M.; Shin, Y.; Cui, J.; Tu, S.; Sevarino, K.A.; Nakanishi, N.; et al. Excitatory Glycine Receptors Containing the NR3 Family of NMDA Receptor Subunits. Nature 2002, 415, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Grand, T.; Abi Gerges, S.; David, M.; Diana, M.A.; Paoletti, P. Unmasking GluN1/GluN3A Excitatory Glycine NMDA Receptors. Nat. Commun. 2018, 9, 4769. [Google Scholar] [CrossRef] [PubMed]
- Laboute, T.; Zucca, S.; Holcomb, M.; Patil, D.N.; Garza, C.; Wheatley, B.A.; Roy, R.N.; Forli, S.; Martemyanov, K.A. Orphan Receptor GPR158 Serves as a Metabotropic Glycine Receptor: mGlyR. Science 2023, 379, 1352–1358. [Google Scholar] [CrossRef]
- Möhler, H.; Boison, D.; Singer, P.; Feldon, J.; Pauly-Evers, M.; Yee, B.K. Glycine Transporter 1 as a Potential Therapeutic Target for Schizophrenia-Related Symptoms: Evidence from Genetically Modified Mouse Models and Pharmacological Inhibition. Biochem. Pharmacol. 2011, 81, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.J.; Yee, B.K. Glycine Transporters as Novel Therapeutic Targets in Schizophrenia, Alcohol Dependence and Pain. Nat. Rev. Drug Discov. 2013, 12, 866–885. [Google Scholar] [CrossRef]
- Marques, B.L.; Oliveira-Lima, O.C.; Carvalho, G.A.; De Almeida Chiarelli, R.; Ribeiro, R.I.; Parreira, R.C.; Da Madeira Freitas, E.M.; Resende, R.R.; Klempin, F.; Ulrich, H.; et al. Neurobiology of Glycine Transporters: From Molecules to Behavior. Neurosci. Biobehav. Rev. 2020, 118, 97–110. [Google Scholar] [CrossRef]
- Gallagher, C.I.; Ha, D.A.; Harvey, R.J.; Vandenberg, R.J. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol. Rev. 2022, 74, 933–961. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Guzzo, P.R. Inhibitors of Glycine Transporter-1: Potential Therapeutics for the Treatment of CNS Disorders. Curr. Top. Med. Chem. 2016, 16, 3404–3437. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, C.L. Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021, 11, 864. [Google Scholar] [CrossRef]
- Söderpalm, B.; Lidö, H.H.; Ericson, M. The Glycine Receptor—A Functionally Important Primary Brain Target of Ethanol. Alcohol. Clin. Exp. Res. 2017, 41, 1816–1830. [Google Scholar] [CrossRef]
- Piniella, D.; Zafra, F. Functional Crosstalk of the Glycine Transporter GlyT1 and NMDA Receptors. Neuropharmacology 2023, 232, 109514. [Google Scholar] [CrossRef] [PubMed]
- Papouin, T.; Ladépêche, L.; Ruel, J.; Sacchi, S.; Labasque, M.; Hanini, M.; Groc, L.; Pollegioni, L.; Mothet, J.-P.; Oliet, S.H.R. Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell 2012, 150, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Cunha Xavier Pinto, M.; Lima, I.V.D.A.; Pessoa Da Costa, F.L.; Rosa, D.V.; Mendes-Goulart, V.A.; Resende, R.R.; Romano-Silva, M.A.; Pinheiro De Oliveira, A.C.; Gomez, M.V.; Gomez, R.S. Glycine Transporters Type 1 Inhibitor Promotes Brain Preconditioning against NMDA-Induced Excitotoxicity. Neuropharmacology 2015, 89, 274–281. [Google Scholar] [CrossRef]
- Rosenberg, D.; Artoul, S.; Segal, A.C.; Kolodney, G.; Radzishevsky, I.; Dikopoltsev, E.; Foltyn, V.N.; Inoue, R.; Mori, H.; Billard, J.-M.; et al. Neuronal D-Serine and Glycine Release Via the Asc-1 Transporter Regulates NMDA Receptor-Dependent Synaptic Activity. J. Neurosci. 2013, 33, 3533–3544. [Google Scholar] [CrossRef]
