Autonomic Dysfunction and Low Cardio-Respiratory Fitness in Long-Term Post-COVID-19 Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Methods
3.1. Pulmonary Function Testing
3.2. Cardio-Respiratory Fitness and Autonomic Dysfunction
3.3. Ventilatory Reserve and Dynamic Hyperinflation
3.4. Statistical Analysis
4. Results
4.1. Participants’ Characteristics
4.2. Cardio-Respiratory Parameters
4.3. Chronotropic Incompetence and Abnormal HRR
4.4. Dynamic Hyperinflation and Ventilatory Reserve
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamdan, A.; Eastaugh, J.; Snygg, J.; Naidu, J.; Alhaj, I. Copying strategiesused by healthcare professionals during COVID-19 pandemic in Dubai: A descriptive cross-sectional study. Narra X 2023, 1, e71. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Cases; WHO: Geneva, Switzerland, 2024. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 20 April 2025).
- World Health Organization. Coronavirus Disease (COVID-19): Post COVID-19 Condition; WHO: Geneva, Switzerland, 2024. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition (accessed on 20 April 2025).
- Fajar, J.K.; Ilmawan, M.; Mamada, S.S.; Mutiawati, E.; Husnah, M.; Yusuf, H.; Nainu, F.; Sirinam, S.; Keam, S.; Ophinni, Y.; et al. Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: A systematic review and meta-analysis. Narra J. 2021, 1, e48. [Google Scholar] [CrossRef] [PubMed]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—Mechanisms, risk factors, and management. BMJ 2021, 26, 1648. [Google Scholar] [CrossRef]
- Hira, R.; Karalasingham, K.; Baker, J.R.; Raj, S.R. Autonomic Manifestations of Long-COVID Syndrome. Curr. Neurol. Neurosci. Rep. 2023, 23, 881–892. [Google Scholar] [CrossRef]
- Marques, K.C.; Quaresma, J.S.; Falcão, L.M. Cardiovascular autonomic dysfunction in “Long COVID”: Pathophysiology, heart rate variability, and inflammatory markers. Front. Cardiovasc. Med. 2023, 10, 1256512. [Google Scholar] [CrossRef]
- Allendes, F.J.; Díaz, H.S.; Ortiz, F.C.; Marcus, N.J.; Quintanilla, R.; Inestrosa, N.C.; Del Rio, R. Cardiovascular and autonomic dysfunction in long-COVID syndrome and the potential role of non-invasive therapeutic strategies on cardiovascular outcomes. Front. Med. 2023, 19, 1095249. [Google Scholar] [CrossRef]
- Ahmed, H.; Patel, K.; Greenwood, D.C.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks afer hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, 63. [Google Scholar] [CrossRef]
- Moldofsky, H.; Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011, 11, 37. [Google Scholar] [CrossRef]
- Oscoz-Ochandorena, S.; Legarra-Gorgoñon, G.; García-Alonso, Y.; García-Alonso, N.; Izquierdo, M.; Ramírez-Vélez, R. Reduced autonomic function in patients with long-COVID-19 syndrome is mediated by cardiorespiratory fitness. Curr. Probl. Cardiol. 2024, 49, 102732. [Google Scholar] [CrossRef]
- Rinaldi, L.; Rigo, S.; Pani, M.; Bisoglio, A.; Khalaf, K.; Minonzio, M.; Shiffer, D.; Romeo, M.A.; Verzeletti, P.; Ciccarelli, M.; et al. LongCOVID autonomic syndrome in working age and work ability impairment. Sci. Rep. 2024, 14, 11835. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.S.; Francis, G.S.; Okin, P.M.; Pashkow, F.J.; Snader, C.E.; Marwick, T.H. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 1999, 281, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.S.; Okin, P.M.; Larson, M.G.; Evans, J.C.; Levy, D. Impaired heart rate response to grade exercise: Prognostic implications of chronotropic incompetence in the Framingham heart study. Circulation 1996, 93, 1520–1526. [Google Scholar] [CrossRef]