- Meftah, A.; Hasegawa, H.; Kantrowitz, J.T. D-Serine: A Cross Species Review of Safety. Front. Psychiatry 2021, 12, 726365. [Google Scholar] [CrossRef]
- Mothet, J.-P.; Billard, J.-M.; Pollegioni, L.; Coyle, J.T.; Sweedler, J.V. Investigating Brain D-Serine: Advocacy for Good Practices. Acta Physiol. 2019, 226, e13257. [Google Scholar] [CrossRef]
- Mony, L.; Paoletti, P. Mechanisms of NMDA Receptor Regulation. Curr. Opin. Neurobiol. 2023, 83, 102815. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Epstein, M.L.; Lee, M.; Lehrfeld, N.; Nolan, K.A.; Shope, C.; Petkova, E.; Silipo, G.; Javitt, D.C. Improvement in Mismatch Negativity Generation during D-Serine Treatment in Schizophrenia: Correlation with Symptoms. Schizophr. Res. 2018, 191, 70–79. [Google Scholar] [CrossRef]
- Orzylowski, M.; Fujiwara, E.; Mousseau, D.D.; Baker, G.B. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front. Psychiatry 2021, 12, 754032. [Google Scholar] [CrossRef] [PubMed]
- Nasyrova, R.F.; Khasanova, A.K.; Altynbekov, K.S.; Asadullin, A.R.; Markina, E.A.; Gayduk, A.J.; Shipulin, G.A.; Petrova, M.M.; Shnayder, N.A. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022, 14, 5142. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Arachchige, B.J.; Henderson, R.; Pow, D.; Reed, S.; Aylward, J.; McCombe, P.A. Elevated Plasma Levels of D-Serine in Some Patients with Amyotrophic Lateral Sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 206–210. [Google Scholar] [CrossRef]
- Bugarski-Kirola, D.; Blaettler, T.; Arango, C.; Fleischhacker, W.W.; Garibaldi, G.; Wang, A.; Dixon, M.; Bressan, R.A.; Nasrallah, H.; Lawrie, S.; et al. Bitopertin in Negative Symptoms of Schizophrenia—Results from the Phase III FlashLyte and DayLyte Studies. Biol. Psychiatry 2017, 82, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, A.; Lakatos, P.P.; Balogh, M.; Zádor, F.; Karádi, D.Á.; Zádori, Z.S.; Király, K.; Galambos, A.R.; Barsi, S.; Riba, P.; et al. Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int. J. Mol. Sci. 2021, 22, 2479. [Google Scholar] [CrossRef]
- Galambos, A.R.; Papp, Z.T.; Boldizsár, I.; Zádor, F.; Köles, L.; Harsing, L.G.; Al-Khrasani, M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024, 12, 421. [Google Scholar] [CrossRef]
- Galambos, A.R.; Essmat, N.; Lakatos, P.P.; Szücs, E.; Boldizsár, I.; Abbood, S.K.; Karádi, D.Á.; Kirchlechner-Farkas, J.M.; Király, K.; Benyhe, S.; et al. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int. J. Mol. Sci. 2024, 25, 11136. [Google Scholar] [CrossRef]
- Javitt, D.C. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 119–141. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Vellucci, L.; Austin, M.C.; De Simone, G.; Barone, A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022, 12, 909. [Google Scholar] [CrossRef]
- De Bartolomeis, A.; Manchia, M.; Marmo, F.; Vellucci, L.; Iasevoli, F.; Barone, A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front. Psychiatry 2020, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.C.; Whitehurst, T.S.; Kaar, S.J.; Howes, O.D. New and Emerging Treatments for Schizophrenia: A Narrative Review of Their Pharmacology, Efficacy and Side Effect Profile Relative to Established Antipsychotics. Neurosci. Biobehav. Rev. 2022, 132, 324–361. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.K.; Wu, T.-H.; Chen, C.-H.; Lu, M.-L. Efficacy of N-Methyl-D-Aspartate Receptor Modulator Augmentation in Schizophrenia: A Meta-Analysis of Randomised, Placebo-Controlled Trials. J. Psychopharmacol. 2021, 35, 236–252. [Google Scholar] [CrossRef]