- Kannankeril, P.J.; Le, F.K.; Kadish, A.H.; Goldberger, J.J. Parasympathetic effects on heart rate recovery after exercise. J. Investig. Med. 2004, 52, 394–401. [Google Scholar] [CrossRef]
- Savonen, K.P.; Lakka, T.A.; Laukkanen, J.A.; Halonen, P.M.; Rauramaa, T.H.; Salonen, J.T.; Rauramaa, R. Heart rate response during exercise test and cardiovascular mortality in middle-aged men. Eur. Heart J. 2006, 27, 582–588. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. ATS/ERS Task Force. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016, 133, 694–711. [Google Scholar] [CrossRef]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardio-pulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Gupta, M.; Bansal, V.; Chhabra, S. Abnormal heart rate recovery and chronotropic incompetence on exercise in chronic obstructive pulmonary disease. Chronic Respir. Dis. 2013, 10, 117–126. [Google Scholar] [CrossRef]
- Donnell, D.E.; Lam, M.; Webb, K.A. Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 158, 1557–1565. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Revill, S.M.; Webb, K.A. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 164, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Stubbing, D.G.; Pengelly, L.D.; Morse, J.L.; Jones, N.L. Pulmonary mechanics during exercise in normal males. J. Appl. Physiol. 1980, 49, 506–510. [Google Scholar] [CrossRef]
- Yan, S.; Kaminski, D.; Sliwinski, P. Reliability of inspiratory capacity for estimating end-expiratory lung volume changes during exercise in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1997, 156, 55–59. [Google Scholar] [CrossRef]
- Barbic, F.; Heusser, K.; Minonzio, M.; Shiffer, D.; Cairo, B.; Tank, J.; Jordan, J.; Diedrich, A.; Gauger, P.; Zamuner, R.A.; et al. Effects of prolonged head-down bed rest on cardiac and vascular baroreceptor modulation and orthostatic tolerance in healthy individuals. Front. Physiol. 2019, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Barbic, F.; Minonzio, M.; Cairo, B.; Shiffer, D.; Cerina, L.; Verzeletti, P.; Badilini, F.; Vaglio, M.; Porta, A.; Santambrogio, M.; et al. Effects of a cool classroom microclimate on cardiac autonomic control and cognitive performances in undergraduate students. Sci. Total Environ. 2022, 808, 152005. [Google Scholar] [CrossRef]
- Lucini, D.; Di Fede, G.; Parati, G.; Pagani, M. Impact of chronic psycho-social stress on autonomic cardiovascular regulation in otherwise healthy subjects. Hypertension 2005, 46, 1201–1206. [Google Scholar] [CrossRef]
- Larsen, N.; Stiles, L.; Shaik, R.; Schneider, L.; Muppidi, S.; Tsui, C.T.; Geng, L.N.; Bonilla, H.; Miglis, M.G. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front. Neurol. 2022, 13, 1012668. [Google Scholar] [CrossRef]
- Shouman, K.; Vanichkachorn, G.; Cheshire, W.; Suarez, M.D.; Shelly, S.; Lamotte, G.J.; Sandroni, P.; Benarroch, E.E.; Berini, S.E.; Cutsforth-Gregory, J.K.; et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021, 31, 385–394. [Google Scholar] [CrossRef]
- Buoite Stella, A.; Furlanis, G.; Frezza, N.A.; Valentinotti, R.; Ajcevic, M.; Manganotti, P. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: A prospective multi-domain observational study. J. Neurol. 2022, 269, 587–596. [Google Scholar] [CrossRef]
- Robinson, B.F.; Epstein, S.E.; Beiser, G.D.; Braunwald, E. Control of heart rate by the autonomic nervous system: Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ. Res. 1966, 19, 400–411. [Google Scholar] [CrossRef]
- Brubaker, P.; Kitzman, D. Chronotropic incompetence: Causes, consequences, and management. Circulation 2011, 123, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Kikuchi, S.; Mori, K.; Nakayama, T.; Fukuta, H.; Seo, Y.; Narita, H.; Iida, A.; Ohte, N. Cardiac β-adrenergic receptor downregulation, evaluated by cardiac PET, in chronotropic incompetence. J. Nucl. Med. 2021, 2, 996–998. [Google Scholar] [CrossRef]
- Pepper, G.; Lee, R. Sympathetic activation in heart failure and its treatment with 2 -blockade. Arch. Intern. Med. 1999, 159, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Andreas, S.; Anker, S.D.; Scanlon, P.D.; Somers, V.K. Neurohumoral activation as a link to systemic manifestations of chronic lung disease. Chest 2005, 128, 3618–3624. [Google Scholar] [CrossRef] [PubMed]
- Schwendinger, F.; Looser, V.N.; Gerber, M.; Schmidt-Trucksäss, A. Autonomic dysfunction and exercise intolerance in post-COVID-19—An as yet underestimated organ system? Int. J. Clin. Health Psychol. 2024, 24, 100429. [Google Scholar] [CrossRef]
- Bai, T.; Zhou, D.; Yushanjiang, F.; Wang, D.; Zhang, D.; Liu, X.; Song, J.; Zhang, J.; Hou, X.; Ma, Y. Alternation of the Autonomic Nervous System Is Associated with Pulmonary Sequelae in Patients With COVID-19 After Six Months of Discharge. Front. Physiol. 2022, 21, 805925. [Google Scholar] [CrossRef]
- Ladlow, P.; O’Sullivan, O.; Houston, A.; Barker-Davies, R.; May, S.; Mills, D.; Dewson, D.; Chamley, R.; Naylor, J.; Mulae, J. Dysautonomia following COVID-19 is not associated with subjective limitations or symptoms but is associated with objective functional limitations. Heart Rhythm. 2022, 19, 613–620. [Google Scholar] [CrossRef]
- Mooren, F.C.; Böckelmann, I.; Waranski, M.; Kotewitsch, M.; Teschler, M.; Schäfer, H.; Schmitz, B. Autonomic dysregulation in long-term patients suffering from post-COVID-19 syndrome assessed by heart rate variability. Sci. Rep. 2023, 22, 15814. [Google Scholar] [CrossRef]
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 (47) | |
---|---|---|
Anthropometric | ||
Age, y | 44.64 ± 7.9 | 44.74 ± 6.3 |
Sex, M:F | 33:15 | 25:22 |
Smoker:Non-smoker | 23:25 | 21:26 |
BMI, kg/m2 | 25.87 ± 7.9 | 26.16 ± 8.4 |
Comorbidities, n (%) | ||
Arterial hypertension | 15 (31) | 14 (29) |
Ischaemic heart disease | 14 (29) | 12 (26) |
Diabetes | 5 (10) | 6 (13) |
Dyslipidaemia | 5 (10) | 8 (17) |
COPD/Asthma | 0/4 (0/8) | 0/2 (0/4) |
Depression | 1 (2) | 2 (4) |
Concomitant medication, n (%) | ||
ACE inhibitors | 14 (29) | 14 (30) |
Beta-blockers | 10 (20) | 8 (17) |
Statins | 5 (10) | 8 (17) |
Anti-diabetic therapy | 4 (8) | 4 (8) |
Bronchodilators | 4 (8) | 2 (4) |
Anticoagulants | 4 (8) | 8 (17) |
Aspirin | 8 (16) | 8 (17) |
Severity of acute COVID, n (%) | ||
Mild/non-hospitalised | 38 (79) | 39 (83) |
Hospitalised | 10 (21) | 8 (17) |
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 Mild (20) | With Long-Term Post-COVID-19 Moderate-Severe (27) | |