- Lu, L.-P.; Chang, W.-H.; Mao, Y.-W.; Cheng, M.-C.; Zhuang, X.-Y.; Kuo, C.-S.; Lai, Y.-A.; Shih, T.-M.; Chou, T.-Y.; Tsai, G.E. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-Aspartate Function. Biomedicines 2024, 12, 853. [Google Scholar] [CrossRef]
- Muller, E.; Bakkar, W.; Martina, M.; Sokolovski, A.; Wong, A.Y.C.; Legendre, P.; Bergeron, R. Vesicular Storage of Glycine in Glutamatergic Terminals in Mouse Hippocampus. Neuroscience 2013, 242, 110–127. [Google Scholar] [CrossRef]
- Cubelos, B.; Giménez, C.; Zafra, F. Localization of the GLYT1 Glycine Transporter at Glutamatergic Synapses in the Rat Brain. Cereb. Cortex 2005, 15, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Cubelos, B.; Leite, C.; Giménez, C.; Zafra, F. Localization of the Glycine Transporter GLYT1 in Glutamatergic Synaptic Vesicles. Neurochem. Int. 2014, 73, 204–210. [Google Scholar] [CrossRef]
- Shen, H.-Y.; Van Vliet, E.A.; Bright, K.-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D. Glycine Transporter 1 Is a Target for the Treatment of Epilepsy. Neuropharmacology 2015, 99, 554–565. [Google Scholar] [CrossRef]
- Cortese, K.; Gagliani, M.C.; Raiteri, L. Interactions between Glycine and Glutamate through Activation of Their Transporters in Hippocampal Nerve Terminals. Biomedicines 2023, 11, 3152. [Google Scholar] [CrossRef]
- Raiteri, M. Presynaptic Metabotropic Glutamate and GABAB Receptors. In Pharmacology of Neurotransmitter Release; Südhof, T.C., Starke, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 373–407. ISBN 978-3-540-74805-2. [Google Scholar]
- Schlicker, E.; Feuerstein, T. Human Presynaptic Receptors. Pharmacol. Ther. 2017, 172, 1–21. [Google Scholar] [CrossRef]
- Bonanno, G.; Raiteri, M. Release-Regulating Presynaptic Heterocarriers. Prog. Neurobiol. 1994, 44, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Raiteri, L.; Raiteri, M.; Bonanno, G. Coexistence and Function of Different Neurotransmitter Transporters in the Plasma Membrane of CNS Neurons. Prog. Neurobiol. 2002, 68, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Raiteri, L.; Paluzzi, S.; Zappettini, S.; Usai, C.; Raiteri, M. Co-Existence of GABA and Glu Transporters in the Central Nervous System. Curr. Top. Med. Chem. 2006, 6, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Raiteri, L.; Stigliani, S.; Siri, A.; Passalacqua, M.; Melloni, E.; Raiteri, M.; Bonanno, G. Glycine Taken up through GLYT1 and GLYT2 Heterotransporters into Glutamatergic Axon Terminals of Mouse Spinal Cord Elicits Release of Glutamate by Homotransporter Reversal and through Anion Channels. Biochem. Pharmacol. 2005, 69, 159–168. [Google Scholar] [CrossRef]
- Raiteri, L.; Stigliani, S.; Zappettini, S.; Mercuri, N.B.; Raiteri, M.; Bonanno, G. Excessive and Precocious Glutamate Release in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuropharmacology 2004, 46, 782–792. [Google Scholar] [CrossRef]