---|---|---|---|
Respiratory parameters | |||
FEV1, L | 3.16 ± 0.87 | 3.25 ± 0.68 | 3.59 ± 0.97 |
FEV1, (%) | 79.54 ± 11.23 | 83.49 ± 8.80 | 89 ± 8.71 |
FVC, L | 3.80 ± 1.09 | 4.11 ± 0.99 | 4.46 ± 1.22 |
FVC, (%) | 78.36 ± 13.5 | 82.89 ± 8.33 | 90 ± 8.88 |
FEV1/FVC, % | 79.54 ± 11.23 | 79.08 ± 13.21 | 80.49 ± 10.32 |
Physical capacity | |||
Peak VO2, mL/min/kg | 27.01 ± 6.3 | 26.73 ± 5.9 | 24.13 ± 6.1 |
Predicted peak VO2, % | 91.2 ± 3.1 | 84.2 ± 6.4 | 81.4 ± 8.6 |
Exercise time, minutes | 9.4 ± 2.8 | 9.0 ± 2.6 | 8.4 ± 3.2 |
Slope VE/VCO2 | 32.9 ± 7.2 | 33.4 ± 5.9 | 32.1 ± 8.1 |
Categorical parameters, n (%) | |||
Preserved functional capacity | 34 (71) | 13 (65) | 17 (63) |
Mildly diminished functional capacity | 14 (29) | 7 (35) | 10 (37) |
Moderately diminished functional capacity | 0 | 0 | 0 |
Achieved anaerobic threshold | 42 (87.5) | 15 (75) | 13 (48.2) |
Depleted respiratory reserve | 0 | 0 | 0 |
Heart rate reserve utilization | 78.12 (71.87–3.52) | 68.32 (59.28–72.45) | 53.28 (47.09–60.48) |
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 Mild (20) | With Long-Term Post-COVID-19 Moderate-Severe (27) | |
---|---|---|---|
Diminished physical activity, n (%) | 14 (29) | 7 (35) | 10 (37) |
Cardiovascular pattern | 30 (62.5) | 14 (70) | 22 (81.4) |
Respiratory pattern | 0 | 0 | 0 |
Peripheral pattern | 35 (72.9) | 16 (80) | 21 (77.8) |
Exercise limiting symptoms, n (%) | |||
Dyspnoea | 41 (85.4) | 15 (75) | 21 (77.8) |
Dizziness | 9 (18.7) | 4 (20) | 5 (18.5) |
Chest pain | 0 | 0 | 0 |
Leg fatigue | 0 | 5 (25) | 6 (22.2) |
Autonomic nervous system dysfunction, n (%) | |||
CRI < 80%, n (%) | 6 (12.5) | 7 (35) | 22 (81.5) |
HRR < 12 at the 1st min, n (%) | 4 (8) | 4 (20) | 9 (33) |
Chronotropic response index | |||
HR at rest, bpm | 77.18 ± 10.34 | 98.17 ± 11.65 | 102.17 ± 12.29 |
Peak HR, bpm | 151.56 ± 17.43 | 148.2 ± 18.64 | 140.18 ± 11.67 |
Heart rate reserve utilization, % | 78.12 (71.87–3.52) | 68.32 (59.28–2.45) | 53.28 (47.09–60.48) |
Abnormal heart rate recovery—1st min post-exercise | |||
HRR at 1 min, bpm | 16.8 (14.6–18.8) | 10.8 (9.9–11.2) | 9.6 (8.8–10.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherneva, R.; Cherneva, Z.; Youroukova, V.; Kadiyska, T.; Valev, D.; Hayrula-Manaf, E.; Mitev, V. Autonomic Dysfunction and Low Cardio-Respiratory Fitness in Long-Term Post-COVID-19 Syndrome. Biomedicines 2025, 13, 1138. https://doi.org/10.3390/biomedicines13051138
Cherneva R, Cherneva Z, Youroukova V, Kadiyska T, Valev D, Hayrula-Manaf E, Mitev V. Autonomic Dysfunction and Low Cardio-Respiratory Fitness in Long-Term Post-COVID-19 Syndrome. Biomedicines. 2025; 13(5):1138. https://doi.org/10.3390/biomedicines13051138
Chicago/Turabian StyleCherneva, Radostina, Zheyna Cherneva, Vania Youroukova, Tanya Kadiyska, Dinko Valev, Ebru Hayrula-Manaf, and Vanyo Mitev. 2025. "Autonomic Dysfunction and Low Cardio-Respiratory Fitness in Long-Term Post-COVID-19 Syndrome" Biomedicines 13, no. 5: 1138. https://doi.org/10.3390/biomedicines13051138
APA StyleCherneva, R., Cherneva, Z., Youroukova, V., Kadiyska, T., Valev, D., Hayrula-Manaf, E., & Mitev, V. (2025). Autonomic Dysfunction and Low Cardio-Respiratory Fitness in Long-Term Post-COVID-19 Syndrome. Biomedicines, 13(5), 1138. https://doi.org/10.3390/biomedicines13051138