- Milanese, M.; Bonifacino, T.; Fedele, E.; Rebosio, C.; Cattaneo, L.; Benfenati, F.; Usai, C.; Bonanno, G. Exocytosis Regulates Trafficking of GABA and Glycine Heterotransporters in Spinal Cord Glutamatergic Synapses: A Mechanism for the Excessive Heterotransporter-Induced Release of Glutamate in Experimental Amyotrophic Lateral Sclerosis. Neurobiol. Dis. 2015, 74, 314–324. [Google Scholar] [CrossRef]
- Raiteri, L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine–Glutamate Crosstalk. Biomedicines 2024, 12, 1518. [Google Scholar] [CrossRef]
- Musante, V.; Summa, M.; Cunha, R.A.; Raiteri, M.; Pittaluga, A. Pre-Synaptic Glycine GlyT1 Transporter—NMDA Receptor Interaction: Relevance to NMDA Autoreceptor Activation in the Presence of Mg2+ Ions: GlyT1/NMDA Autoreceptor Functional Cross-Talk. J. Neurochem. 2011, 117, 516–527. [Google Scholar] [CrossRef]
- Chater, R.C.; Quinn, A.S.; Wilson, K.; Frangos, Z.J.; Sutton, P.; Jayakumar, S.; Cioffi, C.L.; O’Mara, M.L.; Vandenberg, R.J. The Efficacy of the Analgesic GlyT2 Inhibitor, ORG25543, Is Determined by Two Connected Allosteric Sites. J. Neurochem. 2024, 168, 1973–1992. [Google Scholar] [CrossRef]
- Fenech, C.; Winters, B.L.; Otsu, Y.; Aubrey, K.R. Supraspinal Glycinergic Neurotransmission in Pain: A Scoping Review of Current Literature. J. Neurochem. 2024, 168, 3663–3684. [Google Scholar] [CrossRef]
- Coyle, J.T. Passing the Torch: The Ascendance of the Glutamatergic Synapse in the Pathophysiology of Schizophrenia. Biochem. Pharmacol. 2024, 228, 116376. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-T.; Chang, C.-Y.; Lee, T.-Y.; Liao, W.-T.; Lai, W.-S.; Chang, F.-C. Effects of Sarcosine (N-Methylglycine) on NMDA (N-Methyl-D-Aspartate) Receptor Hypofunction Induced by MK801: In Vivo Calcium Imaging in the CA1 Region of the Dorsal Hippocampus. Brain Sci. 2024, 14, 1150. [Google Scholar] [CrossRef] [PubMed]
- Padhan, M.; Mohapatra, D.; Mishra, B.R.; Maiti, R.; Jena, M. Efficacy and Safety of Add-on Sarcosine in Patients with Major Depressive Disorder: A Randomized Controlled Trial. J. Psychiatr. Res. 2024, 178, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Sehatpour, P.; Kantrowitz, J.T. Finding the Right Dose: NMDA Receptor–Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol. Psychiatry 2025, 97, 128–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raiteri, L. Editorial to the Special Issue “Glycine-(and D-Serine)-Related Neurotransmission: Promising Therapeutic Targets with Still Unsolved Problems”. Biomedicines 2025, 13, 1140. https://doi.org/10.3390/biomedicines13051140
Raiteri L. Editorial to the Special Issue “Glycine-(and D-Serine)-Related Neurotransmission: Promising Therapeutic Targets with Still Unsolved Problems”. Biomedicines. 2025; 13(5):1140. https://doi.org/10.3390/biomedicines13051140
Chicago/Turabian StyleRaiteri, Luca. 2025. "Editorial to the Special Issue “Glycine-(and D-Serine)-Related Neurotransmission: Promising Therapeutic Targets with Still Unsolved Problems”" Biomedicines 13, no. 5: 1140. https://doi.org/10.3390/biomedicines13051140
APA StyleRaiteri, L. (2025). Editorial to the Special Issue “Glycine-(and D-Serine)-Related Neurotransmission: Promising Therapeutic Targets with Still Unsolved Problems”. Biomedicines, 13(5), 1140. https://doi.org/10.3390/biomedicines13051140